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Abstract. Despite the consensus on the overall downward trend in Amazon forest loss in the previous decade,
estimates of yearly carbon emissions from deforestation still vary widely. Estimated carbon emissions are cur-
rently often based on data from local logging activity reports, changes in remotely sensed biomass, and remote
detection of fire hotspots and burned area. Here, we use 16 years of satellite-derived carbon monoxide (CO)
columns to constrain fire CO emissions from the Amazon Basin between 2003 and 2018. Through data assimi-
lation, we produce 3 d average maps of fire CO emissions over the Amazon, which we verified to be consistent
with a long-term monitoring programme of aircraft CO profiles over five sites in the Amazon. Our new product
independently confirms a long-term decrease of 54 % in deforestation-related CO emissions over the study pe-
riod. Interannual variability is large, with known anomalously dry years showing a more than 4-fold increase in
basin-wide fire emissions relative to wet years. At the level of individual Brazilian states, we find that both soil
moisture anomalies and human ignitions determine fire activity, suggesting that future carbon release from fires
depends on drought intensity as much as on continued forest protection. Our study shows that the atmospheric
composition perspective on deforestation is a valuable additional monitoring instrument that complements exist-
ing bottom-up and remote sensing methods for land-use change. Extension of such a perspective to an operational
framework is timely considering the observed increased fire intensity in the Amazon Basin between 2019 and
2021.
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1 Introduction

The role of Amazon forests in supporting biodiversity, re-
gional ecosystem services, and carbon storage (Gloor et al.,
2012) is threatened by human activity, in the form of large-
scale deforestation (Davis et al., 2020) and climate change.
In Brazil specifically, various studies suggest that, in recent
years, deforestation rates and associated fire activity are once
again accelerating (INPE, 2020; Pereira et al., 2020), after
having reached a minimum around 2012 (Yin et al., 2020).
Moreover, recent droughts in 2010 and 2015–2016 led to
maxima in biomass burning (Silva Junior et al., 2019). Re-
liable monitoring of fire activity and its impacts provide ob-
jective detection and mapping of deforestation, which helps
in investigating underlying drivers. Such information is key
for developing efficient mitigation measures and for reducing
fire risks.

Monitoring fires primarily relies on remote sensing prod-
ucts such as burned area (Giglio et al., 2018), fire radiative
power (FRP), and fire counts (Giglio et al., 2016). Such prod-
ucts can be combined with pre-burn fuel load, emission fac-
tors, and combustion completeness to estimate fire emissions
of different species (Wiedinmyer et al., 2011; van der Werf
et al., 2017; Kaiser et al., 2012). Rapid and continuous pro-
cessing of vast amounts of such data allowed recent unex-
pectedly high fire activity in 2019 to be detected and reported
quickly (Lizundia-Loiola et al., 2020; Brando et al., 2020).
However, fire dynamics are complex, and products based on
land remote sensing data are prone to miss small fires (Ran-
derson et al., 2012; Ramo et al., 2021), are hampered by
cloud cover (Schroeder et al., 2008), and might be poorly
able to detect understory fires (Morton et al., 2013). Under-
story fires in particular contribute strongly to forest fragmen-
tation and mortality, and they can increase forest vulnerabil-
ity to burning (Nepstad et al., 2001; Alencar et al., 2004). In
addition to the direct detection of fire activity, information is
needed to quantify the corresponding carbon loss to the at-
mosphere on scales from decades to seasons as well as from
the entire Amazon Basin down to individual Brazilian states.

During fires, a combination of pollutants is released into
the atmosphere, the composition of which depends on lo-
cal fire conditions but generally includes a large contribution
from carbon monoxide (CO). With an atmospheric lifetime
of 1–3 months, CO is not well mixed globally; hence, fire
emissions produce large and, thus, easily detectable enhance-
ments over the CO background concentration. Therefore, en-
hancements in CO over and around the Amazon Basin can
provide information on the frequency, intensity, and location
of fires. Moreover, the CO released from fires that escaped
direct detection, such as under cloud cover or in the under-
story, can still be detected. Finally, CO fire emissions can be
linked to total carbon emissions and emissions of other pollu-
tants with the use of emission factors (e.g. Ferek et al., 1998;
van Leeuwen et al., 2013), providing insight into the climate
and air quality impacts of fires.

Satellite CO data are especially useful for quantifying and
mapping fire emissions, due to their temporal and spatial
detail as well as their availability in remote areas. In this
work, we focus on the use of satellite-detected CO column
retrievals from the Measurement Of Pollution In The Tropo-
sphere (MOPITT) instrument (Deeter et al., 2019), which is
an established product for CO emission quantification (Jiang
et al., 2017; Miyazaki et al., 2020). For the Amazon Basin
specifically, MOPITT CO data have previously been anal-
ysed to show that a long-term decrease in deforestation over
the 2002–2016 period is partly counteracted by large fires in
drought years (Aragão et al., 2018; Deeter et al., 2018).

Here, we move beyond direct analysis of satellite data
and incorporate these data into the TM5-4D-Var (Krol et al.,
2005; Meirink et al., 2008) data assimilation system. By link-
ing satellite data to the TM5 3D transport model, we can
map and quantify CO fire emissions in the Amazon with im-
proved detail and accuracy. The long time series of MOPITT
CO satellite data has previously been used in data assimi-
lation studies for estimating the global CO budget (Zheng
et al., 2019), also with a focus on fire emissions (Yin et al.,
2020). Other data assimilation studies that have been focused
on South America have provided insight into fire and drought
events over shorter time periods (Hooghiemstra et al., 2012;
van der Laan-Luijkx et al., 2015). This study adds value to
previous work by providing a focused and rigorous analy-
sis of fire emissions in the Amazon over a long time period
(2003–2018), which adds context to both global studies and
studies that focused on shorter time periods.

We first present fire emissions over the entire Amazon
Basin (Sect. 3.1.1); we then zoom in on individual Brazil-
ian states (Sect. 3.1.2) as well as on different land-cover
types (Sect. 3.1.3). This level of detail helps to better un-
derstand and quantify differences between bottom-up and
top-down estimates as well as to assess anthropogenic and
natural contributions to fire emissions. An important asset
of our analysis is a detailed investigation of the uncertain-
ties in the Bayesian inverse system. To this end, we inves-
tigate the influence of components such as the prior fire
CO emission inventory, natural production, and loss fields,
and we additionally assimilate a different satellite product.
Uniquely, we independently assess our MOPITT-based emis-
sion estimates as well as those from the Global Fire Assimila-
tion System (GFAS) bottom-up inventory, using a multi-year
CO record from an aircraft whole-air flask sampling network
in the basin (Sect. 3.2.2) (Gatti et al., 2014, 2021).

2 Methods

2.1 Transport model

We operate the TM5 atmospheric transport model (Krol
et al., 2005) at a global resolution of 4◦× 6◦ (lati-
tude×longitude). We additionally use the zoom capability
of the TM5 model to include two nested regions over South
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Figure 1. A map of the South American zoom regions used in the
TM5 simulations. The green and red grids indicate the 3◦× 2◦ and
1◦× 1◦ (longitude× latitude) zoom regions respectively. Over both
zoom regions, satellite data are assimilated. Filled stars indicate the
NOAA Global Greenhouse Gas Reference Network surface sites,
from which surface observations are assimilated to constrain global
CO emissions, and, by extent, the boundary conditions of the zoom
domains. Filled circles indicate sites where discrete whole-air sam-
ples were collected by aircraft at various altitudes. The CO data cal-
ibrated on whole-air samples are used for independent evaluation of
the inversions.

America, in a set-up similar to van der Laan-Luijkx et al.
(2015) (see Fig. 1). The inner zoom domain (red grid in
Fig. 1), with a 1◦× 1◦ resolution, spans longitudes from 75 to
39◦W and latitudes from 28◦ S to 8◦ N. The outer zoom do-
main (green grid in Fig. 1), with a 2◦× 3◦ resolution (lati-
tude× longitude), spans longitudes from 84 to 30◦W and lat-
itudes from 34◦ S to 14◦ N. Note that we present most results
for the inner zoom domain only. All regions are operated with
25 vertical layers, covering the range from surface pressure to
top of the atmosphere, typically with 3–6 model layers in the
planetary boundary layer. Transport in TM5 is driven by 3-
hourly, offline meteorological fields from the European Cen-
tre for Medium Range Weather Forecasts (ECMWF) ERA-
Interim reanalysis (Dee et al., 2011), which have a native
resolution of approximately 80 km with 60 vertical layers.

2.2 Prior source and sink fields

We performed 2003–2018 inversions with three prior fire in-
ventories: the Global Fire Assimilation System (GFASv1.2;
Kaiser et al., 2012), the Fire INventory (FINNv1.5) from the
National Center for Atmospheric Research (NCAR; Wied-

inmyer et al., 2011), and a climatological (i.e. annually
repeating) prior based on the average emission distribu-
tion in GFAS (hereafter referred to as CLIM). The GFAS
emission distribution is provided at a 0.1◦× 0.1◦ resolu-
tion, and the FINN distribution is available at a resolution
of ∼ 1 km× 1 km; however, we regrid both to our coarser
model resolution. GFAS and FINN use different data from
the Moderate Resolution Imaging (MODIS) satellite as a
proxy for the global, daily fire distribution: GFAS uses fire
radiative power (FRP), whereas FINN uses active fire counts.
Both inventories overlay these proxies with land-cover maps
from the MODIS instrument, and they employ land-cover-
specific emission factors for CO (and other species) to pro-
duce the emission estimates that we use. However, the ex-
act land-cover classifications and emission factors used dif-
fer between the two inventories. We use the inversions that
start from the GFAS prior as a reference, and we discuss the
differences between the fire priors where relevant.

Fire emissions retrieved in our inverse system are in-
formed by both the prior emission distribution (e.g. GFAS)
and the assimilated observational data (e.g. MOPITT). To
assess the importance of either component, we have con-
structed a climatological prior (CLIM) that includes no inter-
annual variability nor spatial gradients. As such, variability
in the posterior emissions retrieved in the CLIM inversions
is driven exclusively by the assimilated CO data and atmo-
spheric transport. As we optimize CO fire emissions at a 3 d
resolution (Sect. 2.6), we also construct the CLIM prior at a
3 d resolution. We construct the CLIM prior as follows: (1)
we average the daily CO emission fields from GFAS over the
2003–2018 period; (2) if the total CO emissions in a grid cell
are less than 0.03 Tg during a 3 d period, the emissions in that
grid cell and 3 d window are set to zero; and (3) the 3 d total
fire emissions inside the 1◦× 1◦ zoom domain are divided
uniformly over those grid cells that initially had emissions
higher than 0.03 Tg. In this way, approximately 24 % of the
inner domain grid cells still contain emissions. We choose
this approach to prevent spatial gradients in the GFAS esti-
mate from influencing posterior emissions; the approach is
balanced by the 0.03 Tg lower limit to retain some potential
to recover high, localized emissions from the CLIM prior.
Outside the 1◦× 1◦ zoom domain, the CLIM prior still in-
cludes interannually varying GFAS emissions.

All fire emissions (GFAS, FINN, and CLIM) are dis-
tributed vertically in the simulations following vertical emis-
sion profiles derived in the Integrated System for wildland
Fires (IS4FIRES) (Soares et al., 2015). In contrast to the hor-
izontal emission distribution, the vertical emission distribu-
tion does include diurnal variability. In a sensitivity test, we
have found that including a diurnal cycle in only the vertical
emission distribution produces results that are comparable to
including diurnal variability in both the horizontal and ver-
tical distribution of CO fire emissions (results not shown).
Therefore, we do not impose sub-daily variability on the na-
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tive daily resolution of GFAS and FINN emissions in the sim-
ulations.

For the chemical production of CO from methane (CH4)
and from non-methane volatile organic com-
pounds (NMVOCs), we use fields generated in a 2006
simulation in the full-chemistry version of TM5 (Huijnen
et al., 2010). We use anthropogenic CO emissions from
the Monitoring Atmospheric Composition and Climate
CityZen (MACCity) inventory (Lamarque et al., 2010).
The annually repeating, monthly hydroxyl radical (OH)
concentration fields are a combination of tropospheric
OH fields from Spivakovsky et al. (2000), scaled by 0.92
as recommended in Patra et al. (2011), and stratospheric
OH fields derived in the 2D Max Planck Institute for Chem-
istry (MPIC) chemistry model (Brühl and Crutzen, 1993). In
Sect. 3.3.3, we discuss the sensitivity of the inversion results
to the chemical CO production and to the OH distribution.

2.3 Satellite retrievals

In the reference inversions, we assimilate CO column re-
trievals from version 8 of the Measurements Of Pollution In
The Troposphere (MOPITT) instrument (Deeter et al., 2019)
over both South American zoom domains. MOPITT retrieves
CO columns using both the CO absorption band in the ther-
mal infrared (TIR) at 4.7 µm and in the near-infrared (NIR)
at 2.3 µm. In this work, we only use CO columns retrieved in
the TIR band. MOPITT has a swath of 22 km× 650 km, with
116 cross-swath pixels, and daily overpass times of 10:30 and
22:30 LT (local time) each morning and night for the inner
zoom domain. Following Nechita-Banda et al. (2018), we in-
flate column errors reported by the MOPITT team by a fac-
tor
√

50 to compensate for the high number of satellite data
(∼ 10000 d−1 in both zoom domains combined) relative to
the number of surface observations (∼ 150 per month; see
also Sect. 2.4). CO columns are sampled from the transport
model using the MOPITT averaging kernels.

In Sect. 3.3.1, we present inversions in which satellite
data from the Infrared Atmospheric Sounding Interferome-
ter (IASI) instrument (Clerbaux et al., 2009) are assimilated
instead of MOPITT. IASI retrieves CO columns exclusively
in the TIR waveband, with a 12 km× 4 km footprint at nadir.
Identical versions of the IASI instrument fly aboard three op-
erating platforms (Metop-A, -B, and -C), but we limit our-
selves to the Metop-A data in this work, which cover the
longest time period. Importantly, while IASI and MOPITT
exploit similar wavebands, they use different measurement
techniques (George et al., 2015). The overpass time of IASI
typically precedes the MOPITT overpass time by 1 h. Im-
portantly, different from MOPITT, we only assimilate IASI
daytime data.

2.4 Surface observations

To constrain global emissions of CO outside of the model
zoom domains, we assimilate CO mole fraction observa-
tions from the surface whole-air flask sampling network (40–
45 sites) of the NOAA Global Greenhouse Gas Reference
Network (GGGRN) (Petron et al., 2019). We use a fixed ob-
servational error of 2 ppb CO per flask pair average, with no
model error. We choose not to adopt a model error for sur-
face observations, as this would only require further inflation
of the error in satellite data (see above). We test the effect of
reducing this observational error to 0.2 ppb CO in Sect. S1 in
the Supplement.

2.5 Aircraft observations

We use a set of aircraft observations over the Amazon for
independent validation of the inverse results over the 2010–
2017 period. Atmospheric air samples were collected at a
range of altitudes over five sites in the Brazilian Amazon
(Gatti et al., 2014, 2021). The Tabatinga site (TAB) was
replaced by Tefé (TEF) in 2013, and we generally group
these two sites in our analysis. Site locations are indicated
in Figs. 1 and 6. The sampling flights were performed using
small aircraft, typically two times per month, between 12:00
and 13:00 LT, in a descending helicoidal profile that avoids
sampling emissions from the aircraft. One profile typically
includes 12–17 air samples between 300 and 4500 m a.s.l.
(metres above sea level) (Gatti et al., 2014, 2010). The
concentrations of the aircraft samples have been analysed
by the National Institute for Space Research (INPE; São
José dos Campos, Brazil) LaGEE (greenhouse gas labora-
tory) since 2015; before 2015, they were processed at the
Nuclear and Energy Research Institute (IPEN) in an atmo-
spheric chemistry laboratory in São Paulo. LaGEE uses stan-
dards calibrated against the World Meteorological Organiza-
tion reference scales maintained by the NOAA Global Moni-
toring Laboratory (i.e. the same calibration scale that is used
for NOAA GGGRN surface observations). In the period dur-
ing and after this transition (2015–2016), operation of the
aircraft network was partly interrupted (see also the right-
hand column in Fig. 6). A 2010–2013 subset of these aircraft
data was previously used for direct validation of MOPITT
CO data (Deeter et al., 2016). However, as we sample both
satellite and aircraft data from a 3D-simulated atmosphere,
our validation more realistically accounts for the different
vertical sensitivities of the two datasets.

2.6 Optimization procedure

We employ the TM5-4D-Var inverse system (Meirink et al.,
2008) to optimize CO emissions between 2003 and 2018
in 16 separate inversions, which each cover the April–
December period of 1 year (i.e. centred on the Amazon fire
season). Simulating 9 instead of 12 months greatly improves
the speed of convergence of the inversions, as the complexity
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of the inverse problem scales non-linearly with the number of
assimilated observations and optimized state elements. Be-
cause Amazon fires occur mostly between June and Novem-
ber, this set-up still provides us with a 1 month spin-up and
spin-down period.

The CO satellite data are only assimilated inside both
zoom domains over South America. In the zoom domains,
we optimize 3 d total CO fire emissions, with a relative grid
box error on the emissions of 250 %, a horizontal correla-
tion length of 200 km, and a temporal correlation of 3 d. To-
tal emissions in the global domain are constrained mainly
from NOAA surface observations, and they are optimized
with a prior uncertainty of 250 % as well as with a hori-
zontal and temporal correlation of 1000 km and 9.5 months
respectively. Emissions are optimized non-linearly, follow-
ing a semi-lognormal distribution, to prevent negative poste-
rior emissions, as in Bergamaschi et al. (2009). Because the
4D-Var system does not produce posterior error covariance
matrices for a non-linear system, we instead explore the un-
certainties of the inverse system in sensitivity tests (e.g. ad-
justing the prior emission distribution, adjusting the obser-
vational errors, and assimilating a different satellite product;
see Sects. 3.3, S1, and S2).

3 Results

3.1 Flux analysis

3.1.1 Basin-wide Amazon fire emissions

The inverse system retrieves annual total (May–December)
fire emissions that vary strongly interannually (Fig. 2a): from
26 Tg CO in 2018 to 127 Tg CO in 2005. Typically, GFAS,
FINN, and the posterior estimates show the highest and low-
est emissions in the same years. However, the posterior inter-
annual variability is significantly larger (standard deviation
of 34 Tg CO yr−1) than the prior variability (standard devi-
ation of 19 Tg CO yr−1). We find that, averaged over 2003–
2018, GFAS emissions need to be increased by 50 % to match
MOPITT CO data, with the largest underestimates in dry
years (e.g. by 130 % in 2015). For FINN, the average un-
derestimate is smaller at 20 %.

The spread between posterior estimates that start from dif-
ferent emission priors is significantly smaller (standard de-
viation of 2 Tg CO yr−1) than the spread between prior esti-
mates (standard deviation of 12 Tg CO yr−1). The strong pos-
terior agreement between inversions is an especially note-
worthy result for the CLIM prior, which does not include
any interannual variability. This result shows that the poste-
rior variability is almost exclusively driven by MOPITT data
and TM5 transport, rather than by prior information from
the fire inventories. Therefore, we consider that the overall
agreement between the prior and posterior interannual vari-
ability shows that the fire inventories are generally very able
to identify high-emission years.

The fire emissions show a strong seasonal cycle (Fig. 2b),
with low emissions in April–May and December in most
years, in both the prior and posterior emission estimate. This
finding generally supports the use of a 9-month inversion pe-
riod, and it confirms that treating April and December as re-
spective spin-up and spin-down months does not strongly af-
fect the annual total CO fire emissions.

In this 16-year record, 2015 is the year that breaks from
these general conclusions. Firstly, while it does not show up
as a high-emission year in GFAS and FINN, it does show
up as a high-emission year in all posterior estimates. Addi-
tionally, it is the only year with high emissions in November
and December. Therefore, it is possible that the 2015 esti-
mate is affected by spin-down effects and that we miss emis-
sions in early 2016. However, in an inversion from Novem-
ber 2015 to May 2016, we find that the January 2016 emis-
sions are low and that December 2015 emissions are not sig-
nificantly affected by extending the inversion window (re-
sults not shown).

3.1.2 Fire emissions in Brazilian states

We have quantified interannual variability in fire CO emis-
sions for five Brazilian states to assess these emissions at
a sub-basin scale (green and orange lines in Fig. 3). As an
indicator of relative drought between years, we have also
shown the local root-zone soil moisture anomalies, as pro-
vided by the Global Land Evaporation Amsterdam Model
(GLEAM v3a; Miralles et al., 2011; Martens et al., 2017;
blue lines and right y axes in Fig. 3). Mato Grosso and Pará
make up most of the Brazilian “Arc of Deforestation”, and
Maranhão and Tocantins (grouped in our analysis) are on the
edge of it. Amazonas represents a more pristine area in the
Amazon Basin. Together, these five states cover most of the
Brazilian Amazon.

We find a strong link between interannual variability in op-
timized CO fire emissions and local soil moisture anomalies.
Interannual variations in CO emissions are markedly differ-
ent per state, and years with low soil moisture levels gener-
ally show high fire emissions. For example, the 2010 fires
are mostly located in Mato Grosso, while the 2015–2016
fires are concentrated in Pará and Maranhão/Tocantins, co-
inciding with local negative anomalies in soil moisture. The
GFAS and FINN prior emissions are similarly anticorrelated
with soil moisture. However, we also find a similar corre-
lation for the CLIM inversions (result not shown), which
do not include prior interannual variability. This result con-
firms that our inverse set-up can retrieve state-level interan-
nual variability independent of prior assumptions. Moreover,
especially in 2015, emissions are strongly adjusted in the in-
version, and this coincides with local negative soil moisture
anomalies.

We have quantified the correlation between the optimized
GFAS emissions and soil moisture anomalies, and we find
that it is significant for all states, at a significance level
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Figure 2. Prior and posterior fire CO emission estimates summed over the 1◦× 1◦ South American zoom domain (see Fig. 1).
Panel (a) presents the May–December total emissions per year. Panel (b) shows the monthly total emissions, with the colours distinguishing
prior (green) from posterior (orange) and the line style indicating the prior used. Shaded areas mark the spread between the three priors and
the three posteriors respectively. Note that the posterior estimates mostly overlap; thus, these are visible as one line only.

Figure 3. Interannual variability in the area-average soil moisture and fire CO emissions in five Brazilian states. The four outside pan-
els (a, c, d, e) show the 2003–2018 time series of May–December total CO emissions from biomass burning (left axis, in orange and green)
and the annual averaged root-zone soil moisture from the Global Land Evaporation Amsterdam Model (GLEAM v3.3a) product (right axis,
in blue), for five Brazilian states. A year is defined here as June–December (i.e. centred on the dry season). Both prior (green) and MOPITT-
optimized (orange) fire CO emissions are shown, for the three inversions that start from different prior fire inventories (indicated by solid,
dashed, and dot-dash lines). Shaded areas indicate the spread between the fire inventories before (green) and after (orange) the inversion.
Also shown at the top are the correlation coefficients (R2 values) between CO emissions and soil moisture for the optimized emissions from
the inversion that start from the GFAS inventory. Maranhão and Tocantins are combined, as they are smaller states that represent similar
regimes in terms of climate and anthropogenic activity. Note the different y scales between the four figures, with the lowest emissions in
Amazonas. Panel (b) shows a map of these five Brazilian states.

of p = 0.05 (correlation coefficients per state are shown in
Fig. 3). The correlation coefficients are largely insensitive to
the averaging approach for soil moisture (e.g. selecting the
annual minimum value or averaging over fewer months). Pre-
vious work has already established a strong link between fire
emissions and soil moisture (e.g. Asner and Alencar, 2010;
Silva et al., 2018), but the strength and consistency of the
anticorrelation that we find here, at the level of individual
states, is noteworthy. Of course, drought is not the only de-

terminant of fire emissions, and in Sect. 3.1.3 we explore the
role of deforestation.

Similar to the basin-wide emissions (Fig. 2), we find that
the spread between posterior estimates at the state level is
much reduced compared with the spread between prior esti-
mates. The posterior estimates do not only agree with respect
to their interannual variability but also regarding the spatial
allocation of the emissions between states. For example, the
GFAS emissions in Amazonas are on average 4 Tg CO yr−1

lower than the FINN emissions; however, after the inversion,
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the estimates converge to the lower GFAS estimate, with a
much smaller residual difference between the two posterior
estimates of 1 Tg CO yr−1. This shows that not only are the
Amazon total fire CO emissions well constrained by the in-
versions but their spatial allocation are also well constrained.

3.1.3 Long-term trends and land-cover type

We observe a significant downward trend in the MOPITT-
derived CO emissions over our full inner zoom domain
(Fig. 4b), which is largely insensitive to the prior inven-
tory used in the inversion. We focus here on 5-year aver-
aged emissions in order to visualize the clear downward trend
that is otherwise partly masked by interannual variations in
emissions (e.g. Fig. 3). We disaggregate the trend between
forests and savanna, based on Version 6 of the annual land-
cover data from the MODIS Land Cover Climate Model-
ing Grid (CMG) (Fig. 4) (Sulla-Menashe et al., 2019). We
find that the decrease over the study period (between the
fire CO emissions averaged over 2003–2007 and over 2014–
2018) is larger over forest (∼ 54 %) than over savanna and
shrublands (∼ 39 %), and the stronger trend over forests is
matched in magnitude and sign by a decrease in the inde-
pendently derived estimates of deforestation from the Brazil-
ian Amazon Deforestation Monitoring Program (PRODES;
INPE, 2020). The PRODES deforestation rates quantify the
area deforested each year that has not been deforested before.
Notably, both deforestation rates and fire emissions have
stopped decreasing since ∼ 2012. Deforestation, especially
the narrow definition used in PRODES, does not always over-
lap with fires – for example, when fires occur in reforested
areas, or when cut forest is burned with delay or not at all.
However, most fires are in some way caused by local an-
thropogenic activity, for which deforestation is a good proxy.
The close match in trends shows that fire abatement policies
do reduce fire emissions, but this is often masked by inter-
annual, drought-driven variations. This conclusion confirms
similar assessments in earlier MOPITT-based work (Aragão
et al., 2018; Deeter et al., 2018); however, here, with the use
of the TM5-4D-Var inverse system, we are able to quantify
both the decrease and drought-driven interannual variations.

The prior CO emissions from both GFAS and FINN are
too low to reproduce MOPITT CO column retrievals in
all years, for all land-cover types, but the underestimate is
much stronger over savanna and shrublands than over forests
(Fig. 4c and black circles in Fig. 4a). A strong systematic un-
derestimate over savanna–shrublands is indicative of under-
estimated CO emission factors and carbon stock, as other ex-
planations (such as missed small fires or understory fires) are
more likely to impact emission estimates from forests. We do
note that the amplitude of the underestimate over savanna–
shrublands (median of 67 %) is large compared with typi-
cal uncertainties in emission factors (e.g. van Leeuwen et al.,
2013) and carbon stock. As noted earlier, we find that emis-
sions in dry years, such as 2010 and 2015, are more strongly

underestimated than emissions in wet years. We find that
the FINN and GFAS inventories underestimate fire emissions
most strongly in 2015, which could, in part, be driven by the
timing of these fires. The 2015 fires continued into November
and December (see Sect. 3.1.1): months that typically have
more cloud cover, which inhibits direct fire detection.

3.2 Comparison to observations

In this section, we assess the skill of our prior and posterior
simulations to reproduce the assimilated satellite data as well
as independent aircraft profiles of CO. A comparison with
surface observations is presented in Sect. S1. Results pre-
sented in this section are largely insensitive to the prior fire
inventory used, which is why we only present results from
the reference GFAS inversions.

3.2.1 MOPITT satellite retrieval

The MOPITT-retrieved CO columns show a distinct seasonal
cycle that peaks in September in most years (Fig. 5a), sim-
ilar to the fire emissions (Fig. 2). In the prior simulations,
we find significant differences between the domain-averaged
simulated and satellite-retrieved CO columns (Fig. 5b). In the
posterior, these differences are reduced to less than 2 % of
the observed columns. The 9-month inversion window does
show a spin-up period of approximately 1 month in which
the difference is larger, as we do not optimize the initial
CO distribution. The posterior agreement between the simu-
lations and the MOPITT data confirms that, with adjustments
to biomass burning emissions inside the zoom domains and
with adjustments to total emissions outside of the domains,
we can reproduce satellite-retrieved MOPITT CO columns
in our simulations within their observational errors.

Differences between simulated and observed columns in
the prior simulation are indicative of the types of adjust-
ments in CO emissions that are needed to reproduce observed
columns. Firstly, simulated CO columns outside of the dry
season are systematically too high (by about 8 %–15 %). Sec-
ondly, superimposed on this systematic overestimate, we find
that the peaks in CO column retrievals during dry season are
underestimated in the prior simulations. We largely attribute
the overestimate to overly high secondary production of CO
(as further discussed in Sect. S2.1). Because we do not op-
timize secondary production in our inversion, the overesti-
mate is largely corrected by adjusting emissions outside the
inner zoom domain, which are only loosely determined by
the NOAA surface observations (see Sect. S1). The prior un-
derestimate of the dry-season peak in CO is most likely re-
lated to fire emissions, and we indeed find that fire emissions
are increased after data assimilation (Sect. 3.1.3).
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Figure 4. Spatial allocation of emissions between land-cover types as well as the long-term trends in the emissions. Panel (a) presents a land-
cover map of South America, with land-cover types retrieved from the MODIS product, at a 0.1◦× 0.1◦ resolution. We distinguish between
forest (green) and savanna–shrublands (yellow). Grid cells covered by less than 70 % of both are shown in grey. The map covers the 3◦× 2◦

zoom region used in TM5, and the black outline indicates the 1◦× 1◦ zoom region, which is the focus of our study. The area of the black
circles is proportional to how much CO is added to the GFAS prior emissions in the inversion, over the 2003–2018 study period (see also
legend). Panel (b) provides a time series of the 5-year averaged annual total CO emissions from biomass burning over the 1◦× 1◦ TM5 zoom
domain for two land-cover types: forest (in green) and savanna–shrublands (in yellow). Emission totals are scaled to the emissions in the first
5-year window (see the left y axis), which is centred on 2005. Also shown are the 5-year averaged deforestation totals (black, right y axis), as
retrieved from the Brazilian Amazon Deforestation Monitoring Program (PRODES). Note that the area used for PRODES deforestation rates
is different from the forest mask that we use for emission attribution, as PRODES (among other differences) only quantifies deforestation in
Brazil. Panel (c) presents a box plot that shows how much annual total emissions over each land-cover type are adjusted through optimization
with MOPITT satellite data. This can be compared to the black circles in panel (a).

Figure 5. A comparison between simulated and MOPITT-retrieved CO columns for the GFAS reference inversion. Panel (a) shows the
TM5-simulated and MOPITT-retrieved CO columns, averaged over the inner 1◦× 1◦ zoom domain and at a 3 d time resolution. Note that the
posterior simulation and the MOPITT-retrieved CO columns largely overlap; thus, the latter is poorly visible. Panel (b) presents the relative
difference between satellite-retrieved and simulated MOPITT CO columns, in a simulation with the prior GFAS emissions (green) and
after the MOPITT CO column retrievals have been assimilated to optimize fire emissions (orange), averaged as in panel (a). The difference
between the simulated and observed columns is quantified as a percentage of the average satellite-retrieved CO column.

3.2.2 Validation with aircraft profiles

Whole-air flask sampling flights were conducted over five
sites in the Amazon Basin between 2010 and 2017 (Gatti
et al., 2021). We compare the TM5-simulated CO mole frac-
tions to those measured from the samples of vertical profiles
(Fig. 6). This independent validation clearly shows an im-
proved overall match after the assimilation of the MOPITT-

retrieved CO columns. In simulations with prior GFAS emis-
sions, we find a site-averaged bias of −62 ppb, which de-
creases to −19 ppb after the optimization (visible in the left-
hand columns of Fig. 6). This improvement confirms that the
prior GFAS emissions are too low to reproduce observations.
For Santarém, the residual bias is largest (−32 ppb CO after
optimization), but MOPITT CO column retrievals over the
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Figure 6. Comparison between simulated and observed aircraft profiles over five sites in the Amazon. Profiles sampled over Tabatinga
and Tefé are combined, as they represent similar air masses and have complementary temporal coverage (Tabatinga up to 2013 and Tefé
after 2013). The profiles cover the 2010–2017 period, and we have included only profiles sampled between August and November. The left
column presents the time-averaged (2010–2017) simulated (prior in green; posterior in orange) and observed (black) aircraft profiles, binned
in 500 m intervals. The grey shaded areas show 1 standard deviation of the variability between the individual observed aircraft profiles. The
centre column shows maps of the influenced area of each site or each site combination. Black dots indicate site locations, and the red area
indicates the origin of air at the site location. Red areas are proportional to the logarithm of the number of back trajectories that originate at
the sampling location and altitude, and then pass through a grid cell, as determined from simulations in the Hybrid Single-Particle Lagrangian
Integrated Trajectory (HYSPLIT) model (Stein et al., 2015). Further details are provided in Gatti et al. (2010). Back trajectories from the
Lagrangian grid in the HYSPLIT model were interpolated to the TM5 1◦× 1◦ grid. The right column presents violin plots of the absolute
difference between observed and simulated aircraft samples of CO, in a simulation with GFAS-optimized (green) and in a simulation with
MOPITT-optimized biomass burning emissions (orange). The dashed lines inside each violin indicate the median and the two inner quartiles.

same region are matched well after optimization (Sect. S3).
We do find a significant absolute residual error between
simulated and observed aircraft profiles, which can be ex-
plained by the relatively coarse resolution of the transport
model (1◦× 1◦ with 25 vertical layers; see Sect. 2.1), which
puts a limit on how well individual aircraft samples can be
represented in TM5. However, we find that the MOPITT-
derived emissions generally greatly improve the agreement
with independent aircraft profiles at the five different loca-
tions across the Amazon, compared with the GFAS prior.
This gives us confidence in the fact that our inversion im-
proves estimates of CO emissions from fires across differ-
ent regions of the Amazon Basin – for example, for different
Brazilian states (Sect. 3.1.2).

3.3 Sensitivity tests

3.3.1 Assimilating IASI instead of MOPITT satellite data

We have performed additional inversions in which we assim-
ilate CO column retrievals from the IASI Metop-A instru-
ment (Clerbaux et al., 2009). We find that MOPITT-derived
emissions are slightly higher than IASI-derived emissions
before 2014 (6–12 Tg CO yr−1), whereas IASI-derived emis-
sions are significantly higher than MOPITT-derived emis-
sions (15–30 Tg yr−1) after 2014 (see Fig. 7). Within each of
these two time periods, the difference between interannual
variability in IASI- and MOPITT-derived emissions is small
(∼ 10 Tg yr−1) relative to this jump (∼ 30 Tg yr−1).
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Figure 7. Total CO emissions from biomass burning summed over the 1◦×1◦ South American zoom domain and over the April–December
inversion period. Results for two sets of inversions are shown, which each started from the GFAS fire prior: the first is the default inversion
that used MOPITT satellite data, and the second used IASI satellite data.

Figure 8. The difference between satellite-retrieved MOPITT CO
columns and MOPITT CO columns sampled in a simulation that
used CO emissions optimized with IASI-retrieved CO columns,
over the 1◦× 1◦ South American zoom domain. The difference is
quantified as a percentage of the satellite-retrieved CO columns.
The date on which IASI switches between two meteorological
datasets (30 September 2014) is indicated; on this date, a jump in
the difference between simulated and satellite-retrieved MOPITT
CO columns occurs.

We have sampled MOPITT columns in simulations with
IASI-optimized biomass burning emissions to investigate the
timing of this jump (Fig. 8). Over 2010-2013, simulated MO-
PITT CO columns are in good agreement with those retrieved
by MOPITT, which indicates consistency between the MO-
PITT and IASI records. However, a jump occurs in 2014, af-
ter which simulated MOPITT columns become biased high,
which is consistent with the difference in emissions. The
onset of this bias of around 8 % occurs instantaneously on
30 September 2014, as indicated in Fig. 8. Over the 2010–
2018 period, several changes have been made to the IASI re-
trieval that can cause inconsistencies (e.g. Table 2 in Bouillon
et al., 2020), and a major update to the processing algorithm
that was implemented on 30 September 2014 apparently has
a particularly large impact on the retrieved CO columns.
Based on the coincidence of these two events, we consider
the switch in IASI–MOPITT offset to be an artefact in the
IASI data record.

We conclude that as long as the IASI retrieval does not
use a consistent meteorological dataset, the retrievals before
and after 30 September 2014 are best treated as two sepa-
rate data records. Currently the IASI team is finalizing a full
reprocessing of the CO Metop-A record, using the ERA5 re-
analysis as input for temperature profiles in order to generate

a homogeneous record. The resulting consistent IASI prod-
uct will provide better grounds for an uncertainty estimate of
the driver satellite data, which is currently more difficult to
perform. We do consider the relative consistency in interan-
nual variability between IASI and MOPITT, except for the
2014 break, evidence of the robustness of interannual vari-
ability in CO emissions derived from either satellite product.
The systematic difference between MOPITT and IASI is a
measure of the systematic uncertainty in the satellite data and
its impact on derived annual total fire CO emissions, which
amounts to 10–30 Tg yr−1 for the inner zoom domain.

3.3.2 Integrated comparison to Zheng et al. (2019)

We have additionally compared our derived CO emissions
to those derived by Zheng et al. (2019). Their emission es-
timate, covering 2000–2017, was derived in an inversion
that also assimilated MOPITT TIR CO column retrievals.
However, that is the only shared aspect of our two inverse
set-ups. Their inversion assimilated MOPITT CO column
retrievals globally, which will result in different boundary
conditions for the Amazonian domain than assimilation of
surface observations. Additionally, their inversion was per-
formed at a different spatial resolution (1.9◦× 3.75◦, lati-
tude× longitude, with 39 vertical layers) in a different trans-
port model (LMDz-SACS; Pison et al., 2009). As a prior for
fire CO emissions, they used emissions from version 4.1s of
the Global Fire Emissions Database (GFED) (van der Werf
et al., 2017). Prior OH fields used in Zheng et al. (2019) were
the same as ours, but theirs were optimized with methyl chlo-
roform surface observations. Additionally, they used bio-
genic CO emissions from the Model of Emissions of Gases
and Aerosols from Nature (MEGANv2.1) inventory, which,
as discussed in Sect. S2.1, differ significantly from those
used in our inversions. Further details on their inverse set-
up are provided in Table 1 of Zheng et al. (2019). We limit
our comparison to emissions derived in Inversion 1, as de-
scribed in Zheng et al. (2019), in which satellite retrievals of
formaldehyde and methane were not assimilated.

We find that biomass burning emissions derived in Zheng
et al. (2019) are comparable to ours, both with respect to
absolute magnitude and to interannual variability (orange
bars in Fig. 9), with an average annual total difference of
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Figure 9. Emission totals for different source categories from this work, compared to emissions from Zheng et al. (2019). Total CO emissions
are summed over the 1◦× 1◦ South American zoom domain as well as over the April–December inversion period. For bars corresponding
to this work, emissions from our standard inversion are shown (i.e. GFAS fire emissions optimized with MOPITT-retrieved CO columns) as
well as emissions from a global MOPITT inversion performed by Zheng et al. (2019). Emission categories from Zheng et al. (2019) were
merged to obtain emission categories comparable to ours.

−3.0± 6.7 Tg CO yr−1 (1 standard deviation). This differ-
ence is small compared with interannual variability. Notably,
their emission estimates of CO from biomass burning are
also systematically higher than those from GFAS and FINN.
Different from our inversions, the MEGANv2.1 inventory for
biogenic emissions includes interannual variability, and these
emissions are significantly lower than the biogenic emissions
that we have used (see also Fig. S3). The excellent agree-
ment between these two largely independent estimates pro-
vides much confidence in the final emission estimates.

3.3.3 Other sensitivities in the inverse system

We have additionally explored the sensitivity of derived
emissions to other individual components of the inverse sys-
tem, which are presented in detail in Sect. S2. Here, we
briefly summarize the main conclusions from these sensi-
tivity tests. We find that natural production of CO from
non-methane volatile organic compounds (NMVOCs) is the
largest sensitivity in our inverse system (Sect. S2.1), with an
associated systematic uncertainty in derived fire CO emis-
sions of 23–27 Tg yr−1. The associated uncertainty in the in-
terannual variability in fire CO emissions is 10–15 Tg yr−1.
We additionally find a large sensitivity to the OH sink of CO,
but we attribute this mostly to unrealistically low OH val-
ues in the fields from the Copernicus Atmospheric Monitor-
ing Service (CAMS) reanalysis that we use for the sensitivity
test (Sect. S2.2). Finally, we find that if we reduce the error
on NOAA surface observations, we retrieve a better poste-
rior match with these data, without changing the derived fire
emissions. This result indicates limited sensitivity to bound-
ary conditions as determined by surface observations that are
sampled mostly outside the domain in which we assimilate
satellite data.

Overall, we conservatively estimate the uncertainty in the
interannual variability in the MOPITT-derived CO emissions
of biomass burning at 10–15 Tg CO yr−1, and the systematic

uncertainty is estimated at 30 Tg CO yr−1, which is domi-
nated by production from NMVOCs. We consider this uncer-
tainty estimate conservative because the integrated compar-
ison with Zheng et al. (2019) suggests a lower uncertainty
of 7 Tg CO yr−1 (Sect. 3.3.2). A small uncertainty is some-
what intuitive, as fire emissions are uniquely sharp in loca-
tion and timing, and this signal is well captured in the MO-
PITT data. Therefore, fire emissions are only partly inter-
changeable with other, typically more diffuse budget com-
ponents.

3.4 Discussion

The robustness of derived emissions signifies the detail pro-
vided by the MOPITT TIR product. In addition to the TIR
product, MOPITT also provides an NIR product and a com-
bined NIR–TIR product. The NIR product has relatively
higher vertical sensitivity near the surface. Due to its range
of spectral bands, MOPITT data can be used to separately
constrain upper- and lower-tropospheric CO (Deeter et al.,
2018). Here, we have limited our analysis to the TIR prod-
uct, which already provides strong constraints on CO fire
emissions. Nechita-Banda et al. (2018) showed that the TM5-
4D-Var inverse system produces similar fire emissions when
MOPITT TIR or NIR–TIR are assimilated over Indonesia.
Peiro et al. (2022) performed a global CO inversion with
MOPITT NIR–TIR data and found South American fire
emissions that were typically lower than ours. Therefore, in
future work, it would be interesting to investigate the added
value of NIR in the NIR–TIR product in more detail. Ad-
ditionally, we use MOPITT version 8, but the newer MO-
PITTv9 version has recently become available (Deeter et al.,
2022). Importantly, the changes made in the retrieval result in
significantly improved coverage over areas with high aerosol
concentrations, which are also emitted in fires. Clearly, im-
proved coverage near fires will strongly benefit our inverse
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analysis, and future work can benefit from these improve-
ments.

Our fire emission estimates rely strongly on the quality
of the MOPITT CO retrieval. The MOPITT CO data have
been validated extensively (Deeter et al., 2016, 2019), and
we again present a good agreement with independent aircraft
profiles in this work. Other CO satellite products are avail-
able that can complement a MOPITT-based analysis. Firstly,
we presented a comparison to inversions that use IASI in-
stead of MOPITT CO data (Sect. 3.3.1). This comparison
reveals inconsistencies in the reprocessing used for IASI,
but the interannual variability derived from the two prod-
ucts within the 2010–2013 and 2015–2018 periods is similar.
A consistently processed IASI product, which is something
that the IASI team is finalizing, will help better assess the
MOPITT-derived emissions. Additionally, an expanding fleet
of satellite instruments is becoming available, which moni-
tor atmospheric composition with increasing detail. This can
help with cross-validation, and new satellites, such as the
TROPOspheric Monitoring Instrument (TROPOMI; Bors-
dorff et al., 2018), also have higher spatial resolution, provid-
ing a potential step forward in the level of detail with which
fire emissions can be inferred (van der Velde et al., 2021). We
do note that we draw value from the long-term availability
and consistency of the MOPITT product in this work, which
is something that other products currently cannot compete
with.

An important application of top-down estimates of CO fire
emissions is to propagate these to CO2 fire emissions so that
the Amazon carbon balance can be better constrained. In pre-
vious work, this has been done by directly applying CO : CO2
emission factors from bottom-up inventories to the updated
CO emissions (van der Laan-Luijkx et al., 2015; Peiro et al.,
2022). In our case, this would mean that the CO2 fire emis-
sions over the Amazon in the GFAS and FINN inventories
would be scaled up, as we find that CO emissions in these
inventories are underestimated. Whether this approach is ap-
propriate strongly depends on the driver of the underestimate
we have found. Scaling up the CO2 emissions based on our
CO inversion is appropriate if the underestimate of CO fire
emissions is related to missed understory fires (Alencar et al.,
2004) or to an underestimate in carbon stock. However, if the
underestimate is related to errors in the CO emission factors
(van Leeuwen et al., 2013), the total carbon emissions re-
ported in the bottom-up inventories could still be accurate.
As a first indication, we find that the underestimate in GFAS
is largest over savanna and shrubland regions, which makes
it less likely that understory fires are a dominant driver. A
recent study has shown that a combined analysis of satellite
data of CO and NOx can provide top-down constraints on
combustion efficiency and emission factors (van der Velde
et al., 2021). Additionally, a burned-area analysis of high-
resolution Sentinel-2 data over Africa concluded that missed
small fires in GFED4s might result in a 31 % underestimate
of fire carbon emissions (Ramo et al., 2021). The updated

version of the FINN fire inventory (v2.5; Wiedinmyer et al.,
2022) also increases fire CO emissions in the Amazon Basin
by 102% (averaged over the 2003–2018 period) compared
with the version used in this work (v1.5; Wiedinmyer et al.,
2011). These new developments show that there is perspec-
tive on reconciling our top-down estimates with bottom-up
efforts, which can be further informed by the spatio-temporal
patterns of the higher emissions that we derive.

An operational framework that estimates CO fire emis-
sions based on satellite-retrieved CO columns and prior in-
formation (e.g. FRP) can provide unique and timely informa-
tion about regional variability in fires. CAMS already pro-
vides an operational data assimilation framework in which,
among other data products, MOPITT TIR CO column re-
trievals are assimilated (Flemming et al., 2017). We identify
two aspects in which the CAMS analysis can be improved.
First and most importantly, the atmospheric abundance of CO
is optimized in the CAMS system, instead of CO emissions.
We suggest that a next development of a CAMS-like sys-
tem should consider emission optimization for a more phys-
ically realistic end product that can be used to provide in-
formation on variations in sources, such as in Miyazaki et al.
(2020). Second, we show that the CAMS OH fields produced
in full-chemistry simulations are very low over the Amazon,
which other studies have indicated is due to incomplete NOx

sources (Wells et al., 2020) or incomplete chemical mecha-
nisms (e.g. Lelieveld et al., 2008; Taraborrelli et al., 2012).
Such an underestimate in OH can mask the GFAS underes-
timate that we find here, which has important implications
for the interpretation of fire emissions. Operational CO emis-
sions can provide a rich proxy for fire variability and de-
forestation. Moreover, the immediate context provided by a
long-term, consistently derived time series of CO emissions
is highly valuable for interpretation of recent fire events. This
would be timely, considering that recent changes in the nat-
ural and political climate surrounding the Amazon (INPE,
2020; Silva Junior et al., 2020; Fonseca et al., 2019) neces-
sitate active fire monitoring by as many independent proxies
as possible.

4 Conclusions

In this study, we present a 2003–2018 time series of fire
CO emissions in the Amazonian domain. Importantly, our
derived emissions are robust against the exchange of prior
distributions of fires from several bottom-up efforts, even
at the scale of specific Brazilian states and land-use types.
Moreover, we find that simulations with optimized fire emis-
sions better reproduce independent aircraft observations than
simulations with prior emissions from the GFAS or FINN
inventories. The largest uncertainty in the inverse system de-
rives from uncertainty in CO production from non-methane
hydrocarbons (NMHCs; see Sect. 2.1), and we conserva-
tively estimate a combined uncertainty in interannual varia-
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tions in basin-wide emissions of 10–15 Tg yr−1 (Sect. 3.3.3).
We see this robust method to detect, attribute, and quantify
fire CO emissions in the Amazon as a valuable addition to the
palette of existing fire monitoring methods for the region.

Variations in CO emissions over our 2003–2018 study pe-
riod are a combination of strong interannual variations and
a long-term decrease, mostly between 2003 and 2012. Inter-
annual variations are closely correlated with variations in the
Amazonian water balance, evident from a strong link with
soil moisture even at the state level. In contrast, the long-term
decline in CO emissions over the 2003–2012 period mirrors
a decrease in deforestation rates, especially so in forested re-
gions. These results emphasize the positive effect of defor-
estation abatement policies as well as the potential impact of
increased drought frequency in a changing climate. As such,
sustained efforts to reduce deforestation can reduce the im-
pact of climate change on fire risk, while a return to defor-
estation rates of the early 2000s in a drier climate likely re-
sults in enhanced fire risks.

Code and data availability. The optimized CO emissions that re-
sult from the reference GFAS inversions are available online at
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