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Abstract. The Copernicus Atmosphere Monitoring Service (CAMS) provides near-real-time forecast and re-
analysis of aerosols using the ECMWF Integrated Forecasting System with atmospheric composition exten-
sion, constrained by the assimilation of MODIS and the Polar Multi-Sensor Aerosol Optical Properties (PMAp)
aerosol optical depth (AOD). The objective of this work is to evaluate two new near-real-time AOD products
to prepare for their assimilation into CAMS, namely the Copernicus AOD (collection 1) from the Sea and
Land Surface Temperature Radiometer (SLSTR) on board Sentinel 3-A/B over ocean and the NOAA EPS AOD
(v2.r1) from VIIRS on board S-NPP and NOAA20 over both land and ocean. The differences between MODIS
(C6.1), PMAp (v2.1), VIIRS (v2.r1), and SLSTR (C1) AOD as well as their departure from the modeled AOD
were assessed at the model grid resolution (i.e., level-3) using the 3-month AOD average (December 2019–
February 2020 and March–May 2020).

VIIRS and MODIS show the best consistency across the products, which is explained by instrument and
retrieval algorithm similarities. VIIRS AOD is frequently lower over the ocean background and higher over
biomass burning and dust source land regions compared to MODIS. VIIRS shows larger spatial coverage over
land and resolves finer spatial structures such as the transport of Australian biomass burning smoke over the
Pacific, which can be explained by the use of a heavy aerosol detection test in the retrieval algorithm. Our results
confirm the positive offset over ocean (i) between Terra/MODIS and Aqua/MODIS due to the non-corrected
radiometric calibration degradation of Terra/MODIS in the Dark Target algorithm and (ii) between SNPP/VIIRS
and NOAA20/VIIRS due to the positive bias in the solar reflective bands of SNPP/VIIRS. SLSTR AOD shows
much smaller level-3 values than the rest of the products, which is mainly related to differences in spatial repre-
sentativity at the IFS grid spatial resolution due to the stringent cloud filtering applied to the SLSTR radiances.
Finally, the geometry characteristics of the instrument, which drive the range of scattering angles sampled by
the instrument, can explain a large part of the differences between retrievals such as the positive offset between
PMAp datasets from MetOp-B and MetOp-A.
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1 Introduction

While aerosol models generally capture the global spatial
distribution of aerosols, they can show large differences in
aerosol mass budgets at both global and regional scales
(Schutgens et al., 2020; Bellouin et al., 2020; Gliß et al.,
2021). Sessions et al. (2015) showed that models frequently
overestimate low AOD in the case of fine-sized particles and
underestimate large AOD in the case of high aerosol load.
Uncertainties in the representation of aerosol processes are
related to the large horizontal, vertical, and temporal variabil-
ity of aerosol physicochemical properties (e.g., size, shape,
optical properties), the large range of natural and anthro-
pogenic emission sources, and the complex emission, depo-
sition, and aging processes, which are strongly coupled with
meteorology (e.g., transport, impact of humidity, convective
dust storm) and chemistry (e.g., heterogeneous chemistry)
(Rémy et al., 2019; Ryder et al., 2019; Burgos et al., 2020;
Sand et al., 2021; Gliß et al., 2021). Reducing these sources
of uncertainties represent a crucial challenge to improve
the representation of aerosol–climate interactions, which has
been identified as one of the research priorities for the devel-
opment of the next generation of Earth system models (IPCC,
2021).

Aerosol optical depth (AOD) observation, which measures
the extinction of light by aerosols from the surface to the top
of the atmosphere at a given spectral band, is frequently used
to constrain the initial conditions of global aerosol forecasts
through data assimilation. Satellite AOD observations offer
great potential to resolve the horizontal, vertical, and tempo-
ral distribution of aerosols (Levy et al., 2013; Li et al., 2019;
Dubovik et al., 2011; Popp et al., 2016). The first satellite
AOD datasets were not accurate enough to be assimilated
into global aerosol models due to incomplete spatial cov-
erage, coarse spatial resolution (∼ 1◦), limited spectral in-
formation content, and uncertainties in cloud detection and
radiometric calibration. With the advent of enhanced infor-
mation content from more recent satellite instruments, more
accurate aerosol retrieval datasets have been produced from
SEAWIFs (Sayer et al., 2012), MERIS (Vidot et al., 2008),
AATSR (North et al., 1999), MISR (Witek et al., 2013),
POLDER (Tanré et al., 2011), MODIS (Levy et al., 2013),
and VIIRS (Sayer et al., 2018a; Hsu et al., 2019). Most
global aerosol data assimilation systems have been relying
on MODIS, which has been providing AOD and fine-mode
aerosol fraction over land and ocean since 2000. Positive im-
pacts for aerosol near-real-time (NRT) predictions have been
shown by Benedetti et al. (2009) for the European Centre
for Medium-Range Weather Forecasts (ECMWF) Integrated
Forecasting System (IFS) and Zhang et al. (2008, 2014) for
the Naval Research Laboratory (NRL) Aerosol Analysis and
Prediction System (NAAPS). In addition, Xian et al. (2019)
showed that AOD data assimilation improves the consistency
between model predictions.

However, AOD retrieval is a challenging task due to the
weak aerosol signal that needs to be separated from the larger
cloud and surface reflectances and can be affected by various
sources of uncertainties. While the Global Climate Observ-
ing System (GCOS, Belward and Briggs, 2016) requirement
for satellite AOD uncertainty is the larger of 0.03 % or 10 %
of AOD, the uncertainty of most AOD satellite products falls
between 0.02 and 0.05 AOD. It is frequently larger over land
than ocean because of land surface brightness and anisotropy
(Sayer et al., 2019). While AOD products generally agree
on global average and show consistent temporal variations,
they can substantially differ at regional scale (Kinne, 2009;
de Leeuw et al., 2015; Wei et al., 2019a; Sogacheva et al.,
2020; Schutgens et al., 2020). The analysis of the diver-
sity between AOD products brings additional information on
their uncertainty by identifying the retrieval configurations
and the surface types which generate the largest differences
between products (Schutgens et al., 2020). Over ocean, AOD
products exhibit low correlation at low AOD, which can be
due to differences in retrieval sensitivities to errors in surface
reflectance and cloud contamination (Sayer et al., 2018a; So-
gacheva et al., 2020). Sayer et al. (2017) showed that intercal-
ibrating S-NPP/VIIRS with Aqua/MODIS reduces the dis-
crepancies in AOD between the two products and improves
the accuracy of VIIRS AOD over ocean. Terra/MODIS Dark
Target (DT) AOD, which has a positive offset over ocean re-
lated to the calibration degradation of the blue band (Levy et
al., 2013), was shown to frequently be the highest among
satellite AOD products over oceanic background aerosols
(Zhang et al., 2017; de Leeuw et al., 2018; Sogacheva et al.,
2020; Sawyer et al., 2020). Over land, products agree better
and are more accurate over dark vegetated regions such as
in Europe and North America than over bright and heteroge-
neous surfaces such as in southern Asia, eastern Asia, Africa,
and the Middle East (Wei et al., 2019a, b). Larger departures
for high AOD values are found for regions and periods dom-
inated by anthropogenic pollution, biomass burning events,
or dust outbreaks (Tao et al., 2017; Sogacheva et al., 2020).
Sayer et al. (2019) reported larger AOD estimated from the
VIIRS Deep Blue (DB) algorithm compared to AOD derived
from the MODIS DB over dust source regions (e.g., Sahara,
Arabian peninsula, and Taklamakan desert) that the authors
relate to the improved aerosol and surface reflectance models
used in the VIIRS DB algorithm.

The Copernicus Atmosphere Monitoring Service (CAMS)
provides global reanalysis records (Inness et al., 2019) and
5 d global forecasts of aerosols (Rémy et al., 2019), trace
gas species (Flemming et al., 2015; Huijnen et al., 2019),
and greenhouse gases (GHGs). CAMS relies on the use
of the IFS, which combines state-of-the-art meteorological
and atmospheric composition models together with a 4D-
Var data assimilation scheme. For aerosols, AOD at 550 nm
derived from MODIS and the Polar Multi-Sensor Aerosol
Optical Properties (PMAp), which is produced by EUMET-
SAT by exploiting the synergy between GOME-2, IASI, and
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AVHRR on board MetOp-A, MetOp-B, and MetOp-C, is op-
erationally assimilated into CAMS. Implementing new satel-
lite AOD is a priority for CAMS to maximize the spatial and
temporal coverage of the assimilated observations, enhance
the accuracy of the analysis, and increase the resilience of
the data assimilation system to instrument failures or prod-
uct disruption. It requires two preparatory steps. First, new
satellite observations must be properly evaluated at the model
spatial resolution to check their consistency with both the
modeled AOD and the other satellite AOD used in the data
assimilation system at both regional and global scales. Since
biases in the observations and departure between observa-
tions can significantly affect the data assimilation outputs
(Zhang and Reid, 2006), the spatial and temporal structure of
the systematic differences between satellite products needs
to be properly understood and quantified in order to account
for them in the assimilation process (Dee, 2005). The second
step consists of implementing and testing the assimilation of
the new products, which includes adapting the bias correc-
tion scheme and evaluating the observation error. The present
work focuses on the passive monitoring of new satellite AOD
datasets (first step), and the impact of their assimilation (sec-
ond step) will be addressed in a separate paper.

While the uncertainty of satellite AOD products and their
diversity have been documented in various studies (So-
gacheva et al., 2020; Schutgens et al., 2020), the evalua-
tion was frequently done at the native spatial and tempo-
ral resolution of the retrieval (hereafter denoted level-2).
No recent studies have evaluated AOD products within a
data assimilation system for NRT applications. While some
AOD products such as MODIS or the SNPP/VIIRS dataset
produced by NASA have been extensively evaluated (So-
gacheva et al., 2020; Schutgens et al., 2020), the PMAp
dataset, the recent Copernicus NRT Sea and Land Surface
Temperature Radiometer (SLSTR) product, and the EPS VI-
IRS product produced by NOAA have not been intercom-
pared. In addition, most existing intercomparison exercises
have compared collocated level-2 satellite retrievals and eval-
uated them against independent ground measurements such
as AERONET. While level-2 accuracy and uncertainty in-
formation was probably enough when assimilating a single
AOD product, the current challenge to design efficient multi-
satellite AOD assimilation strategies is to better understand
the diversity of level-3 AOD products at the model grid spa-
tial resolution.

The objective of this work is to evaluate two new AOD
products to prepare their future assimilation in CAMS,
namely the Copernicus NRT AOD product (collection 1)
from SLSTR on board Sentinel 3-A/B over ocean and the
NOAA EPS AOD product (v2.r1) from VIIRS on board S-
NPP and NOAA20 over both land and ocean. The consis-
tency between MODIS (C6.1), PMAp (v2.1), VIIRS (v2.r1),
and SLSTR (C1) AOD products as well as their differences
with the modeled AOD were monitored over a 6-month ex-
periment from December 2019 to May 2020. This paper aims

at assessing the differences between the satellite AOD prod-
ucts at the IFS model grid resolution (i.e., level-3). All anal-
yses and conclusions reported in this paper hold for level-3
satellite AOD generated for use in the CAMS data assimila-
tion system and may not directly apply to level-2 retrieval.
Multi-month AOD averages were compared to character-
ize the systematic differences between products. The first-
guess departure, which represents the differences between
the satellite observation and its model-simulated equivalent
from the short-range forecast, is a key metric operationally
used by numerical weather prediction (NWP) centers to char-
acterize the systematic and random errors between the obser-
vation and the model (Bell et al., 2008) as well as to prepare
for the implementation of new satellite observations (Rennie
et al., 2021). It is used in this work to identify possible in-
consistencies between the investigated AOD products within
the CAMS data assimilation system.

Section 2 provides a description of the satellite AOD ob-
servations used in this work. Section 3 presents the IFS
model used in CAMS, the simulation experiments designed
for this work, and the intercomparison methodology. The re-
sults are summarized in Sect. 4. The main sources of differ-
ences between the investigated AOD products are discussed
in Sect. 5. Conclusions and recommendations from this work
are given in Sect. 6.

2 Satellite AOD products

The satellite products investigated in this work are the
MODIS AOD C6.1 from Terra and Aqua produced by NASA
(Levy et al., 2013; Hsu et al., 2019), the NOAA EPS AOD
v2.r1 from VIIRS on board S-NPP and NOAA20 produced
by NOAA (Laszlo and Liu, 2020), the Copernicus NRT
AOD C1 from SLSTR on board Sentinel 3-A/B produced
by EUMETSAT with the Optimized Simultaneous Surface
Aerosol Retrieval for Copernicus Sentinel-3 (OSSAR-CS3)
(EUMETSAT, 2021b),and the PMAp v2.1 dataset derived
from the GOME-2, IASI, and AVHRR instruments on board
MetOp-A/B/C produced by EUMETSAT (Grzegorski et al.,
2022). All these products provide AOD at 0.55 µm for clear-
sky and daylight conditions. Below we describe their general
characteristics, which are summarized in Table 1. More de-
tailed descriptions along with validation statements can be
found in Appendix A.

2.1 AOD product characteristics

2.1.1 MODIS and VIIRS

MODIS AOD produced by NASA (Levy et al., 2013; Hsu
et al., 2019) and VIIRS AOD produced by NOAA (Laszlo
and Liu, 2020) are used in this work. Note that VIIRS AOD
is also produced by NASA (Sayer et al., 2018a; Hsu et al.,
2019; Sawyer et al., 2020). It was decided to use the NOAA
product because at the time of this work the NASA products
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only include retrievals from S-NPP, while the NOAA product
includes both S-NPP and NOAA20 retrievals.

MODIS and VIIRS are two imaging radiometers which
have similar spectral information contents. MODIS AOD has
a∼ 10 km spatial resolution, while the NOAA VIIRS product
is retrieved at the native spatial resolution of the VIIRS radi-
ances (0.750 km). The MODIS product includes two distinct
retrieval algorithms: the Dark Target (DT) over dark surfaces
(ocean, vegetated areas) and the Deep Blue (DB) over dark
and bright land surfaces.

Over ocean, the MODIS DT and the VIIRS algorithm
have similar characteristics. The ocean surface reflectance is
calculated from an ocean surface reflectance model, which
represents the contributions from sun-glint, underwater, and
whitecap reflections. They exploit similar fine- and coarse-
mode aerosol models adopted from Remer et al. (2005).

Over vegetated land surfaces, MODIS (DT and DB) and
VIIRS algorithms exploit a similar spectral constraint ap-
proach that consists of estimating the surface reflectance in
the visible from the shortwave infrared (SWIR, or the red
and the SWIR for VIIRS), which is assumed to be slightly
affected by atmospheric scattering (Kaufman et al., 1997a, b
; Levy et al., 2013; Hsu et al., 2013; Lazlo and Liu, 2020).
Over bright and heterogeneous surfaces, both the MODIS
DB and the VIIRS algorithms exploit a surface reflectance
database to represent the surface anisotropy, the surface spa-
tial variability, and the seasonal changes in the surface re-
flective properties. MODIS DT uses a combination of a dust
model with non-spherical shape and one of three fine-mode
aerosol models with spherical shape and different absorbing
properties. MODIS DB exploits 10 fine-mode and 5 coarse-
mode aerosol models with spherical shape, but conversely
to DT a single aerosol model is selected for the optimal so-
lution. Four aerosol models, which are essentially based on
the collection 5 MODIS DT models, are used by the VIIRS
algorithm that dynamically selects the aerosol model based
on the value of the residual between calculated and observed
reflectances.

2.1.2 SLSTR

Conversely to MODIS and VIIRS, SLSTR has dual-view ca-
pability with a nadir and an oblique view pointing backward
at 55◦. The AOD product is provided at a spatial resolution
of 9.5 km. Over ocean, the retrieval relies on the spectral in-
formation content from all available views, which are used as
independent spectral observations. The surface reflectance is
pre-calculated using an ocean bidirectional reflectance distri-
bution function (BRDF) model, which includes contributions
from glint, white foam, and ocean color and uses the wind
speed from the ECMWF forecast. Over land, the retrieval
algorithm is a combination of the North et al. (1999) dual-
angular model, used in a joint aerosol–surface reflectance fit,
and a spectral first guess for the red surface reflectance de-

rived from the NIR or the SWIR radiances (EUMETSAT,
2021b).

2.1.3 PMAp

Conversely to the other products based on a single in-
strument, PMAp is derived from the synergistic use of
the GOME-2 UV–Vis spectrometer, the IASI Fourier trans-
form infrared sounding interferometer, and the AVHRR ra-
diometer on board MetOp platforms. The top-of-atmosphere
(TOA) reflectances derived from measurements by the
GOME-2 Polarisation Measurement Devices (PMDs) are
the main inputs of the AOD retrieval, while AVHRR and
IASI observations are exploited for aerosol type identifica-
tion and cloud detection (Grzegorski et al., 2022). PMAp has
a much coarser spatial resolution (5× 40 km2 for MetOp-A
and 10× 40 km2 for MetOp-B) than the rest of the products.

2.2 Implementation in CAMS

While MODIS and VIIRS retrievals are evaluated over both
land and ocean, only ocean retrievals are considered for
PMAp and SLSTR because land retrievals of the version
2.1 of PMAp (EUMETSAT, 2021a) and the collection 1
of SLSTR (EUMETSAT, 2021b) were deemed not accu-
rate enough for their assimilation into CAMS. In CAMS,
MODIS DT retrievals associated with a quality assessment
(QA) equal to 3 over land and larger than or equal to 1 over
ocean are selected. DB retrievals associated with QA larger
than or equal to 2 are used to gap-fill DT over land. The
merged DT–DB product produced by NASA was not used
because it was not available when the DB retrieval product
was implemented in CAMS. The best-quality retrievals are
selected for VIIRS, SLSTR, and PMAp.

3 Model and experiment design

3.1 IFS model

CAMS relies on the use of the Integrated Forecasting Sys-
tem (IFS), which is the NWP model developed at ECMWF.
IFS includes state-of-the-art atmospheric transport, chem-
istry (Flemming et al., 2015; Huijnen et al., 2019), and
aerosol (Rémy et al., 2019) models and is constrained by a
4D-Var data assimilation scheme. CAMS produces 5 d fore-
casts and reanalysis of aerosol as well as reactive and green-
house gases. In the CAMS operational configuration, the
simulations are performed at the horizontal spectral resolu-
tion of TL511 (equivalent to a grid size of about 40 km) and
a vertical resolution of 137 levels (0.01 to 1013 hPa). The IFS
cycle 47R1 was used in this work, and the full documenta-
tion can be found at https://www.ecmwf.int/en/publications/
ifs-documentation (last access: 9 May 2021). Below we pro-
vide the main characteristics of the atmospheric composition
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modeling components of the IFS and the 4DVAR data assim-
ilation scheme.

3.1.1 Atmospheric transport

Advection of the atmospheric tracers is simulated by a semi-
Lagrangian scheme (Temperton et al., 2001). A mass fixer
has been implemented to ensure conservation of mass of
atmospheric species during atmospheric transport (Agustí-
Panareda et al., 2014). Vertical mixing is simulated from the
IFS turbulent diffusion and convection schemes.

3.1.2 Chemistry

Chemistry is represented using a modified version of the Car-
bon Bond 05 model (CB05, Yarwood et al., 2015) for the tro-
posphere. More details on the IFS-CB05 system can be found
in Flemming et al. (2015) and Huijnen et al. (2019).

3.1.3 Aerosol

Aerosol mass mixing ratios are simulated using a bulk bin
scheme (Boucher et al., 2013). A total of 14 species are rep-
resented, which includes three size bins for dust and sea salt
(defined at 80 % humidity), hydrophilic and hydrophobic or-
ganic matter as well as black carbon, sulfate, ammonium,
fine-mode nitrate produced from gas–particle partitioning,
and coarse-mode nitrate produced from heterogeneous reac-
tions. Emission of sea salt and dust as well as the conversion
of sulfur dioxide into sulfate and nitrate are computed on-
line using the IFS meteorological variables. The Global Fire
Assimilation System (GFASv1.4) provides globally gridded
hourly estimates of biomass burning emission fluxes for reac-
tive gas, greenhouse gases, and aerosols based on assimilated
MODIS observations of fire radiative power (FRP) (Kaiser
et al., 2012). The rest of the static primary aerosol sources
are provided by the CAMS-GLOB-ANT 4.2 emission inven-
tory dataset for anthropogenic sources (Elguindi et al., 2020)
and from the CAMS-GLOB-BIO v1.1 emissions inventory,
based on the MEGAN model (Sindelarova et al., 2014) with
ERA-Interim reanalysis meteorology, for biogenic sources.
The emission of secondary organic aerosol is scaled on an-
thropogenic CO emissions and is added to organic matter
emissions (Rémy et al., 2019). More details on aerosol mod-
eling can be found in Rémy et al. (2019, 2022).

3.1.4 Data assimilation

Meteorology and atmospheric composition control variables
are initialized using the incremental 4D-Var assimilation
scheme implemented in IFS (Courtier et al., 1994). In or-
der to reduce the computational cost and the impact of model
nonlinearities, the minimization is achieved at a lower spatial
resolution using simplified physics (only atmospheric trans-
port is represented for aerosols and chemistry). The assimi-
lation is performed twice a day over a 12 h assimilation win-

dow. For aerosols, MODIS C6.1 is assimilated over ocean
and land, and PMAp v2.1 is assimilated over ocean only. A
thinning at 0.5 ◦ spatial resolution is applied to both MODIS
and PMAp to reduce the number of observations and mini-
mize the impacts of horizontal correlation on the observation
error. A variational bias correction scheme (Dee, 2004) is ap-
plied to PMAp, and MODIS is used to anchor the bias cor-
rection, i.e., not bias-corrected. The aerosol data assimilation
scheme is further described in Benedetti et al. (2009).

3.2 CAMS AOD performances

The evaluation of the CAMS cycle 47R1 against AERONET
shows a positive bias at global scale, which is higher over
North America, and an underestimation of dust but with large
regional variability (e.g., overestimation over the Sahara and
underestimation in the Sahel and the Mediterranean region)
(Schulz et al., 2020). The burden of fine-mode aerosols, in
particular that of sulfate, appears to be generally too high.

3.3 Experiment design

IFS was run from 1 December 2019 to 30 May 2020 using
the CAMS operational configuration. The experiments were
initialized from a past experiment with a similar configu-
ration. VIIRS and SLSTR AOD were passively monitored,
while MODIS and PMAp AOD were assimilated. For VIIRS,
a superobbing (Janjić et al., 2018) at the TL511 model spatial
resolution (∼ 40 km) was applied to reduce the number of ob-
servations and comply with the IFS computing requirements
while preserving the main spatial patterns resolved by the
VIIRS product. No spatial thinning was applied to SLSTR
observations because the product is distributed at a coarser
spatial resolution than the native spatial resolution of the re-
trieval, and the stringent cloud filtering applied to the input
radiances used in the retrieval algorithm leads to a substantial
reduction of the number of AOD observations.

3.4 Intercomparison methodology

The goal of this work is to assess the differences between
the level-3 AOD satellite products generated within the
CAMS data assimilation system and their departures with
the model. Two 3-month periods, namely December 2019–
February 2020 (DJF) and March 2020–May 2020 (MAM),
were distinguished in the evaluation. For the DJF period,
the 16 and 17 January data are discarded for all the prod-
ucts because the VIIRS AOD product was affected by cali-
bration errors in the VIIRS reflectances on these two days.
The intercomparison was carried out at the IFS model spa-
tial resolution (∼ 40 km) and at a 3-month temporal reso-
lution. This was done in two steps: (1) instantaneous re-
gridding of the level-2 retrieval product at the (level-3) IFS
model spatial resolution and (2) a 3-month average of the in-
stantaneous level-3 AOD retrieval. The intercomparison of
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the satellite products at the model spatial resolution, which
is much coarser than the level-2 retrieval spatial resolution,
should reduce the impacts of the differences in spatial res-
olution between products (Sayer et al., 2019). Also, the use
of a multi-month AOD average should minimize the impacts
of differences in temporal representativity (Schutgens et al.,
2017) and allow us to focus on the systematic differences be-
tween products.

Observations above 70◦ N and below 70◦ S were disre-
garded because they generally do not meet the quality crite-
ria for their assimilation. The product comparison was car-
ried out over ocean and land separately. Over land, it in-
cludes MODIS and VIIRS, while over ocean it includes
MODIS, VIIRS, SLSTR, and PMAp. Distinct regional do-
mains (Fig. 1) were defined over land and ocean to encom-
pass a large range of aerosol characteristics and surface types
for which the retrieval algorithms may exhibit different be-
haviors.

Differences between the temporal averages of the prod-
ucts were assessed through global maps, global and regional
probability density functions, and product versus product
scatter plots and latitudinal transects. They were quantified
by the mean deviation (MD), the root mean square of the dif-
ferences (RMSD), and the Pearson correlation coefficient (r).
The samples used to compute these metrics were the spatial
and 3-month AOD average within each model grid box.

A key metric used in this work is the first-guess departure
(hereafter denoted FGD), which represents the differences
between the satellite AOD values and the model-simulated
values based on short-range forecasts. It was computed by
mapping the modeled AOD in the observation space inde-
pendently for each satellite product, which consists of first
interpolating the simulated aerosol mixing ratios to the obser-
vation location and time, then computing the modeled AOD
from the mixing ratio value using the aerosol observation
operator (Benedetti et al., 2009). FGD represents the differ-
ences between the level-2 retrieval at its native spatial reso-
lution and the model-simulated equivalent observation with
collocation in time and space. It should be noted that the first
guess also includes the impact of assimilated MODIS and
PMAp AOD from the previous cycles. Geographical maps
of the mean and the standard deviation of FGD in space and
time are produced by taking the observation–model collo-
cated samples within each model grid box and within each
3-month period. Given the large number of spatial and tem-
poral samples used, the mean and the standard deviation (SD)
of FGD are meaningful estimates of the systematic and ran-
dom differences, respectively, between the observation and
the model, which are the results of both the observation and
the model errors. Any bias in the AOD retrievals can result in
inconsistencies between distinct satellite observations, which
may fight against each other when they are assimilated, re-
sulting in larger errors in the analysis. The use of the first-
guess departure is twofold: (i) check that the mean departure
between each satellite observation and the model is reason-

ably small and not impacted by any biases in the observation
and (ii) evaluate the retrievals relative to the model to iden-
tify possible spatial and temporal inconsistencies between
satellite products that would impact the assimilation of multi-
satellite AODs. This requires the model to be skillful to some
extent and low biased compared to the observation. This is
a reasonable assumption given that the short-term forecast
used to compute FGD is simulated from an optimal estimate
of the atmospheric state produced by the data assimilation
system.

4 Results

4.1 Evaluation over ocean

4.1.1 Satellite observations

Figures 2 and 3 indicate that PMAp has the highest global
mean AOD. The global mean of SLSTR is half that of the rest
of the products. VIIRS global means are 0.01 and 0.02 lower
than MODIS global means for DJF and MAM, respectively.
PMAp shows the largest spatial variability (SD= 0.1), while
the rest of the products have similar global SD (∼ 0.07).
Over the remote ocean, SLSTR shows much lower AOD
than the rest of the products, and its global mean is half that
of MODIS. VIIRS exhibits spatial structures of low AOD
over the North Pacific and the North Atlantic for the DJF
period (Fig. 2) and over the Southern Ocean for the MAM
period (Fig. 3). These structures are smaller and noisier in
the MODIS and PMAp maps, and they cannot be distin-
guished in the SLSTR maps. Products exhibit large diver-
sity in the Southern Ocean where PMAp and MODIS show
nosier spatial patterns compared to VIIRS and SLSTR. All
products consistently show high AOD values in the tropi-
cal Atlantic (Fig. 2), resulting from Saharan dust transport
as well as smoke from central African biomass burning areas
and off the Indian and Chinese coasts (Fig. 3) due to conti-
nental aerosol transport. VIIRS and SLSTR both detect the
2019–2020 Australian fire smoke transport over the Pacific
(20 to 50◦ S, 120 to 180◦W) where PMAp and MODIS show
noisier spatial patterns (Fig. 2). The aerosol plumes detected
by SLSTR over ocean have a smaller extent and are more
fragmented compared to the rest of the products.

The global probability distribution functions (PDFs) of
AOD are displayed for the DJF period in Fig. 4 (results are
similar for the MAM period and thus not shown). SLSTR
has the narrowest PDF, positively skewed and centered over
smaller values compared to the rest of the products. PMAp
shows the widest PDF. MODIS and VIIRS exhibit simi-
lar Gaussian-like distributions, but the VIIRS distribution is
shifted toward lower values.

Figure 5 confirms the negative departure between SLSTR
and the rest of the products across latitudes for the DJF
period. PMAp-B shows the highest values, while PMAp-
A is in better agreement with Terra/MODIS. S3A/SLSTR
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Figure 1. Regions of interest. The blue rectangles and the red rectangles represent the ocean and land domains, respectively. MA, NA, NP,
SP, SO, and AI mean mid-Atlantic, North Atlantic, North Pacific, South Pacific, Southern Ocean, Arabian peninsula, and Indian coast. AF,
AS, AU, EU, NA, and SA mean Africa, Asia, Australia, Europe, North America, and South America.

Figure 2. Global maps of temporal mean AOD from Terra and Aqua/MODIS, NOAA20 and SNPP/VIIRS, S3A and S3B/SLSTR, and
MetOp-A/B–PMAp for the DJF (2019–2020) period over ocean.

and S3B/SLSTR have consistent AOD latitudinal transects.
SNPP/VIIRS is frequently lower than Terra/MODIS and
is closer to Aqua/MODIS. NOAA20/VIIRS is lower than
SNPP/VIIRS, and the differences are larger in the Southern
Hemisphere. MODIS, VIIRS, and PMAp-A show larger dis-
crepancies over southern midlatitudes (20–60◦ S) compared
to northern midlatitudes and the tropics. All the products dis-
play a similar AOD peak at ∼ 2 to 8◦ N, which is related to
the frequent Atlantic dust outbreak for which MODIS has
higher values than VIIRS. The increase in SLSTR and VI-
IRS AOD around 30◦ S is related to the Australian fire smoke
transport shown in the global maps. The increase in SLSTR
AOD above 55◦ N is related to artifacts in the retrieval at high

latitude. Similar differences in AOD latitude transects are ob-
tained for the MAM period presented in Fig. D1.

The values of MD, RMSD, and r between products are re-
ported in Table 2, and the associated scatter plots are given
in Appendix B1. VIIRS and MODIS have the smallest MD
and RMSD as well as the highest correlation. The absolute
MD between VIIRS and MODIS is slightly larger when us-
ing VIIRS from NOAA20 than from SNPP. SLSTR shows
large negative MD with both VIIRS (−0.06) and MODIS
(−0.08). PMAp has the smallest correlation with MODIS
compared to SLSTR and VIIRS. RMSD and MD are lower
between VIIRS and MODIS/Aqua compared to VIIRS and
MODIS/Terra. Similar differences between products are ob-
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Figure 3. Global maps of temporal mean AOD from Terra and Aqua/MODIS, NOAA20 and SNPP/VIIRS, S3A and S3B/SLSTR, and
MetOp-A/B–PMAp for the MAM (2020) period over ocean.

Figure 4. Global distributions of satellite AOD over ocean for the
DJF (2019–2020) period.

tained for the MAM period (results not shown) with slightly
higher MD between VIIRS and MODIS.

Table 3 and Fig. C1 characterize the diversity between
products at the regional scale. Wider AOD distributions are
reported in the Southern Ocean compared to global scale.
SLSTR exhibits larger negative MD in the Southern Ocean
compared to the North Atlantic and the North Pacific do-
mains where MD and RMSD between products are fre-
quently the smallest.

Table 2. Quantification of global AOD differences between satel-
lites and instruments for the DJF period over ocean.

RMSD MD r

SLSTR vs. Terra/MODIS 0.1 −0.09 0.74
SLSTR vs. Aqua/MODIS 0.09 −0.08 0.76
SLSTR vs. MODIS 0.09 −0.08 0.76
SLSTR vs. VIIRS 0.07 −0.06 0.81
VIIRS vs. MODIS 0.04 −0.018 0.87
SNPP/VIIRS vs. Terra/MODIS 0.04 −0.01 0.81
SNPP/VIIRS vs. Aqua/MODIS 0.04 −0.001 0.83
NOAA20/VIIRS vs. Terra/MODIS 0.05 −0.03 0.85
NOAA20/VIIRS vs. Aqua/MODIS 0.04 −0.02 0.87
PMAp-A vs. Terra/MODIS 0.08 −0.001 0.55
PMAp-A vs. Aqua/MODIS 0.08 0.007 0.55
PMAp-B vs. Terra/MODIS 0.06 0.03 0.67
PMAp-B vs. Aqua/MODIS 0.07 0.04 0.66
SNPP/VIIRS vs. NOAA20/VIIRS 0.03 0.02 0.91
Aqua/MODIS vs. Terra/MODIS 0.04 −0.009 0.84
PMAp-A vs. PMAp-B 0.09 0.03 0.54
S3B/SLSTR vs. S3A/SLSTR 0.04 0.02 0.86

4.1.2 First-guess departure (FGD)

Figure 6a and b present the global maps of the mean and SD
of FGD, respectively, and Fig. 7a and b display the associated
latitude cross-sections by distinguishing the instruments on
distinct platforms.

All satellite retrievals except PMAp show a negative
global mean of FGD, which means that the modeled AOD is
larger than the satellite observation over ocean. They exhibit
consistent positive departure over the dust and smoke plume
off the West African coast (Fig. 6a), which explains the in-
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Figure 5. Latitude cross-section of temporal mean satellite AOD for the DJF (2019–2020) period over ocean.

Table 3. Quantification of AOD differences between instruments over the ocean regional domains (defined in Table 2) for the DJF period.
Each cell gives the MD followed by the RMSD.

MA NA NP SP SIO AI

SLSTR vs. MODIS −0.08, 0.1 −0.05, 0.06 −0.05, 0.05 −0.09, 0.1 −0.09, 0.1 −0.09, 0.1
VIIRS vs. MODIS −0.02, 0.06 −0.02, 0.03 −0.02, 0.03 0.002, 0.04 −0.02, 0.04 −0.02, 0.04
PMAp vs. MODIS −0.01, 0.09 0.005, 0.2 −0.01, 0.05 0.01, 0.08 0.01, 0.07 0.009, 0.06
SLSTR vs. VIIRS −0.05, 0.09 −0.03, 0.05 −0.03, 0.04 −0.09, 0.1 −0.07, 0.07 −0.07, 0.08

crease in FGD around the Equator shown by all the prod-
ucts in Fig. 7a. VIIRS frequently shows more pronounced
negative FGD values than MODIS over the remote oceans.
SLSTR shows the largest negative FGD with values much
lower than the range spanned by the rest of the products
(Fig. 7a). The magnitude of SLSTR FGD increases in the
Southern Ocean between ∼ 35 and ∼ 50◦ S and in the mid-
Pacific between 10 and 20 ◦ N (Fig. 7a). Consistent with what
is shown for AOD retrievals in Fig. 5, PMAp-B has larger and
more positive FGD values than PMAp-A, which has values
close to Terra/MODIS. Aqua/MODIS has a negative offset
compared to Terra/MODIS, which keeps FGD close to zero.
FGD of SNPP/VIIRS is larger than that of NOAA20/VIIRS,
particularly between 15◦ S and 15◦ N (Fig. 7a) where it is
close to that of Aqua/MODIS.

VIIRS shows sharp increases in FGD SD (Figs. 6b and 7b)
in the South Pacific (20 to 50◦ S, 120 to 160◦W) and off the
Australian east coast, which both are related to the Australian
fire smoke. This is partially shown by SLSTR but not by
MODIS and PMAp (Fig. 7b). While SLSTR has the largest
magnitude of the mean of FGD it generally has the lowest SD
of FGD, which indicates lower random differences with the
model compared to the rest of the products. PMAp frequently
shows the largest SD of FGD, particularly in the Northern
Hemisphere, which is related to the nosier patterns of PMAp

retrieval compared to the rest of the products. Figure 7b in-
dicates good agreement of SD of FGD between instruments
on board distinct platforms except for PMAp-B, which has
larger values than PMAp-A. Similar results are found for the
MAM period (Figs. D3, D4, D5a and b).

Figure 8 shows the statistics of FGD for each product com-
puted for distinct ranges of satellite AOD for the DJF period
(similar results are obtained for the MAM period). For AOD
smaller than 0.2, SLSTR has a negative FGD of about−0.05,
while VIIRS and MODIS FGD values fall between −0.015
and 0. For AOD larger than 0.2, VIIRS, MODIS, and PMAp
show positive FGD. The mean and spread of the FGD of
PMAp and VIIRS increase with AOD. MODIS shows lower
values and a smaller spread of FGD, which is expected be-
cause the model first guess is influenced by the assimilation
of MODIS from the previous analysis cycles. SLSTR has
negative FGD up to AOD= 0.4. The spread of SLSTR first
guess is comparable to that of VIIRS.

4.2 Evaluation over land

4.2.1 Satellite observations

The magnitude of the AOD global mean of VIIRS and
MODIS is larger over land than ocean, and it increases from
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Figure 6. Global maps of the mean (a) and SD (b) of the first-guess departure from Terra and Aqua/MODIS, NOAA20 and SNPP/VIIRS,
S3A and S3B/SLSTR, and MetOp-A/B–PMAp for the DJF (2019–2020) period over ocean.

the DJF to the MAM period. Figures 9 and 10 show the
overall good agreement between MODIS and VIIRS over
land. VIIRS exhibits larger spatial coverage and smoother
spatial variations over northern latitudes, central Africa, and
South America. Conversely to ocean, VIIRS AOD has a
larger global mean than MODIS (difference of 0.03). VIIRS
is higher over biomass burning regions (e.g., southwestern
coast of Australia for the DJF period, central Africa, and
South America) and over dust source regions (e.g., Takla-
makan desert for the MAM period, the Bodélé depression for
the DJF and MAM periods, the Sahel for the MAM period,
central Australia for the DJF period, Central America for the
MAM period). VIIRS show smaller AOD than MODIS over
the polluted hot spots in eastern China.

Figure 11 shows that MODIS has a wider and quasi-
bimodal distribution, while VIIRS exhibits a positively

skewed distribution. All VIIRS regional distributions are
positively skewed toward larger AOD values than MODIS
except over Africa where MODIS and VIIRS show similar
PDF (Fig. C2). The latitude transects across land surfaces
(Fig. 12 for the DJF period and Fig. C2 for the MAM pe-
riod) indicate higher VIIRS AOD than MODIS AOD in the
Southern Hemisphere where the differences are larger than
in the Northern Hemisphere. The AOD peak around 40◦ S
related to the Australian fires in Fig. 12 is more pronounced
for VIIRS than for MODIS. Table 5 indicates smaller dif-
ferences between VIIRS and MODIS over Europe, Africa,
and North America, while the largest MD and RMSD are ob-
tained over Australia and South America. SNPP/VIIRS and
NOAA20/VIIRS show better agreement over land than over
ocean except in the 20 to 30◦ N and 20 to 30◦ S latitude bands
where NOAA20/VIIRS is larger and lower, respectively, than
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Figure 7. Latitude cross-section of the mean (a) and the SD (b) of the first-guess departure for the DJF (2019–2020) period over ocean.

Figure 8. Global statistics of the first-guess departure (FGD) for a distinct range of AOD for the DJF (2019–2020) period over ocean.
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Figure 9. Global maps of temporal mean AOD from Terra and Aqua/MODIS as well as NOAA20 and SNPP/VIIRS for the DJF (2019–2020)
period over land.

Table 4. Quantification of global AOD differences between VIIRS
vs. MODIS over land for the DJF and MAM periods.

RMSD MD r

VIIRS vs. MODIS – DFJ period 0.10 0.025 0.76
VIIRS vs. MODIS – MAM period 0.12 0.032 0.76

SNPP/VIIRS for the DJF period (Fig. 12). Aqua/MODIS and
Terra/MODIS AOD are in close agreement in the Northern
Hemisphere up to 30◦ N, above which Aqua/MODIS AOD
drops below Terra/MODIS for the DJF period (this is not ob-
served for the MAM period). In the Southern Hemisphere,
Aqua/MODIS is systematically higher than Terra/MODIS,
while the opposite was observed over ocean. Overall, the
departure between retrievals from the same instrument on
board different platforms is less important over land than
over ocean (Table 4 compared to Table 2).

4.2.2 First-guess departure

Figure 13a indicates more frequent positive and negative
FGD values for VIIRS and MODIS, respectively, for the
DJF period. This holds for the MAM period (Fig. D7). VI-
IRS shows more pronounced positive FGD over South Amer-
ica, central and southern Africa, southeastern Australia (DJF

only), western Australia, North America (particularly for the
MAM period), and the Taklamakan region. Both MODIS and
VIIRS consistently show negative departure in central Africa
for the DJF period (Fig. 13a) and in India for the MAM pe-
riod (Fig. D6), which corresponds to the decrease in FGD
between 10 and 15◦ N shown by the latitude transects in
Figs. 14a and D8a. Figure 14a indicates larger differences
in FGD between instruments and platforms in the South-
ern Hemisphere compared to the Northern Hemisphere. In
the Southern Hemisphere, MODIS and VIIRS frequently
show negative and positive FGD, respectively. FGD magni-
tudes of Terra and SNPP are larger than that of Aqua and
NOAA20, respectively. In the Northern Hemisphere, both
VIIRS and MODIS have negative departure up to ∼ 40◦ N.
Above 40◦ N, VIIRS and Terra/MODIS consistently show
slightly positive FGD, while Aqua/MODIS keeps negative
values.

The SD of FGD (Figs. 13b and 14b) is overall larger for
VIIRS than MODIS (VIIRS has a global average twice that
of MODIS). Figures 13b and D7 highlight the large differ-
ences between VIIRS and the model AOD over dust source
regions (Africa, Middle East, Asia, Australia), biomass burn-
ing regions in Africa, and polluted regions in India and
China. While Terra and Aqua have similar SD of FGD,
NOAA20 shows larger values than SNPP in the Northern
Hemisphere (Figs. 14b and D8b).
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Figure 10. Global maps of temporal mean AOD from Terra and Aqua/MODIS as well as NOAA20 and SNPP/VIIRS for the MAM (2020)
period over land.

Table 5. Quantification of AOD differences between instruments over the land regional domains (defined in Table 3) for the DJF period.
Each cell gives the MD followed by the RMSD.

AF AS NA SA EU AU

VIIRS vs. MODIS 0.0007, 0.1 0.04, 0.1 0.04, 0.06 0.05, 0.1 0.02, 0.07 0.04, 0.1
SNPP/VIIRS vs. Terra/MODIS −0.01, 0.1 0.008, 0.12 0.0016, 0.058 0.081, 0.12 −0.02, 0.07 0.09, 0.1
SNPP/VIIRS vs. Aqua/MODIS −0.023, 0.11 0.022, 0.11 0.003, 0.06 0.060, 0.10 0.008, 0.06 0.06, 0.13
NOAA20/VIIRS vs. Terra/MODIS 0.01, 0.11 0.02, 0.11 0.006, 0.06 0.07, 0.11 −0.01, 0.07 0.067, 0.13
NOAA20/VIIRS vs. Aqua/MODIS 0.001, 0.11 0.034, 0.12 0.036, 0.06 0.05, 0.10 0.020, 0.07 0.04, 0.12

Figure 15 indicates that MODIS and VIIRS both have sim-
ilar FGD statistics for AOD less than 2. For AOD larger than
2, the mean and the variance of the VIIRS FGD increase with
AOD, while the MODIS FGD is steady and less variable due
to its assimilation.

5 Discussion

The sources of differences between the satellite AOD prod-
ucts monitored within the CAMS data assimilation system
are discussed here.

5.1 Cloud detection

Cloud contamination has been identified as an important
source of uncertainties in aerosol retrieval (Zhang et al.,

2005; Kaufman et al., 2005; Li et al., 2009; Sogacheva et
al., 2017; Schutgens et al., 2020). Commission errors are fre-
quent between cirrus and dusts (Lee et al., 2013) or in the
case of heavy smoke (Wong and Li, 2002). Zhao et al. (2013)
have reported changes in monthly mean MODIS AOD up to
0.04 due to cloud contamination.

While the gridding of the satellite products within the
CAMS data assimilation system should minimize the im-
pacts of differences in spatial resolution between products,
the differences in cloud filtering can lead to substantial dif-
ferences in AOD spatial representativity between products
at the model grid spatial resolution. Differences in spatial
representativity can generate differences in AOD, which can
be larger than the differences between collocated level-2
retrievals (Virtanen et al., 2018; Schutgens et al., 2017).
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Figure 11. Global satellite AOD distribution over land (DJF pe-
riod).

Figure 12. Latitude cross-section of temporal mean satellite AOD
for the DJF (2019–2020) period over land.

The much lower AOD shown by SLSTR over the oceanic
background aerosol is probably related to the overly strin-
gent cloud filtering applied to the SLSTR L1B radiances.
The SLSTR product relies on the native L1B cloud mask,
which was originally designed for sea surface temperature
retrieval and has proven to be too conservative for aerosol
retrieval (EUMETSAT, 2021c). The SLSTR cloud mask fre-
quently removes medium values of L1B radiances and thus
medium AOD values over the ocean (SLSTR PVR, 2021),
which leads to substantially reduced level-3 AOD values at
the model grid resolution and explains the fragmented aspect
of the aerosol plumes displayed by the level-3 SLSTR prod-
uct. The negative departures between SLSTR and the model
are more pronounced in the Southern and Northern Hemi-
sphere for the DJF and MAM periods, respectively, which
indicates a possible seasonality in the differences in spatial
representativity due to cloud filtering. The magnitudes of the

differences between the level-3 SLSTR and MODIS AOD
over ocean reported in this study are mainly dominated by
the differences in spatial and temporal representativity at the
model spatial resolution due to cloud over-screening in the
SLSTR product, which explains their larger values (MD of
−0.08 and RMSD of −0.09) than the ones indicated in the
SLSTR validation report for level-2 retrievals (SLSTR PVR,
MD=−0.03 and RMSD= 0.05). A new cloud detection al-
gorithm tuned for aerosol retrieval over ocean is under de-
velopment at EUMETSAT, which should improve the con-
sistency of level-3 AOD with the rest of the products at low
AOD. While SLSTR shows under-representativeness issues,
cloud residuals in VIIRS and MODIS can locally increase
their 3-month average AOD value, which also contributes to
the differences between products.

The differences between VIIRS and MODIS in the North
Atlantic, where high cloud cover is frequent during the DJF
period, can also be related to differences in cloud detection.
The higher AOD values from Terra than Aqua over land at a
latitude higher than 30◦ N can be due to the diurnal variation
of cloud contamination (Painemal et al., 2015, 2020), which
is generally more frequent during the early morning overpass
of Terra during the DJF period. The use of a heavy aerosol
detection test in the VIIRS algorithm reduces the commis-
sion errors between cloud and optically thick aerosols, which
partly explains why VIIRS resolves the smoke plume in the
Pacific where MODIS and PMAp show nosier spatial pat-
terns due to cloud residuals. Finally, the higher spatial res-
olution of VIIRS and its reduced pixel deformation at the
edge of the swath should improve cloud detection. This was
demonstrated for the MAIAC MODIS product, which has a
reduced cloud detection commission error compared to the
MODIS standard product (Lyapustin et al., 2018).

5.2 Instrument geometry

Geometry is a key factor to understand the uncertainty in
AOD retrieval since it influences the range of scattering an-
gles sampled by the instrument and thus the degree of in-
formation content available for the retrieval (Fougnie et al.,
2020; more details in Appendix A1).

Since the uncertainties in AOD retrieval vary with view
angle and the length of the atmospheric path, the retrieval ar-
tifacts at the edge of the swath are expected to be larger for
MetOp-B, which has a double swath compared to MetOp-A.
Also, the differences in swath can generate distinct ranges
of scattering angles sampled by the instrument, which con-
tributes to the differences in AOD retrieval between MetOp-
A and MetOp-B.

Despite the similarity between VIIRS and MODIS instru-
ments, VIIRS has a smaller pixel deformation at the edge of
the swath, which should limit geometry-induced biases com-
pared to MODIS. In addition, the finer spatial resolution at
which VIIRS retrieval is performed and its larger swath im-
ply more frequent retrievals compared to MODIS (Sayer et
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Figure 13. Global maps of the mean (a) and SD (b) of the first-guess departure from Terra and Aqua/MODIS as well as NOAA20 and
SNPP/VIIRS for the DJF (2019–2020) period over land.

Figure 14. Latitude cross-section of the mean (a) and SD (b) of the
first-guess departure for the DJF (2019–2020) period over land.

al., 2019) and explain the larger spatial coverage of VIIRS
over northern latitudes, central Africa, and South America.
The VIIRS higher spatial resolution allows resolving finer
spatial details such as the Australian fire smoke transport in
the Pacific, which is not detected by MODIS and PMAp.

While one could expect a north–south structure bias in
SLSTR retrievals due to more frequent unfavorable geome-
tries (backscattering region) of the oblique view in the North-

ern Hemisphere (Fougnie et al., 2020), this is not shown
in our results over ocean. But the impact could be stronger
over anisotropic land surfaces. Other factors may also influ-
ence the information content of the SLSTR dual view, which
varies not only along the swath in the north–south direction
but also across the swath in a west–east direction and with
seasons.

5.3 Measurement information content

VIIRS and MODIS are two imaging radiometers charac-
terized by similar spectral information content, which can
explain the overall better agreement between VIIRS and
MODIS level-3 AOD compared to the rest of the prod-
ucts. This is consistent with the conclusions from Sayer et
al. (2019), who showed that MODIS and VIIRS products
capture similar temporal and spatial variations and have a
similar level of uncertainty evaluated against AERONET.
However, slight differences in spectral bands (e.g., blue
bands) and the associated spectral response functions can
play a role in the differences between MODIS and VIIRS,
particularly at low AOD.

The GOME-2 instrument, which provides the main mea-
surement to retrieve PMAp AOD, relies on a very differ-
ent measurement technique compared to VIIRS and MODIS,
with spectral information in the UV–Vis channel, which can
explain some of the differences between PMAp and VIIRS
or MODIS retrievals.

5.4 Radiometric calibration

AOD retrieval requires high radiometric accuracy of the input
reflectance and consistency across bands and views. Small
differences in sensor calibration and spectral response func-
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Figure 15. Global statistics of the first-guess (FG) departure for a distinct range of AOD (DJF period) over land.

tions can have a large impact on AOD retrieval (Kaufman et
al., 1997a), particularly for the ocean background associated
with low AOD (Sayer et al., 2018b). The impact is larger
for bright than dark surfaces since the error scales with the
magnitude of the surface reflectance (Zhang et al., 2016).
Upstream radiometric calibration uncertainties can explain
a large part of the differences between retrievals from sim-
ilar algorithms and instruments but from distinct platforms
(Jourdan et al., 2007; Levy et al., 2013; Sayer et al., 2017).
The positive offset of Terra over ocean compared to Aqua
(Fig. 5), which has been acknowledged by various studies
(Levy et al., 2018; Sogacheva et al., 2020), is partly related
to a larger radiometric calibration degradation for Terra than
Aqua, which is not corrected in the DT retrieval algorithm
(Sayer et al., 2018b). Also, reflectances in the solar reflec-
tive bands of SNPP/VIIRS have been found to be system-
atically higher than those of NOAA20/VIIRS, which has a
more consistent inter-channel calibration and a steadier cal-
ibration in time compared to SNPP/VIIRS (Uprety et al.,
2020). Over land, where the surface reflectance and AOD
are retrieved simultaneously from observed VIIRS TOA re-
flectance, the SNPP/VIIRS vs. NOAA20/VIIRS reflectance
difference does not necessarily lead to a corresponding AOD
difference. In contrast, over ocean, the surface reflectance
is calculated from a model that is independent of instru-
ment calibration, so a positive bias in the SNPP/VIIRS
TOA reflectance directly translates into a higher AOD re-
trieval compared to NOAA20/VIIRS. The positive offset be-
tween PMAp-B and PMAp-A is also related to differences in
GOME-2 radiometric performances (e.g., dark current, stray
light, polarization) between MetOp-A and MetOp-B. A cor-
rection has been implemented in the new release 2.2.4 of
PMAp (Grzegorski et al., 2022) that will be assessed in a
future work. The good agreement between S3A and S3B re-
trievals is explained by radiometric alignment implemented
in the SLSTR L1B processing after the tandem campaign
between S3A and S3B in June–October 2018. Radiometric

calibration residuals can also explain part of the bias of the
SLSTR product at very low AOD (SLSTR PVR, 2021).

5.5 Surface reflectance parameterization

Over the ocean background, AOD retrieval at low AOD
(less than 0.2) is very sensitive to small errors in the sur-
face reflectance, which are frequently due to uncertainties
in near-surface wind speed parameterization (Sayer et al.,
2018b). This can explain the large diversity in AOD values
observed over the Southern Ocean where large near-surface
wind speeds are frequently underestimated by meteorolog-
ical forecast datasets (Bentamy et al., 2021). In addition,
differences in wind speed between meteorological datasets
(NCEP for VIIRS and MODIS versus ECMWF for SLSTR
and PMAp) can also play a role in the differences between
retrievals. Finally, the way the wind speed is accounted for
in the lookup table (LUT) can influence the retrieval. For ex-
ample, the MODIS retrieval LUT contains nodes at four fixed
wind speed values (2, 6, 10, 14 m s−1) to generate the surface
reflectance, which may be too coarse to accurately represent
the impact of wind speed variability. Similarly, inaccuracies
in the wind speed and wind direction influence the estimation
of the glint and whitecap components of the ocean BRDF
model, which have been identified as possible sources of the
negative bias of the SLSTR product at low AOD (SLSTR
PVR, 2021).

Over land, surface reflectance models may fail to repre-
sent the angular variations of surface reflectance over highly
complex land terrain or the seasonal and interannual variabil-
ity of the surface reflectance (Kokhanovsky et al., 2007; Liu
et al., 2014; Huang et al., 2016; Tao et al., 2017). The under-
estimation of AOD retrieved from the MODIS DB algorithm
over desert can be partly related to inaccurate representation
of dust regional variability in the surface reflectance database
used in the MODIS DB retrieval (Hsu et al., 2019).
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5.6 Aerosol models

Inconsistencies in aerosol properties between algorithms can
generate large differences in AOD retrieval (Kokhanovsky et
al., 2007; Levy et al., 2013). Most retrieval algorithms rely on
a limited number of broad classes of aerosol models, which
may not be sufficient to represent the spatial and temporal
variability of actual aerosol properties such as the large vari-
ability in particle shape, size, and mineralogy composition of
dusts, the large variations in aerosol optical properties over
polluted regions due to the impact of transport, aging, and
secondary organic aerosol processes, and the variability in
smoke properties related to type of fuel and surface mois-
ture conditions (Shi et al., 2011; Ichoku et al., 2003; Sayer et
al., 2013; Huang et al., 2016). While spherical assumption is
a good approximation for sulfate and carbonaceous aerosols
(Martins et al., 1998), it can lead to geometry- and spectral-
dependent biases in AOD for dust (Mishchenko et al., 1995;
Torres et al., 1998; Levy et al., 2013; Sayer et al., 2018a;
Zhou et al., 2020).

VIIRS and MODIS exploit distinct aerosol models, which
can explain part of the larger VIIRS AOD values over
biomass burning and desert regions. Tao et al. (2017) showed
that the dust-scattering properties are overestimated in the
MODIS DB algorithm, which results in a negative AOD bias
over desert regions. Also, the spherical dust model used in
the DT over ocean was shown to introduce a positive bias in
the case of high dust load (Zhou et al., 2020), which could
explain the larger MODIS AOD than VIIRS over the dust
outbreak in the mid-Atlantic (5–10◦ N, Fig. 5). This can also
play a role in the differences between MODIS and SLSTR
(SLSTR validation report), but it is probably of second or-
der compared to the differences in spatial representativity.
Finally, our results indicate differences between MODIS and
VIIRS over the polluted hot spots in China that can be related
to differences in the fine-mode aerosol models used in both
retrieval algorithms.

5.7 Regional and seasonal differences between
products

The global distribution of AOD has a strong regional and
seasonal dependency, particularly with respect to biomass
burning events and dust outbreak, which influences the dif-
ferences between satellite AOD products.

Over land, the sources of differences between products at
large AOD are primarily related to the aerosol models and the
representation of the surface reflectance anisotropy (Sayer et
al., 2019; Schutgens et al., 2020). Retrievals are frequently
more uncertain and more diverse over bright (e.g., bare,
desert), complex (e.g., urban, mountains), and elevated ter-
rains, where the strong surface anisotropy requires a higher
degree of information content to retrieve AOD (de Leeuw et
al., 2018; Wei et al., 2019b; Schutgens et al., 2020). In addi-
tion, our results show lower MODIS values than VIIRS over

the Taklamakan desert, the Bodélé depression, the Sahel, and
central Australia, which represent major global dust sources.

Over ocean, the sources of differences at low AOD mainly
arise from small differences in the calculated surface re-
flectance mainly due to cloud contamination, calibration
uncertainties, and inaccurate wind speed parameterization
(Zhang et al., 2005; Smirnov et al., 2009; Sayer et al., 2018b).
Product diversity increases in the Southern Ocean where
PMAp and MODIS exhibit noisy spatial patterns and SLSTR
has larger departure with the model. A systematic positive
AOD anomaly, referred as the enhanced southern oceans
anomaly (ENSOA), which has been reported for various
satellite AOD products (e.g., MODIS, MISR) over middle-
to high-latitude southern oceans (45 to 65◦ S), is likely due
to unfiltered stratocumulus and low broken cumulus clouds,
inaccuracy in ocean surface albedo assumptions, high wind
speed, inaccurate aerosol models, and floating ice (Zhang et
al., 2005; Shi et al., 2011; Toth et al., 2013).

Finally, our results indicate slightly larger diversity be-
tween AOD products for the MAM period compared to the
DJF period over land, which is related to seasonality in dust
and biomass burning events. However, while both DJF and
MAM periods encompass a large range of aerosol events
representative of global aerosol variability, AOD products
should be monitored over a longer period in further works
to better resolve the seasonal and interannual variability of
aerosols such as the North American and Siberian fires that
occur during the June–September period.

6 Conclusion

The objective of this work is to evaluate two new NRT
satellite AOD products to prepare for their assimilation into
the CAMS data assimilation system, namely the Copernicus
SLSTR AOD (C1) from Sentinel-3A/B over ocean and the
NOAA EPS VIIRS AOD (v2r1) from SNPP and NOAA20
over both land and ocean. The diversity between MODIS
(C6.1), PMAp (v2.1), VIIRS (v2r1), and SLSTR (C1) AOD
products as well as their differences from the model (IFS
CY47R1) were assessed separately over land and ocean at
the model grid resolution (level-3) using 3-month AOD aver-
age (December 2019–February 2020 and March–May 2020).
The outcomes of this work concern level-3 AOD from the
perspective of its use in the CAMS data assimilation system,
which may not directly apply to level-2 retrievals at their na-
tive spatial and temporal resolution.

SLSTR AOD shows much smaller level-3 values than the
rest of the products (MD between SLSTR and VIIRS and
between SLSTR and MODIS is −0.06 and −0.09, respec-
tively). PMAp shows the largest variability at global scale
and the largest discrepancies across platforms: PMAp-B has
a large positive offset compared to the other products, while
PMAp-A is closer to Terra/MODIS. VIIRS and MODIS
AOD show the best agreement among the investigated prod-
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ucts; this is related to instrument and retrieval algorithm
similarities compared to PMAp and SLSTR, which rely on
different measurement techniques and retrieval approaches.
However, VIIRS is frequently smaller than MODIS over
oceanic background aerosol (global MD between VIIRS and
MODIS is −0.02) and shows more pronounced negative
departure with the model than MODIS. Over land, VIIRS
AOD is frequently larger than MODIS and shows larger pos-
itive departure with the model over dust source (e.g., Tak-
lamakan desert, Bodélé depression, Sahel, central Australia,
Central America) and biomass burning (e.g., Australia, cen-
tral Africa, South America) regions.

The main sources of diversity between retrievals over land
at large AOD (e.g., dust and biomass burning regions) are
mainly related to the differences in aerosol models (e.g., re-
fractive index and particle size) and the representation of
the surface reflectance anisotropy, while for the ocean back-
ground, which is generally characterized by low aerosol bur-
den, differences between retrievals mainly arise from uncer-
tainties in cloud detection, radiometric calibration, and the
ocean surface reflectance model used in the retrieval algo-
rithm. Cloud filtering criteria (permissive vs. conservative)
can generate large differences in spatial and temporal repre-
sentativity between products at the model grid spatial reso-
lution. The overly stringent cloud mask used in the SLSTR
product explains part of the smaller level-3 AOD values of
SLSTR compared to the rest of the products. The use of
heavy aerosol detection tests helps to reduce cloud contam-
ination commission errors as demonstrated by the detection
of the smoke transport over the Pacific by the VIIRS product,
while PMAp and MODIS show nosier spatial patterns due to
cloud contamination. The consistency in cloud filtering be-
tween products should be properly evaluated and improved
to minimize the differences in spatial representativity at the
model grid spatial resolution. A compromise should be found
between (i) a strict enough cloud filtering to assimilate the
best-quality retrievals and (ii) enough spatial coverage to re-
solve the aerosol plumes and properly sample the global and
regional AOD distribution. The geometry characteristics of
the instrument (swath, spatial resolution, view angle), which
drive the range of scattering angles sampled by the instru-
ment, can also explain a large part of the differences between
retrievals such as the positive offset between PMAp from
MetOp-B and MetOp-A. Finally, uncertainties in upstream
radiometric calibration are a major source of differences be-
tween retrievals from the same instrument but on board dis-
tinct platforms as shown by the positive offset over ocean be-
tween Terra/MODIS and Aqua/MODIS retrievals due to the
non-corrected radiometric calibration degradation of Terra/-
MODIS in the DT algorithm and between SNPP/VIIRS and
NOAA20/VIIRS retrievals related to the positive bias in the
solar reflective bands of SNPP/VIIRS.

The assessment of AOD product diversity within the
CAMS data assimilation system provides meaningful infor-
mation to design an accurate multi-satellite AOD data as-

similation system. In particular, the consistency between the
NASA MODIS and NOAA EPS VIIRS AOD products re-
ported in this paper shows that the assimilation of VIIRS will
ensure the continuity of the CAMS data assimilation sys-
tem, and it will strengthen the resilience against a possible
future failure of MODIS. This work shows that the NOAA
VIIRS product will enhance the spatial coverage of AOD ob-
servations and provide a more accurate detection of smoke
plumes. However, the conclusions reported in this paper are
not sufficient to automatically include the additional AOD
observations into the CAMS system, and further assimila-
tion tests are planned and will be reported on in a follow-up
paper. For example, there is a need to understand how the
differences between MODIS and VIIRS over ocean and land
will impact the analysis. While the magnitude of the mean
deviation between the products is relatively small over the
ocean (and certainly much smaller than over land), the low
AOD value of the ocean background means that a slight dif-
ference in AOD between products will have a large impact on
data assimilation. For instance, since VIIRS has lower values
than MODIS over the ocean, its assimilation will likely de-
crease the analysis values over the ocean, which are currently
known to be too high due to the positive offset of Terra/-
MODIS, if no bias correction is applied. Over land, the larger
VIIRS AOD for biomass burning and dust source regions
should increase the analysis values, which may affect AOD
and surface particle matter predictions over these regions.
Besides the departures between products retrieved from dif-
ferent instruments or different satellite platforms, this work
provides information on how bias correction needs to be ap-
plied within the system. This work suggests that it would be
preferable to use NOAA20/VIIRS as an anchor and apply
bias correction to SNPP/VIIRS, which was found to be pos-
itively biased over ocean. Our results also highlight the role
of geometry in retrieval uncertainties that can lead to sys-
tematic differences between products. Adding the scattering
angle in the current variational bias correction scheme im-
plemented in the CAMS data assimilation system could help
to represent any geometry-dependent biases in the retrieval.
Moreover, since AOD global distribution has a strong sea-
sonal variability, the study period needs to be extended in
future works to characterize the seasonal dependence of the
departure between AOD products, particularly with respect
to biomass burning and dust outbreak events. Finally, the ob-
servation error is an important variable to weight the rela-
tive contribution of each satellite observation to the analysis.
Further work is required to evaluate the retrieval error asso-
ciated with each product, which could be inflated to better
reflect the larger diversity between products reported in the
Southern Ocean and over bright land surfaces.
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Appendix A: Satellite AOD products

A1 General characteristics

The main difficulty in retrieving AOD from TOA reflectance
measurements is to disentangle the respective contributions
of the aerosol and the surface reflectance. The measurement
information content available to retrieve AOD is strongly
constrained by the domain of the aerosol phase function
which is sampled by the instrument (Fougnie et al., 2020).
Retrieval conditions are generally more favorable in the for-
ward domain, for which the amplitude of the aerosol signal is
the largest, the sensitivity of the phase function to the aerosol
models is low, and the surface signal is weak. Retrieval is
more complex in the backscattering region where the TOA
reflectance is dominated by the surface signal and the re-
trieval is very sensitive to uncertainties in the aerosol mod-
els. The range of scattering angles resolved by the instru-
ment varies along-track (north–south direction), across-track
(west–east direction), and with the season (Fougnie et al.,
2020). Complexity increases over land bright surfaces, where
geometrical scattering from individual surface elements with
size larger than the wavelength generate large reflectance
anisotropy. The second source of difficulty is the regular-
ization of the retrieval inverse problem, which frequently
requires a priori knowledge of both the surface reflectance
(e.g., spectral relationships, surface reflectance database) and
the aerosol optical properties (e.g., particle size distribution
and refractive index) (Kaufman et al., 1997b ; Dubovik et al.,
2011; Levy et al., 2013; Hsu et al., 2019; Li et al., 2019).

Prior to the retrieval, several brightness and variability
tests are generally applied to the TOA reflectances of se-
lected spectral bands to screen out residual clouds, sediment
contamination, and nonoptimal surface pixels. Then AOD
is generally retrieved by minimizing the residuals between
the TOA reflectances measured by the satellite for a given
sun and satellite geometry as well as the theoretical val-
ues which have been pre-computed from a radiative trans-
fer model (RTM) for a set of candidate aerosol models and
stored in a lookup table (LUT). Over ocean, the surface re-
flectance is generally computed from an ocean surface re-
flectance model, which explicitly represents the contributions
from the sun glint and the whitecap as a function of wind
speed, and the reflection from within the water (Limbacher
and Kahn, 2014; Sayer et al., 2018a, b; Garay et al., 2020);
AOD is retrieved independently. Over land, both surface re-
flectance and AOD can be simultaneously retrieved if the
measurement information content is high enough (Fougnie
et al., 2020)

Retrievals are generally associated with (i) a quality as-
sessment (QA) flag which quantifies the overall confidence
in the retrieval and is computed a posteriori from tests on the
inputs and outputs of the retrieval algorithm and (ii) an error
which can be a prognostic output from the optimization al-

gorithm or a diagnostic computed a posteriori by evaluating
the retrieval against ground observations (Sayer et al., 2020).

A2 Satellite retrieval algorithm

Below we provide a summary of the retrieval algorithm of
each product. The validation statements given for each prod-
uct were taken from validation reports and relied on distinct
methodology as well as different spatial and temporal sam-
pling.

A2.1 MODIS Dark Target (ocean and land)

AOD is retrieved over a 10× 10 MODIS pixel retrieval box
(∼ 10 km at nadir) from the MODIS TOA reflectances, which
have been averaged over the retrieval box.

Over ocean, the surface reflectances in six spectral wave-
lengths (0.55, 0.65, 0.86, 1.24, 1.63, and 2.11 µm) are com-
puted for various combinations of fine-mode (selected from
four models) and coarse-mode (selected from five models)
aerosols, which are characterized by a single-mode lognor-
mal size distribution and a spherical shape. Since collection
6.0, the ocean surface reflectance has exploited a varying
wind speed taken from the NCEP forecast.

Over land, four aerosol models are prescribed as a
function of location and season. This includes three fine-
mode-dominated models, which are characterized by a bi-
lognormal size distribution, a spherical shape, and distinct
single-scattering albedo, and a dust coarse-mode-dominated
model, which is bi-lognormal and non-spherical. The solu-
tion is a combination of the dust and one of the fine-mode
models. Spectral relationships between the bands at 0.47,
0.65, and 2.11 µm, which are functions of NDVI and the scat-
tering angle, are used to constrain the algorithm over vege-
tated areas. When not enough samples have been selected
within the 10× 10 retrieval box, an alternative retrieval is
triggered using only the continental aerosol model character-
ized by a three-mode lognormal size distribution and a spher-
ical shape.

Each output is associated with (i) QA information de-
rived from tests on the number of pixels selected within the
10× 10 retrieval box and the degree of realism of the solution
as well as (ii) a diagnostic error which has been computed as
a function of AERONET AOD (Table 1).

Terra/MODIS DT was shown to frequently be the high-
est over open-ocean conditions (Zhang et al., 2017; Sayer
et al., 2018b; de Leeuw et al., 2018; Sogacheva et al.,
2020). It has a positive offset at low AOD, which scales
with AOD and is mainly related to the calibration degra-
dation of the Terra/MODIS blue band (Levy et al., 2013;
Sayer et al., 2018a, b; Sogacheva et al., 2019). Validation re-
sults for collection 6.1 are reported at https://darktarget.gsfc.
nasa.gov/validation/results (last access: 9 November 2022).
For Aqua/MODIS the bias and the RMSE evaluated against
AERONET are 0.023 and 0.096 over ocean and 0.013 and
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0.1 over land. For Terra/MODIS the bias and the RMSE are
0.039 and 0.099 over ocean and 0.029 and 0.106 over land.
The percentages of samples within the expected error range
are 83 % and 76 % over ocean and land, respectively, for
Aqua and 77 % and 73 % over ocean and land, respectively,
for Terra.

A2.2 MODIS Deep Blue (land)

The Deep Blue algorithm was first implemented in MODIS
collection 5 to fill in the dark target gaps over bright
land surfaces (Hsu et al., 2013). Since collection 6.0, an
enhanced DB algorithm, which includes updated cloud
detection and modified aerosol models, has been applied
to both bright and vegetated areas. Additional modifi-
cations were applied in collection 6.1, which includes
updated radiometric calibration to L1b radiances, improved
internal smoke detection, improved surface reflectance
database over rugged and elevated terrain, and updated
parameters of the pixel-level uncertainties (more details
at https://atmosphere-imager.gsfc.nasa.gov/sites/default/
files/ModAtmo/modis_deep_blue_c61_changes2.pdf, last
access: 9 November 2022). Conversely to DT, DB applies
the corrections for the radiometric degradation of the 0.412
and 0.470 µm blue bands of Terra/MODIS. DB retrieval
is first performed at 1 km, and then the 1 km retrievals
are averaged over a 10× 10 MODIS pixel box. The DB
algorithm retrieves AOD and the fraction of two aerosol
models from the radiances in the 0.412 and 0.47 µm spectral
bands (Hsu et al., 2004). Distinct paths are used to estimate
the surface reflectance depending on the surface type.

a. Over vegetated surfaces, the surface reflectances in the
blue (0.47 µm) and the red (0.65 µm) are estimated us-
ing spectral relationships between these bands and the
SWIR (2.1 µm). These relationships were derived from
collocated MODIS observations with AERONET data,
which were stratified by geometry, land cover types
(cropland and natural vegetation), season, and vegeta-
tion amount quantified by a vegetation index (NDVI).

b. Over bright surfaces (desert and mountains), a database
of surface reflectance was derived from 7 years of
MODIS data for each season and for different ranges
of NDVI. The surface reflectance is parameterized as a
function of the scattering angle to account for the non-
Lambertian properties of the surface.

c. Over urban and cropland transitional regions, to account
for the strong surface heterogeneity and anisotropy, the
angular shapes of the surface BRDF were derived from
collocated AERONET and MODIS measurements for
distinct seasons and ranges of NDVI values (Hsu et al.,
2013). The derived angular shapes are then combined
with the surface reflectance values derived from the sur-
face reflectance database at a scattering angle of 135◦.

A total of 10 fine-mode and 5 coarse-mode aerosol models
with spherical shape are employed in the retrieval. The size
distributions and single-scattering albedo of the fine-mode
models are region-dependent. Since collection 6.0, they
have represented smoke and weakly absorbing aerosols to
cover vegetated areas. Coarse-mode models employ the same
phase function but have distinct single-scattering albedo
(Hsu et al., 2004). Since collection 6.0, MODIS infrared
channels have been used to identify extremely absorbing
mineral dust prior to retrieval. An AOD is independently re-
trieved at each spectral band by selecting a single aerosol
model. Then AOD at 0.55 µm is derived from the estimated
AOD spectral dependence.

Each retrieval is associated with a QA based on residual
cloud contamination, scene heterogeneity, and number of
retrieved AOD pixels within each 10× 10 retrieval box
(Sayer et al., 2013). A pixel-level uncertainty, defined
as 1 standard deviation Gaussian confidence interval, is
computed from linear functions of MODIS AOD and solar
and view geometry (Sayer et al., 2013). The parameters
of the expected error for collection 6.1 can be found
at https://atmosphere-imager.gsfc.nasa.gov/sites/default/
files/ModAtmo/modis_deep_blue_c61_changes2.pdf (last
access: 9 November 2022).

The evaluation of MODIS DB against AERONET mea-
surements showed a bias less than 0.01, an RMSE of 0.012,
80 % of retrievals within the algorithm expected error, and
45 % of retrievals within the GCOS uncertainty requirement
(Sayer et al., 2019). The bias is generally small for back-
ground aerosol (AOD less than 0.2), and the negative bias
increases from fine mode to dust. Regionally, performances
are lower over biomass burning regions in southern Africa,
mixed polluted and dust sites in India, China, Southeast Asia,
and desert sites where AOD is frequently underestimated
(Tao et al., 2017; Sayer et al., 2019).

A2.3 VIIRS NOAA EPS

The NOAA EPS NRT AOD product v2r1, derived from
the Visible/Infrared Imager Radiometer Suite (VIIRS) on
board the Suomi National Polar-orbiting Partnership satel-
lite (SNPP) and the NOAA20 platform, is provided at the
native pixel size of 0.750 km (Laszlo and Liu, 2020). Sev-
eral internal tests are applied to the input TOA reflectances to
filter out residual cloud-contaminated observations, sea ice,
shallow water, and glint as well as to identify heavy smoke
and dust aerosols. The algorithm exploits the 6S-V1.1 radia-
tive transfer model to account for aerosol extinction, molec-
ular scattering, and gas absorption, as well as to couple the
surface with the atmosphere. Final retrievals are categorized
into four quality assurance levels based on internal tests and
the retrieval residuals (Laszlo and Liu, 2020). Only the best-
quality retrievals are selected for this work.

Over land, the TOA radiances at 0.412 µm (M1), 0.445 µm
(M2), 0.488 µm (M3), 0.672 µm (M5), and 2.25 µm (M11)
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are used. The algorithm estimates the surface reflectances
from the red (M5) or the SWIR (M11) TOA reflectances
because, compared to the shorter wavelength bands, these
bands have lower sensitivity to atmospheric scattering and
higher sensitivity to surface reflectance. AOD is generally
retrieved from the M3 blue band, where the aerosol signal
is strong and the surface is dark, because this band is close to
the nominal wavelength (0.55 µm) where AOD is reported.
The aerosol model corresponding to the retrieved AOD is se-
lected using residuals, which are the departures of the TOA
reflectances calculated at the rest of the spectral bands for
a finite number of candidate aerosol models from the ob-
served reflectances. For dark vegetated surfaces, linear spec-
tral relationships between M5 and M11, M3 and M5, M2
and M3, M1 and M3, and M11 and M5 were pre-computed
for distinct land cover types as a function of NDVISWIR,
the M5 /M4 TOA reflectance ratio, and the glint angle. For
bright surfaces, the surface reflectance ratios with M5 are pa-
rameterized as a linear function of the scattering angle (using
distinct parameterization for forward and backward geome-
tries). They are derived at global scale from a static database
at 0.1◦ spatial resolution, which was computed using 2 years
of VIIRS TOA reflectances over bright surfaces (Zhang et
al., 2016). Over North Africa and the Arabian peninsula re-
gions, a dust aerosol model is selected, the M3 spectral band
is used to retrieve AOD, and the residuals are calculated
from M1 and M2. Over the rest of bright regions, AOD is
retrieved from M1, which is better suited for AOD retrieval
than M3 over bright surfaces, and the residuals are calculated
using M2 and M3. The algorithm employs four aerosol mod-
els, namely generic, smoke, and urban fine-mode-dominated
models along with a dust coarse mode, which are all char-
acterized by a bimodal lognormal aerosol size distribution,
spherical shape for the fine-mode models, and a spheroid
shape for the dust model. These models are essentially based
on the collection 6 MODIS DT models. However, unlike the
MODIS DT algorithm, which assigns the models to distinct
geographical regions, the NOAA EPS algorithm dynamically
selects the aerosol model based on the value of the residual.

Over ocean, the retrieval employs the 0.555 µm (M4),
0.672 µm (M5), 0.746 µm (M6), 0.865 µm (M7), 0.1240 µm
(M8), 1.610 µm (M10), and 2.25 µm (M11) spectral bands.
A typical model of ocean surface reflectance, which repre-
sents the contributions from bidirectional sun glint as well
as Lambertian dark underwater and whitecap reflections, is
exploited. Five coarse-mode and four fine-mode candidate
aerosol models with spherical shapes (adopted from Remer et
al., 2006) are used. Combination of the fine and coarse modes
corresponding to varying fractions results in a large number
of candidate aerosol models. AOD for each combination of
fine and coarse mode is estimated using the M7 channel be-
cause of its low sensitivity to underwater reflectance and suf-
ficient sensitivity to aerosols. The residuals at the rest of the
spectral bands are used to select the best aerosol model. The

outputs are the fine- and coarse-mode aerosol models, the
fine-mode fraction, and the total AOD.

Parametric formulations of pixel-level uncertainty were
derived from a posteriori evaluations against AERONET
over land and ocean. Conversely to MODIS DB, no Gaussian
assumption on the error distribution is applied, and the ex-
pected error is estimated from the adjustment of the bias and
the error variance as a function of the VIIRS AOD (Huang et
al., 2016).

A first evaluation against AERONET for the period from
October 2012 to March 2016 indicates bias and error stan-
dard deviation of 0.01 and 0.1, respectively, over land and
0.03 and 0.05 over ocean (Laszlo, 2018). The ATBD (Ta-
ble 2.1, Laszlo and Liu, 2020) provides accuracy and preci-
sion of AOD retrieval for three AERONET AOD ranges over
land and two over ocean.

A2.4 Copernicus NRT SLSTR

The Optimized Simultaneous Surface-Aerosol Retrieval for
Copernicus Sentinel-3 (OSSAR-CS3) is the reference EU-
METSAT processor generating the NRT aerosol product,
including AOD at 0.55 µm, derived from the radiances
of the Sea and Land Surface Temperature Radiometer
(SLSTR) dual-view instrument on board Sentinel 3-A and 3-
B (EUMETSAT, 2021b). The collection 1.0 released in Au-
gust 2020, which was available at the time of this work, is
evaluated over ocean only. The following also includes a de-
scription of the land algorithm implemented in collection 2.0
(released in October 2021).

Prior to aerosol retrieval, absolute, inter-band, and dual-
view calibration corrections are applied to reduce the SLSTR
radiance calibration uncertainties. The original L1B cloud
mask is used over ocean, while a specific cloud mask was
designed to correct for under-screening deficiencies in the
current L1B cloud mask over land. The aerosol product is
provided at 9.5 km spatial resolution by aggregating a block
of 19× 19 native SLSTR pixels to reduce the impacts of
surface heterogeneity, mitigate co-registration errors across
views, and decrease the retrieval computing time. The re-
trieval is triggered if only more than 50 % of any of the
19× 19 SLSTR pixels within each block are cloud- and
glint-free. A posteriori quality control tests, which include
AOD spatial variability, residual of the spectral fit, and re-
flectance brightness tests, are applied to flag AOD retrievals
possibly contaminated by cloud and snow or ice residuals,
contaminated by sediments in coastal areas, or impacted by
other sources of uncertainties such as high ocean color signal
and bright surfaces in the case of unfavorable geometries. A
prognostic uncertainty (1 standard deviation) is computed at
the pixel level from the second derivative of the cost function
at the optimal AOD.

OSSAR-CS3 employs the 6SV RTM to compute the sur-
face reflectance for a set of pre-defined aerosol models which
are a linear combination of two coarse modes (sea salt, desert
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dust) and two fine modes (weakly and strongly absorbing). A
spherical particle shape is assumed except for dust, which is
modeled as a spheroid particle (Dubovik et al., 2006). Over
ocean, the retrieval relies on only the spectral information
content of S2, S3, S5, and S6 spectral bands from all avail-
able views, which are used as independent spectral obser-
vations. The surface reflectance is pre-calculated using an
ocean BRDF model, which includes contributions from glint,
white foam, and ocean color and uses the wind speed from
the ECMWF forecast. Over land, the S1, S2, S3, S5, and S6
spectral bands are exploited. Spectral weights have been ap-
plied to the SLSTR radiances to limit the impacts of their un-
certainties on the retrieval for given surface types and geom-
etry configurations. The retrieval algorithm is a combination
of the North et al. (1999) dual-angular model, used in a joint
aerosol–surface reflectance fit, and a spectral first guess for
the red surface reflectance derived from the NIR or the SWIR
radiances (EUMETSAT, 2021b). The weights between the
two approaches are a function of land surface type and dual-
view geometry configuration. The dual-angular model is fa-
vored for low scattering angles and over bare soils, while the
spectral constraint is required to compensate for the uncer-
tainties of the dual-angular model at large scattering angles
(>110◦) and over developed vegetation.

Level-2 AOD evaluation results (EUMETSAT, 2021c)
against 1.5 years of AERONET observations showed good
performances of the collection 1 over ocean, with a correla-
tion of 0.9, a bias between −0.01 and −0.03 for AOD<0.1,
an RMSE of 0.06, and a compliance with GCOS uncer-
tainty between 66 % and 72 %. Land collection 2 retrieval
showed lower performances compared to ocean, with corre-
lation, bias, RMSE, and a GCOS fraction of 0.77 %, 0.061 %,
0.169 %, and 29 %. Correlation with AERONET is lower at
low AOD in the case of unfavorable geometry for which the
discrimination between the low aerosol signal and the high
surface reflectance is largely uncertain.

A2.5 PMAp

The Polar Multi-Sensor Aerosol Product (PMAp) is derived
from observations from the combined use of the GOME-2
UV–Vis spectrometer, the IASI Fourier transform infrared
sounding interferometer, and the AVHRR radiometer on
board MetOp-A, MetOp-B, and MetOp-C (Grzegorski et al.,
2022). The PMAp v2.1 dataset from MetOp-A and MetOp-
B, which was available at the time of this work, is used in
this work. A new version of PMAp (2.2.4) has been recently
released and has been used in the operational CAMS system
since July 2021.

PMAp is produced at the spatial resolution of GOME-2
(5× 40 km2 for MetOp-A and 10× 40 km2 for MetOp-B).
The linearly polarized radiances measured by the GOME-2
Polarisation Measurement Devices (PMDs) are used to de-
rive unpolarized and polarized TOA reflectances, which are
both the inputs of the AOD retrieval algorithm. A radiometric

correction scheme was implemented to account for the spec-
tral degradation of GOME-2 reflectances due to the aging of
the instrument.

AVHRR observations are used for cloud detection, cloud
fraction estimation, and cloud correction calculation. A pre-
liminary classification of aerosol optical properties is per-
formed prior to retrieval. This includes (i) computation of
a dust index exploiting the IASI infrared thermal spectra,
(ii) identification of volcanic ash exploiting both AVHRR
and IASI observations as well as the GOME-2 UV index,
and (iii) a fine- and coarse-mode discrimination derived from
AVHRR spectral ratios. The retrieval relies on separate LUTs
for ocean and land, which contain the reflectances and Stokes
fractions for 10 PMD bands and various aerosol models (up
to 29 aerosol models, but in the current version 9 models
are used for ocean and 5 for land). Over ocean, the surface
reflectance is pre-computed in cloud-free conditions using
ECMWF wind speed forecast and estimated chlorophyll con-
centration. A default chlorophyll concentration value is used
for partially cloudy pixels. Over land, the algorithm exploits
a priori information on surface reflectance derived from the
GOME-2 Lambertian-equivalent reflectance monthly clima-
tology (Tilstra et al., 2017). The angular dependency of sur-
face reflectance is accounted for using GOME-2 viewing
angle information content (Tilstra et al., 2021). The can-
didate aerosol models identified in the pre-processing step
are used to derive a series of AOD estimates using unpo-
larized GOME-2 reflectance at specified channels for ocean
(0.650 µm) and land (0.410 and 0.470 µm). Both unpolarized
and polarized reflectances are used in the optimization pro-
cess to retrieve AOD.

QA information is computed depending on wind speed,
geometry configuration, aerosol type pre-classification,
cloud and thick aerosol screening, quality of fit, and range
of AOD values. A prognostic error is computed as 1 stan-
dard deviation of a set of a minimum of 30 AOD esti-
mates obtained using perturbations of selected input param-
eters of the retrieval algorithm. Additional information on
PMAp retrieval can be found at https://www.eumetsat.int/
media/39243 (last access: 9 November 2022).

The validation of PMAp v2.1 against AERONET within
the June–September 2013 and February–May 2015 reference
periods indicated a better correlation over ocean (∼ 0.8) than
over land (∼ 0.6). Over ocean, the range of slope and off-
set of the best-fit line are 0.5–0.8 and 0.04–0.1, respectively.
Over land, the range of slope and offset of the best-fit line
are 0.5–0.7 and 0.1–0.2, respectively (Tables 3 and 4 on page
19 of the PMAp validation report, available at https://www.
eumetsat.int/media/40632, last access: 9 November 2022).
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Appendix B: Product scatter plots

Figure B1. S3A/B–SLSTR vs. MODIS AOD scatter plots of temporal mean AOD over ocean for the DJF period.

Figure B2. SNPP/VIIRS vs. MODIS AOD scatter plots of temporal mean AOD over ocean for the DJF period.

Figure B3. NOAA20/VIIRS vs. MODIS AOD scatter plots of temporal mean AOD over ocean for the DJF period.
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Figure B4. PMAp-A vs. MODIS AOD scatter plots of temporal mean AOD over ocean for the DJF period.

Figure B5. PMAp-B vs. MODIS AOD scatter plots of temporal mean AOD over ocean for the DJF period.

Figure B6. SNPP/VIIRS vs. MODIS AOD scatter plots of temporal mean AOD over land for the DJF period.
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Figure B7. NOAA20/VIIRS vs. MODIS AOD scatter plots of temporal mean AOD over land for the DJF period.

Appendix C: Regional histograms

Figure C1. AOD distributions over distinct ocean regional domains for the DJF period. (a) North Atlantic, (b) North Pacific, (c) South
Pacific, (d) mid-Atlantic, and (e) southern Indian Ocean.
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Figure C2. AOD distributions over distinct land regional domains for the DJF period. (a) Africa, (b) Asia, (c) Australia, (d) North America,
(e) South America, and (f) Europe.
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Appendix D: Additional results for the MAM period

Figure D1. Latitude cross-section of temporal mean satellite AOD for the MAM period over ocean.

Figure D2. Latitude cross-section of temporal mean satellite AOD for the MAM period over land.

Figure D3. Global maps of the mean of the first-guess departure from Terra and Aqua/MODIS, NOAA20 and SNPP/VIIRS, S3A and
S3B/SLSTR, and MetOp-A/B–PMAp for the MAM period over ocean.
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Figure D4. Global maps of the standard deviation of the first-guess departure from Terra and Aqua/MODIS, NOAA20 and SNPP/VIIRS,
S3A and S3B/SLSTR, and MetOp-A/B–PMAp for the MAM (2019–2020) period over ocean.

Figure D5. Latitude cross-section of the mean (a) and SD (b) of the first-guess departure for the MAM (2019–2020) period over ocean.
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Figure D6. Global maps of mean first-guess departure from Terra and Aqua/MODIS as well as NOAA20 and SNPP/VIIRS for the MAM
period over land.

Figure D7. Global maps of the standard deviation of the first-guess departure from Terra and Aqua/MODIS as well as NOAA20 and
SNPP/VIIRS for the MAM period over land.
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Figure D8. Latitude cross-section of the mean (a) and SD (b) of the
first-guess departure for the MAM (2019–2020) period over land.

Code and data availability. Model code developed at ECMWF
is the intellectual property of ECMWF and its member states, and
therefore the IFS code is not publicly available. ECMWF member
state weather services and their approved partners can get access
granted to this code. Access to an open version of the IFS code
(OpenIFS) that includes cycle CY47R1 IFS-AER may be obtained
from ECMWF under an OpenIFS license. More details can be found
at https://confluence.ecmwf.int/display/OIFS/About+OpenIFS (last
access: 9 November 2022). A software licensing agreement with
ECMWF is required to access the OpenIFS source distribution:
despite the name it is not provided under any form of open-
source software license. License agreements are free, limited to
non-commercial use, forbid any real-time forecasting, and must be
signed by research or educational organizations. A detailed docu-
mentation of the IFS code is available from https://www.ecmwf.int/
en/publications/ifs-documentation (last access: 26 October 2022).
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