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Abstract. Carbon dioxide (CO2) and air pollutants such as carbon monoxide (CO) are co-emitted by many
combustion sources. Previous efforts have combined satellite-based observations of multiple tracers to calculate
their emission ratio (ER) for inferring combustion efficiency at the regional to city scale. Very few studies have
focused on combustion efficiency at the sub-city scale or related it to emission sectors using space-based ob-
servations. Several factors are important for interpreting and deriving spatially resolved ERs from asynchronous
satellite measurements, including (1) variations in meteorological conditions given the mismatch in satellite
overpass times, (2) differences in vertical sensitivity of the retrievals (i.e., averaging kernel profiles), (3) inter-
ferences from the biosphere and biomass burning, and (4) the mismatch in the daytime variations of CO and
CO2 emissions. In this study, we extended an established emission estimate approach to arrive at spatially re-
solved ERs based on retrieved column-averaged CO2 (XCO2) from the Snapshot Area Mapping (SAM) mode
of the Orbiting Carbon Observatory-3 (OCO-3) and column-averaged CO from the TROPOspheric Monitoring
Instrument (TROPOMI).

To evaluate the influences of the confounding factors listed above and further attribute intra-urban variations in
ERs to certain sectors, we leveraged a Lagrangian atmospheric transport model with an urban land cover classifi-
cation dataset and reported ERCO values from the sounding level to the overpass and city level. We found that the
differences in overpass times and averaging kernels between OCO and TROPOMI strongly affect the estimated
spatially resolved ERCO. Specifically, a time difference of > 3 h typically led to dramatic changes in wind direc-
tions and urban plume shapes, thereby making the calculation of accurate sounding-specific ERCO difficult. After
removing such cases from consideration and applying a simple plume shift method when necessary to account
for changes in wind direction and speed, we discovered significant contrasts in combustion efficiencies between
(1) two megacities versus two industry-oriented cities and (2) different regions within a city, based on six nearly
coincident overpasses per city. Results suggest that the ERCO impacted by heavy industry in Los Angeles is
slightly lower than the overall city-wide value (< 10 ppb-CO/ppm-CO2). In contrast, the ERCO related to heavy
industry in Shanghai is much higher than Shanghai’s city mean and more aligned with the city means of two
selected industry-oriented cities in China (approaching 20 ppb-CO/ppm-CO2). Although investigations based
on a larger number of satellite overpasses are needed, our unique approach (i.e., without using sector-specific
information from emission inventories) provides new insights into assessing combustion efficiency within a city
from future satellite missions, such as those that will map column CO2 and CO concentrations simultaneously
with high spatiotemporal resolutions.
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1 Introduction

Home to more than half of the total global population, urban
areas have been expanding, especially in Asia and Africa,
which had urbanization rates of 1.3 % and 1.1 % yr−1, re-
spectively, between 2015 and 2020 (United Nations et al.,
2020). Urban regions are also responsible for a significant
amount of anthropogenic emissions of greenhouse gases
(GHG) and air pollutants into the atmosphere, including car-
bon dioxide (CO2), methane, carbon monoxide (CO), and ni-
trogen oxides (Duncan et al., 2016; Lin et al., 2018; Super
et al., 2017; Plant et al., 2019). Satellite observations have be-
come indispensable for monitoring the abundances of several
atmospheric species in a globally consistent manner (Yokota
et al., 2009; Crisp et al., 2012; Veefkind et al., 2012). For
example, carbon-monitoring satellites such as Orbiting Car-
bon Observatory-2 (OCO-2, Crisp et al., 2012) have made
the quantification of city-scale CO2 emissions and emission
trends possible (e.g., Hedelius et al., 2018; Ye et al., 2020;
Wu et al., 2020; Shekhar et al., 2020; Lei et al., 2021). Quan-
tifying the spatial gradient of atmospheric concentrations and
relating this gradient to emissions within the city domain has
become the next critical yet challenging task. Understanding
such spatial heterogeneity in emissions and the environmen-
tal consequences of it can support better decisions in urban
planning and the pinpointing of hotspots for emission miti-
gation.

Given the co-benefit of GHG reduction and improved air
quality at various scales (Zhang et al., 2017), controlling the
consumption of fossil fuels altogether is the key. The efficien-
cies associated with various combustion activities are linked
to their underlying processes and conditions (e.g., oxygen-
to-fuel ratio and temperature). For example, the amount of
CO2 emitted from coal-fired power plants varies with thermal
and pressure conditions, the type of fuel consumed, the tech-
nology deployed, and the service duration of power plants
(Yuan and Smith, 2011). A modern power generation plant
that uses scrubbing technology is often regarded as a “clean”
emitter, leading to minimal CO and NOx enhancement (Lin-
denmaier et al., 2014). The commonly used approach when
estimating combustion efficiency is to combine atmospheric
observations of multiple trace gases and report the ratio of
the total or excess measured concentrations (above a de-
fined background value) of the tracers (Silva and Arellano,
2017; Reuter et al., 2019; Park et al., 2021). Such a tracer-to-
tracer ratio calculation has the benefit that errors in describ-
ing the atmospheric transport that carries tracers to the mea-
surement site can be canceled. A few notable studies have
further utilized derived emission ratios (ERs) from ground or
airborne measurements to infer sector-specific emission sig-
nals (Wennberg et al., 2012; Lindenmaier et al., 2014; Nathan
et al., 2018; Tang et al., 2020).

CO and NOx often serve as tracers for anthropogenic CO2
as they arise from similar sources (e.g., Palmer et al., 2006;
Wunch et al., 2009; Hedelius et al., 2018). Analyzing re-
motely sensed NOx plumes with relatively short lifetimes
can help identify local fossil fuel CO2 (FFCO2) sources that
would otherwise be difficult to detect (Reuter et al., 2019; Fu-
jinawa et al., 2021). At the same time, such reactivity requires
that chemical transformations are accurately accounted for
and complicates the interpretation of emission signals or ERs
from NOx observations (Lama et al., 2020; Hakkarainen
et al., 2021). Given its much longer lifetime, CO is much
easier to interpret and more likely to be found during incom-
plete combustion. The emission ratio of CO to CO2 (ERCO)
is usually estimated from sparse ground-based measurements
within a city (Bares et al., 2018; Chandra et al., 2016; Lin-
denmaier et al., 2014) and from satellites at the city scale
(Park et al., 2021; Silva and Arellano, 2017). Sector-specific
activities and ERCO values such as those from the traffic sec-
tor have been analyzed in limited but valuable tunnel stud-
ies (Ammoura et al., 2014; Bradley et al., 2000; Popa et al.,
2014).

We performed a literature search for ERCO values derived
from observations (Appendix A) and the values are summa-
rized in Fig. 1. The combustion efficiency fluctuates (1) over
time (e.g., Turnbull et al., 2011b), likely due to technological
improvements, and (2) between sub-sectors, e.g., gasoline vs.
diesel vehicles or moving vs. congestion traffic (Westerdahl
et al., 2009; Popa et al., 2014). Despite differences in mea-
surement platforms and analytical approaches, the observed
urban-integrated ERCO values, especially those in Europe
and the United States, are well constrained within the range
of 4 to 15 ppb ppm−1 (Fig. 1b). ERCO values for biomass
burning and shipping sectors are estimated based on fuel-
specific emission factors, i.e., ERCO (=EFCO/EFCO2 ) with
proper unit conversions, where each emission factor EFX in-
dicates the emission of gas X per kg of fuel burned.

When estimating fossil fuel emissions from a bottom-up
perspective, most inventories rely on activity data and may
involve prior knowledge of emission factors (Gurney et al.,
2019; Solazzo et al., 2021). One notable example is Hestia,
a high-resolution inventory for the US that estimates CO2
emissions of non-point sources based on CO emissions from
the National Emission Inventory and EFs and carefully eval-
uates the adopted EFs (Gurney et al., 2019). However, when
constructing emission inventories across regions and nations,
the large variability in ERs across combustion processes, sec-
tors, years, and regions (as seen in Fig. 1a) makes the choice
of EFs extremely challenging. Accurate bottom-up emission
estimates require accurate activity data and EFX values that
naturally vary with the combustion conditions (e.g., temper-
ature, fuel load, oxygen level) and are generally not well
known, especially over data-scarce regions. To our knowl-
edge, only a few global inventories, such as the Emissions
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Figure 1. ERCO [ppb ppm−1] values associated with specific processes (a) and ERCO values integrated over the entire city/region (b), as
summarized from previous studies. The x axis indicates the times at which these estimates were made, except for Akagi et al. (2011); in the
latter case, 2011 was chosen for the x axis since the paper was published in 2011. The error bars represent the uncertainties in the estimated
ERs and the shaded rectangles indicate ranges of ERs over multiple years. Paper citations are omitted from the figure but are included in
Appendix A. ERs related to the biomass burning and shipping sectors are derived using EFCO and EFCO2 . The range of overpass-specific
ERCO estimates for Shanghai, LA, Baotou, and Zibo derived from our study are also shown in the figure as a dashed black box.

Database for Global Atmospheric Research (EDGAR, So-
lazzo et al., 2021), offer global anthropogenic CO and CO2
emissions. Considering the challenge involved in approxi-
mating ERs, certain knowledge derived from atmospheric
observations may (1) complement inventory-based ERs (e.g.,
the CO : NOx ratio in Lama et al., 2020) and (2) facilitate
emission constraints for a desired gas with relatively large
uncertainties (Wunch et al., 2009; Palmer et al., 2006; Wang
et al., 2009; Brioude et al., 2012; Nathan et al., 2018). Such
prior achievements motivate us to examine ERs using satel-
lite observations of multiple tracers.

Most existing studies have focused on quantifying an in-
tegrated ER for a whole city or region. We take a step for-
ward, zooming into an urban area and leveraging spatially
resolved satellite observations. Intra-city variations in the
satellite-based concentration of a specific air pollutant such
as NOx have been analyzed and linked to societal inequali-
ties regarding income and educational attainment (Demetillo
et al., 2021; Kerr et al., 2021). Yet, no one has attempted
to study the intra-urban gradient in combustion efficiency
from space and to relate this gradient to a specific combus-
tion sector. This is now possible by virtue of Orbiting Carbon
Observatory-3 (OCO-3, mounted on the International Space
Station), which can sample a city landscape during the Snap-
shot Area Mapping (SAM) mode (Eldering et al., 2019; Tay-
lor et al., 2020; Kiel et al., 2021). In an effort to arrive at

spatially varying ERs from sensors with asynchronous or-
bits, we must account for several factors that have not been
thoroughly investigated. These include (a) variations in mete-
orological conditions and emission patterns during different
overpass times, (b) discrepancies in the vertical sensitivities
of the retrievals (i.e., averaging kernel (AK) profiles), and (c)
interference from non-anthropogenic sources and sinks, es-
pecially from the biosphere.

In this study, we explore the spatial distribution of ERCO
within four urban areas, mainly using XCO2 observations
from OCO-3 and XCO observations from the TROPO-
spheric Monitoring Instrument onboard the Sentinel-5 Pre-
cursor (TROPOMI; Veefkind et al., 2012). To avoid rely-
ing on prior sector-specific information on ERCO from emis-
sion inventories, we adopt the urban land cover data from
the high-resolution World Urban Database and Access Por-
tal Tools (WUDAPT; Ching et al., 2018). WUDAPT offers
the so-called local climate zone (LCZ) that considers the
building structure/spacing along with the vegetation cover-
age (Stewart and Oke, 2012), which shed light on the urban
infrastructure.

Our work seeks to answer the following two questions:

1. Is it possible to accurately quantify the spatially re-
solved ERCO from asynchronous satellite measure-
ments?
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2. Can the combustion efficiency for a given sector be de-
termined without using prior emission inventories?

In Sect. 2, we describe the satellite data and methodology
used for obtaining emissions, the ERCO, and associated un-
certainties. In Sect. 3, we show intra-city variations in ERCO
(including the ERCO tied to heavy industry in a megacity)
and how multiple factors may interfere when deriving ERCO.
In Sect. 4, we discuss the implications and limitations of this
analysis.

2 Data and methodology

We target two types of cities: (1) industry- and energy-
oriented cities (Baotou, China and Zibo, China) and (2)
megacities with more diverse emission sectors (Shanghai,
China and Los Angeles, USA). The four cities are selected
considering the amount and quality of XCO2 data from
OCO-3 SAMs and TROPOMI XCO data. The two industry-
and energy-oriented cities in China are selected given their
large amount of metal production plants for aluminum or iron
and steel (Global Energy Infrastructure Emission Database,
GID; Wang et al., 2019) and surrounding coal-fired power
plants (Global Energy Monitor, GEM; and the Global Power
Plant Dataset, Byers et al., 2018) that support the nearby in-
dustries.

Our goal is to calculate ERCO from every satellite sound-
ing within an urban plume, which is a downwind area af-
fected by urban emissions (Sect. 2.2). Sounding-dependent
ERCO values are calculated as ratios of CO emissions over
CO2 emissions (Eq. 3) that are estimated from satellite-
derived fossil fuel (FF) enhancements and further refined
with the “scaling factor” in Eq. (1). This scaling factor
accounts for several mismatches between OCO-2/3 and
TROPOMI (Sect. 2.1) and is obtained from an atmospheric
transport model (Sect. 2.2.1). Since we do not differenti-
ate emission signals due to biofuel and fossil fuel combus-
tion, the term “FF enhancement” is used to refer to the col-
umn enhancement induced by any anthropogenic combus-
tion processes in the target city. The determination of FF
enhancements requires estimates of the background values
(Sect. 2.2.2) and “second-order” correction terms for bio-
genic and pyrogenic sources (Sect. 2.2.3). Sounding-specific
ERs and uncertainties (Sect. 2.2.4) are aggregated to yield an
ER per overpass and per city. Lastly, we illustrate how the
ERCO values associated with heavy industry in Los Angeles
and Shanghai can be extracted with the assistance of WU-
DAPT (Sect. 2.3).

2.1 Satellite observations and data pre-processing

We evaluate all coincident OCO-3 SAM and TROPOMI
overpass observations, but only select those with relatively
small differences in overpass times. Considering the lim-
ited number of coincidences between sensors, two non-

SAM overpasses from OCO-3 and one OCO-2 overpass are
added to the analysis. As a result, six OCO–TROPOMI co-
incidences with high data quality from October 2019 to
June 2021 are integrated into the final result for every city.
Two of the total of 24 overpasses fall within the Northern
Hemisphere summer months (both in June).

2.1.1 OCO-2/3 XCO2

The column-averaged dry-air mole fraction of CO2 (XCO2)
is retrieved from the reflected sunlight over two CO2 bands
centered on 1.6 and 2.0 µm and the oxygen A band for ob-
taining the surface pressure (Eldering et al., 2019; Taylor
et al., 2020). In addition to the standard nadir, glint, and tar-
get modes, OCO-3 collects several adjacent swaths of XCO2
observations over a spatial area of approximately 80 km by
80 km during its SAM mode, e.g., four individual swaths in
an overpass over LA on 24 February 2020 (Fig. 2a). Sim-
ilar to OCO-2, each satellite swath comprises eight spa-
tial footprints/soundings, and each sounding has an area of
∼ 1.6× 2.2 km2 at nadir (Fig. 2a). Our analysis only uses
screened OCO-3 B10r/B10p4r data (Eldering, 2021) with an
XCO2 quality flag of zero (QF= 0). It is worth highlighting
that the B10r/B10p4r product is superior to the Early ver-
sion of OCO-3 (Taylor et al., 2020); it has improved geo-
location, advanced radiometric calibration, improved quality
filters, and customized post-processing bias correction. As
OCO-3 is mounted on the International Space Station, which
is in a precessing orbit, its overpass time varies (for example,
from 07:00 to 15:00 LT (local time)) for the overpasses we
examine, unlike OCO-2.

2.1.2 TROPOMI XCO

The TROPOMI column density of CO molecules
[mole cm−2] is retrieved via the measured radiation
from shortwave infrared wavebands centered at ∼ 2.3 µm
(Veefkind et al., 2012). We select soundings with a quality
assurance of ≥ 0.5 as recommended by the TROPOMI
README document (Landgraf et al., 2020) and convert
the vertical column density to the total column-averaged
dry-air mole fraction of CO [XCO in ppb] by calculating
the dry-air column density [mole cm−2] using the retrieved
surface pressure and total column water vapor. TROPOMI
CO is retrieved from a larger pixel area of ∼ 7× 7 km2 at
nadir, which reduces to 5.5× 7 km2 after 6 October 2019
(Fig. 2c). The overpass time of TROPOMI is ∼ 13:30 LT for
an equatorial overpass in nadir measurements, with a time
span of 1–2 h for soundings on the edge of the wide swath
(i.e., ∼ 2600 km).

2.1.3 Differences between the two sensors/species

Four mismatches between OCO-3 XCO2 and TROPOMI
XCO that pose challenges when extracting FF enhancements
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Figure 2. Spatial maps of FF XCO2 enhancements with corrections for non-FF sources at the native OCO-3 scale (a, ppm) and aggregated
at the TROPOMI scale (b, ppm) along with FF XCO enhancements (c, ppb) over Los Angeles on 24 February 2020. Power stations with
different primary fuel types are displayed as different white symbols based on the Global Power Plant Dataset (Byers et al., 2018). The overall
X-STILT column footprint [ppm (µmol m−2 s−1)−1] from all soundings is drawn in light gray (see explanations for the column footprint
in Sect. 2.2.1). The underlying hybrid maps were created using the ggmap library in R with the hybrid view from Google Maps over LA
(copyright: map data © 2021, imagery © 2021 TerraMetrics).

and ERCO from atmospheric observations are accounted for
in this analysis:

1. Satellite pixel area. XCO2 enhancements from multiple
OCO-2/3 soundings falling within a given TROPOMI
polygon are grouped and averaged (Fig. 2a vs. b). For
simplicity, the centered lat/long coordinate of an OCO
pixel is used to determine its corresponding TROPOMI
polygon. The retrieval uncertainty tied to each OCO
sounding is also aggregated according to the TROPOMI
sampling, contributing to the total observational uncer-
tainty (Sect. 2.2.4).

2. Averaging kernel profile. Within the planetary bound-
ary layer, where most emissions occur, TROPOMI XCO
retrieval is affected by cloud height/fractions, which
yields a lower-than-unity AK (Supplement Fig. S1). The
OCO-2/3 XCO2 retrieved under cloudy conditions is
typically omitted from Lite files and when QF= 0 is
applied; thus, its AK normally approaches 1 near the
surface for cloud-free scenes. The mismatch in AK be-
tween sensors must be accounted for as it can affect the
interpretation of ERs. In this work, we account for AKs
within an atmospheric transport model (Sect. 2.2.1).

3. Overpass times, meteorological conditions, and emis-
sion variations. As a result of the overpass time dif-
ference between sensors, variations in meteorological
conditions (e.g., wind direction and speed) can lead
to changes in the urban plume shapes detected by the

two sensors as they pass by. We deal with changes in
wind speed and wind direction separately. The former
is resolved by using the “scaling factor” inferred from
an atmospheric transport model and the latter under-
goes manual evaluations (Sect. 3.1). Also, the CO and
CO2 emissions themselves can vary over the course of a
day, driven by, e.g., the road transportation and residen-
tial sectors. Given the overpass time difference between
sensors, it is likely that such a mismatch in the timing
of CO versus CO2 emissions may affect the observed
ERCO.

4. Non-fossil-fuel sources/sinks. Not accounting for the
influences from the biosphere and biomass burning
may bias ERCO. Given our definition of the “lo-
cal background”, the contrast in non-FF concentration
anomalies between the urban and the background re-
gions needs to be included (for more explanation, see
Sect. 2.2.3).

2.2 Estimates of Egas, ERCO, and uncertainties

Previous studies (Mitchell et al., 2018; Wu et al., 2020; Lin
et al., 2021) proposed an approach for calculating an over-
all CO2 or CH4 flux using atmospheric measurements and an
atmospheric transport model without relying on prior infor-
mation from emission inventories. Here we briefly describe
this approach to obtaining the overall emission of either CO2
(Eq. 1) or CO (Eq. 2) for a single sounding S, modified from
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Wu et al. (2020):

〈ECO2,s〉 =
XffCO2,s

〈XFCO2,s〉

=
XobsCO2,s−XbgCO2 − δXbioCO2,s− δXbbCO2,s∫∫

XFCO2,s(x,y) dx dy
,

(1)

〈ECO,s〉 =
XffCO,s

〈XFCO,s〉
=
XobsCO,s−XbgCO− δXbbCO,s∫∫

XFCO,s(x,y) dx dy
. (2)

All the X terms in the numerator contribute to the esti-
mate of the FF column enhancement (Xff, Fig. 2). Xff at a
downwind satellite sounding S is the net result of FF sources
over the source region (x,y). To describe the source re-
gion and attribute it to each satellite sounding, we adopt the
column version of the Stochastic Time-Inverted Lagrangian
Transport (X-STILT) model (Lin et al., 2003; Fasoli et al.,
2018; Wu et al., 2018). This model helps to provide a “scal-
ing factor” 〈XFgas〉 that accounts for the sounding-specific
AK profile and meteorology (Sect. 2.2.1). Xbg denotes the
local background values from satellite observations uncon-
taminated by the emission from the city, which are con-
stant for a group of background observations. The back-
ground region is usually chosen to be a rural region out-
side the urban plume while considering the wind direction
(Sect. 2.2.2). From a Lagrangian viewpoint, the air parcels
arriving at an urban sounding might be traced back to differ-
ent origins from the air parcels arriving at a rural sounding,
meaning that observations at the two soundings may be influ-
enced differently by the surrounding biosphere. Hence, two
background correction δ terms are attached to account for
the urban–background gradient in concentration anomalies
due to net ecosystem exchange (NEE) and biomass burning
(Sect. 2.2.3).

For a given sounding, the estimated flux 〈Egas〉, with units
of µmol m−2 s−1, represents the average emission over the
corresponding source region of that sounding, which should
not be confused with the direct emission at that sounding lo-
cation. The ERCO for a given sounding S is then derived from
Eqs. (1) and (2) as follows:

ERCO,s =
〈ECO,s〉

〈ECO2,s〉
=
XffCO,s

XffCO2,s

〈XFCO2,s〉

〈XFCO,s〉
=
XffCO,s

XffCO2,s

γfoot,s , (3)

where XffCO,s
XffCO2,s

is the observed enhancement ratio and γfoot,s

measures how enhancement ratios with no consideration of
AKs and meteorology differ from emission ratios. We simply
use ppb-CO/ppm-CO2 as the units of ERCO (i.e., the same as
mmol-CO/mol-CO2).

2.2.1 The X-STILT model

The X-STILT model is adopted in this study (1) to provide
the scaling factor 〈XFgas〉 that resolves differences in AKs
and changes in wind speeds, (2) to identify an overpass-
specific urban plume for determining background regions

(Sect. 2.2.2), and (3) to estimate the sounding-specific bio-
genic and pyrogenic anomalies for background corrections
(Sect. 2.2.3).

STILT releases an ensemble of air parcels from target ob-
servations (known as the “receptor”) and tracks the move-
ment of those air parcels backward in time. The source
region corresponding to each sounding is inferred from
the “source–receptor relation” or the STILT “footprint”
(Lin et al., 2003; Fasoli et al., 2018). The STILT foot-
print [ppm (µmol m−2 s−1)−1] describes the change in atmo-
spheric concentration [ppm] at a downwind location due to
possible upwind sources/sinks [µmol m−2 s−1]. The magni-
tude of the STILT footprint tends to be higher close to the
target observation or under steadier wind conditions; thus, air
parcels within the boundary layer can interact more closely
with fluxes from the surface.

To accommodate the use of satellite-based column
data, X-STILT incorporates retrieval-specific AK and pres-
sure weighting profiles into the footprint calculation (Wu
et al., 2018) such that influences on air parcels originat-
ing from various altitudes of an atmospheric column are
weighted by the sensor/species/sounding-specific vertical
profile (Fig. S2). The “column footprint” (XFgas) measures
the sensitivity of the total column concentration to upwind
fluxes from the perspective of a specific satellite sensor. For
instance, XFgas for TROPOMI XCO differs from XFgas for
OCO-2/3 XCO2, even for concurrent observations. Since
the airflow arriving at each satellite observation is unique,
the magnitude and spatial distribution of XFgas vary across
soundings (Fig. S3). By taking an average of these sounding-
dependent column footprints, as shown in Fig. S3, we can
identify the source region for all soundings in a SAM (light
gray area in Fig. 2b, c). In this work, we only traced air
parcels back for 12 h to calculate column footprints, which
is sufficient to capture the near-field influence from the tar-
get city and better aligned with the local background region
outside the city (Sect. 2.2.2).

In short, the spatial summation of column footprints
〈XFgas〉 is regarded as a scaling factor to address the
sounding-specific meteorological conditions and AK profile.
The term γfoot derived from Eq. (3) reveals the difference be-
tween a simple enhancement ratio and a more robust, model-
corrected emission ratio.

2.2.2 Background definition

Defining accurate background levels to extract urban FF en-
hancements has always been a challenge in top-down anal-
yses, especially when dealing with column measurements
with small signal-to-noise ratios. Wu et al. (2018) com-
pared several approaches to determine a localized XCO2
background for extracting urban signals from OCO-2, in-
cluding approaches that (1) solely use satellite observations
with statistics (e.g., daily median); (2) solely use an atmo-
spheric transport model (e.g., the “curtain method” based on

Atmos. Chem. Phys., 22, 14547–14570, 2022 https://doi.org/10.5194/acp-22-14547-2022



D. Wu et al.: Intra-city variation of emission ratios 14553

global concentration fields); and (3) combine observations
and transport information from models. Here, we expand the
third approach to arrive at localized swath-dependent back-
ground values. The broader spatial coverage compared to
the narrow swath of OCO-2 and multiple swaths stretching
out of the city domain of OCO-3 SAMs help improve such
background determination by introducing spatial variations
in the background. Accurately describing latitudinal or spa-
tial gradients in the background XCO2 has been emphasized
recently (Ye et al., 2020; Schuh et al., 2021).

The process of background determination used in this
work involves the first step of identifying the urban plume
and differentiating soundings as being within or outside of
the plume. To outline the urban plume shape at the overpass
time, we utilize the forward mode of STILT with the inclu-
sion of wind uncertainty in atmospheric dispersion. Specifi-
cally, 1000 air parcels are released continuously from a rect-
angle representing the city domain (dashed black box in
Fig. 3) every 30 min starting 10 h ahead of the overpass time.
All air parcels are allowed to travel forward in time for 12 h
from their initial release times. A random wind component
typifying model-data wind errors is added to the parcel dis-
persion (Lin and Gerbig, 2005). We subset the air parcels
only during the overpass time and apply a two-dimensional
kernel density estimate (KDE) based on the parcels’ spatial
distributions (blue to purple contours in Fig. 3). KDE is car-
ried out using the kde2d function provided by the MASS li-
brary in R (Venables and Ripley, 2002). These normalized
KDE contours indicate the likelihood and shape of an urban
plume when the satellite scans through. The extent of the ur-
ban plume is finalized using a normalized KDE contour of
0.15 (black curve in Fig. 3), which is appropriate to include
soundings with a possible influence from the target city and
to exclude observations elevated by another city (e.g., the
red polygons centered at ∼ 32◦ N and 120◦ E in Fig. 3c).
This procedure is carried out separately for OCO-2/3 and
TROPOMI to reveal the impact of changing meteorology on
urban plumes at different overpass times (see Sect. 3.1). It
is worth stressing that only enhancements within the urban
plume are used for ERCO estimates.

Next, the background value is calculated as the median
value of observed Xgas per swath over the background region.
For example, the background region is the area to the east
outside the urban plume since southeasterly wind dominates
(Fig. 3b, c). Background values vary with swaths if an OCO-
3 SAM is examined. We choose the median instead of the
mean to minimize the impact of any “outliers” that may be
from a second FF source (other than our target cities) in the
background region. Background uncertainty is estimated as
a component of the total observed uncertainty (Sect. 2.2.4).

2.2.3 Background correction terms for non-FF
sources/sinks

The swath-dependent local background approach described
above explicitly assumes equal contributions from non-FF
sources and sinks for soundings in the background versus
soundings in the urban plume, which may not always be the
case. We then correct for the spatial gradient in contributions
from biogenic and pyrogenic fluxes.

As proposed in Wu et al. (2021), rather than absolute
biogenic concentration anomalies, it is the contrast in these
anomalies between the background versus the urban plume
that is required, considering our localized background def-
inition. Specifically, hourly X-STILT column footprints are
convolved, respectively, with hourly mean NEE from a bio-
spheric model representation and daily mean wildfire emis-
sions from the Global Fire Assimilation System (GFAS,
Kaiser et al., 2012) to estimate the sounding-specific absolute
column anomaliesXbio andXbb. The Solar-Induced Fluores-
cence (SIF) for Modeling Urban biogenic Fluxes (SMUrF,
Wu et al., 2021) model estimates gross primary production
(GPP) from a contiguous SIF product (CSIF, trained based
on OCO-2 SIF, Zhang et al., 2018) and respiration based on
modeled SIF-based GPP and air and soil temperatures.

Next, the urban–background gradient in such anomalies
is calculated as the difference between sounding-specific
anomalies and the mean anomaly within the background re-
gion:

δXbioCO2 (s)=XbioCO2 (s)−XbioCO2 (sbg) , (4)

where s or sbg represents all the soundings or select sound-
ings in the background region, respectively. Let us imag-
ine a summer day at noon in the Northern Hemisphere.
The urban core is normally associated with a weaker bio-
spheric uptake than the surrounding rural region. Biogenic
signals XbioCO2 (s) for soundings in the city are less nega-
tive than the mean biogenic signal over the rural background
XbioCO2 (sbg). Hence, the urban–background biogenic gradi-
ent δXbioCO2 (s) is normally positive and subtracted from the
total column (Eq. 1). The estimated Xbio values and their
urban–background gradient δXbio are shown in Sect. 3.1.

Flux exchanges from the ocean and chemical transfor-
mations (e.g., the CO sink from the hydroxyl radical (OH)
and the source from the oxidation of volatile organic com-
pounds, VOCs) are not considered. The average lifetime of
CO against OH ranges from a few weeks to several months
depending on the season – much longer than the few-hours
timescale we care about. Yet, CO can be generated from the
oxidation of CH4 and non-methane VOCs at various rates,
which is discussed in Sect. 4.3.

2.2.4 Uncertainty sources

The uncertainty related to emissions should contain uncer-
tainties from (1) the atmospheric transport (i.e., column foot-
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Figure 3. Demonstrations of background determination from OCO-2 XCO2 on 4 February 2020 (a) and OCO-3 SAM XCO2 [ppm] and
TROPOMI XCO [ppb] on 20 February 2020 (b, c) over Shanghai. The model-based urban plume (solid black curve) is determined by the
normalized 2-D kernel density of the air parcel distribution during the overpass time (blue-purple contours). The “background soundings”
outside the urban plume are highlighted with black outlines, while other soundings are outlined in white. For example, OCO-2 observations
to the north outside the plume (∼ 121.1◦ E, 31.9◦ N, a) and OCO-3 and TROPOMI soundings to the southeast outside the plume (b, c) are
used to estimate background values and background uncertainties. The underlying hybrid maps were created using the ggmap library in R
with the hybrid view from Google Maps over Shanghai (copyright: map data © 2021, imagery © 2021 TerraMetrics).

prints), (2) observations, and (3) non-FF sources and sinks,
according to Eqs. (1) or (2). We neglect uncertainties from
column footprints, assuming that no transport bias exists dur-
ing either the OCO or the TROPOMI overpass time. The
urban–background gradient in non-FF fluxes remains very
small compared to FF enhancements (Sect. 3.1).

We estimate the uncertainties of observed FF enhance-
ments following Eq. (5). As previously described, observa-
tions from a few screened OCO soundings (∼ 5 to 28 OCO
soundings, depending on the TROPOMI footprint size) are
averaged to arrive at a mean XCO2 at the TROPOMI scale.
Due to this averaging/binning process, the XCO2 uncertainty
due to binning is considered using the standard deviation
of XCO2 observations (σ 2

ε,bin in Eq. 5) within a TROPOMI
polygon.

σ 2
ε,obs = σ

2
ε,bin+ σ

2
ε,bg+ σ

2
ε,retrv . (5)

Here, σ 2
ε,bin is not required for estimating the XCO uncer-

tainty. The background uncertainty (σ 2
ε,bg) contains both the

retrieval error and the variability of column observations (as
standard deviations) within background regions.

The retrieval uncertainty (σ 2
ε,retrv) of XCO is available for

each TROPOMI sounding, whereas that of XCO2 is reported
for individual OCO-2/3 soundings (as read from Level 2
Lite files), which need to be aggregated at the TROPOMI
scale. Due to possible correlations in retrieval errors between
nearby OCO soundings, we estimate the error correlation
length scale (Lx) using exponential variograms, as demon-
strated in Fig. S4. Within a TROPOMI polygon that contains
N (i.e., the number of) OCO soundings, an error variance–
covariance matrix with dimensions of N ×N is constructed
with diagonal elements filled with OCO sounding-specific

retrieval error variances. Then, Lx is used to form the
normalized covariance matrix, i.e., exp(−D(Si ,Sj )

Lx
), where

D(Si,Sj ) denotes the distance between each two OCO
soundings (1≤ i < j ≤N ). Lastly, the sum of all elements in
the error covariance matrix (both variance and covariance el-
ements) is divided byN2 to obtain one σ 2

ε,retrv per TROPOMI
grid. As a result, the overall uncertainty of FF enhancement
per sounding is often dominated by the background error
component.

2.3 Identifying the ERCO for heavy industry within a city

A key objective of this study is to explain the intra-city
variability of ERCO by exploring sector-specific or sector-
dominant combustion activities. While certain combustion
processes and sectors tend to have higher ERs than oth-
ers, sectorally dependent ERs are variable within and across
cities. The ERs derived from atmospheric observations com-
prise a mixed effect of different activities in the city. Previous
attempts include reducing the number of sectors and relying
on prior sector-specific ERs via a (joint) Bayesian inversion
(Brioude et al., 2012; Nathan et al., 2018).

Here, we propose a novel approach to identifying ERs
associated with heavy industry in a city. Instead of rely-
ing on prior emission inventories that can sometimes be
erroneous regarding the magnitudes and the locations of
sector-specific activities (see discussions in Sect. 4.4), we uti-
lized an urban land cover classification dataset, WUDAPT,
that provides Local Climate Zone (LCZ) classifications at
a grid spacing of 120 m (Ching et al., 2018). As shown in
Fig. 4a, d, LCZ categories include street canyons (e.g., com-
pact/open/lightweight, high/mid/low rise), building spacing

Atmos. Chem. Phys., 22, 14547–14570, 2022 https://doi.org/10.5194/acp-22-14547-2022



D. Wu et al.: Intra-city variation of emission ratios 14555

Figure 4. Maps of 120 m Local Climate Zone (LCZ) from WUDAPT (a and d) along with magnified images (b and e) and interpolated areal
coverage of the heavy industry [%] at 1 km around Shanghai and Los Angeles (c, f). LCZ classifications centered on Wuxi and Shanghai are
combined. Based on the Global Power Plant Dataset (Byers et al., 2018), power stations are drawn as white symbols. The dashed light gray
or white rectangles in the maps indicate the magnified region.

(e.g., sparsely built, heavy industry), and tree spacing (e.g.,
dense/scattered trees, low plants, rocks, etc.). Each LCZ is
unique in its thermal, radiative, and metabolic properties. For
instance, the compact high-rise (LCZ 1) and heavy industry
(LCZ 10) categories have the highest anthropogenic heat out-
puts of 50–300 and > 300 W m−2, respectively (Stewart and
Oke, 2012). Heavy industry is defined as low-rise and mid-
rise industrial structures (towers, tanks, stacks) and mostly
paved or hard-packed metal with steel and concrete con-
struction materials and few or no trees in WUDAPT (Ching
et al., 2018), which differs from the industry-relevant sectors
defined by the Intergovernmental Panel on Climate Change
(e.g., as used in EDGAR). We clarify that we are not trying
to tackle individual industrial processes, which is much more
difficult. As of this analysis, LCZ maps are only available for
a limited number of cities, including Shanghai and LA, but
they have recently been generalized to the entire globe (De-
muzere et al., 2022a).

To relate ERCO to heavy industry, the percentage of heavy
industry is first interpolated using 1 km grid spacing from

WUDAPT LZC maps (%, Fig. 4c, f). The industrial cover-
age map is then convolved with the X-STILT column foot-
print (Fig. S3) to quantify the industrial influence on each
TROPOMI polygon Pind(x,y), which is defined as the col-
umn footprint-normalized industry fraction (Fig. S5). For ex-
ample, soundings in the city center farther away from the
heavy industry in LA are related to smaller influences. Lastly,
we sum Pind(x,y) across the space to arrive at 〈Pind〉, which
serves as a metric of how much the observation at a given
sounding is affected by heavy industry. Specifically, sound-
ings with 〈Pind〉 larger than the 75th or 90th percentile are
marked as locations that are “impacted” or “strongly im-
pacted” by heavy industry within the city. Sensitivity and sig-
nificance analyses are conducted and presented in Sect. 3.2.2;
these test if: (1) the results are subject to the percentile
threshold when defining industry-dominated soundings; and
(2) ERs over industry-dominated soundings are statistically
significantly different from ERs for the remaining soundings.
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Figure 5. Examples of modeled urban plumes during OCO-3 (red curve) and TROPOMI (blue curve) overpass times (in UTC). The like-
lihood of these meteorology-only urban plumes (no emission involved) is quantified by the normalized KDE binned in 10 intervals of the
modeled air parcel distribution (yellow-green-purple contours). Three types of overpasses are shown, as follows: (a, b) “good cases” with
almost identical urban plumes at two times, e.g., Baotou on 8 October 2019 with a 1t of 8 min; (c, d) cases to be used with caution, where
the urban plume shifts from one time to another and requires a simple plume rotation, e.g., Shanghai on 20 February 2020 with a1t of 1.5 h;
(e, f) outliers where two urban plumes change significantly, e.g., for Los Angeles on 3 March 2020 with a 1t of over 4 h. The underlying
hybrid maps were created using the ggmap library in R with the hybrid view from Google Maps over LA (copyright: map data © 2021,
imagery © 2021 TerraMetrics).

3 Results

ERCO values and uncertainties are reported at multiple spa-
tial scales, from the spatially resolved sounding level (Eq. 3)
to the overall overpass and city level. Again, only ERs at
soundings within the urban plume are selected. Overpasses
with too few valid soundings in a plume area are also re-
moved from the results. Before presenting ERs at different
spatial scales, we assess factors that may influence the de-
rived ERCO.

3.1 Interference factors that modify ERCO

We examine impacts on ERCO from the following interfer-
ence factors: (a) differences in AKs between OCO-2/3 XCO2
and TROPOMI XCO; (b) shifts in wind fields between two
overpass times; (c) the urban–background contrast in bio-
genic and pyrogenic contributions; and (d) temporal varia-
tion in the emissions themselves. In summary, we find that
differences in AKs and wind directions between sensors can
significantly affect the spatially resolved ERCO. For the final
24 overpasses we selected, temporal variations in the emis-
sion pattern and urban–background gradients in biogenic/py-
rogenic contributions play minor roles in overpass- or city-
level ERs.

Recall that sounding-specific AKs and wind speeds were
considered in the sounding-specific column footprint using
X-STILT (Sect. 2.2), and γfoot =

〈XFCO2 〉

〈XFCO〉
measures the overall

contributions from AKs and wind speeds to the spatially re-
solved ERCO (Supplement Fig. S6c). For instance, the mean
γfoot spans from 1.20 to 1.57 over LA and from 1.02 to 1.38
over Shanghai across different overpasses (printed in Fig. 7a,
c). γfoot is generally larger than 1 because AKs of TROPOMI
XCO near the surface are smaller than surface AKs for OCO-
2/3. Simply using enhancement ratios without accounting for
mismatches in AKs and wind speeds between sensors will
likely lead to an underestimation of emission ratios (Eq. 3).
On average, the overpass-level ERCO can be ∼ 20 % higher
than enhancement ratios across our 24 overpasses.

The second factor is the change in wind directions be-
tween two overpass times, which is evaluated using the
same algorithm as the urban plume detection in Sect. 2.2.2.
Again, colored contours and curves in Fig. 5 indicate nei-
ther the intensities of concentrations nor flux fields (as no
prior emissions are used) but rather the likelihood of ur-
ban plumes, determined by atmospheric dispersion with ran-
dom wind uncertainties. Matching between OCO-3 sound-
ings and TROPOMI polygons as described earlier would be
fine for concurrent observations (Fig. 5a, b), but this becomes
problematic if 1t becomes large (“outliers” with significant
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changes in plumes in Fig. 5e, f). The cases between the good
cases and the outliers are to be used with caution (Fig. 5c,
d). By comparing the overlap of plumes at the two times,
we shifted OCO-3 soundings to better align with TROPOMI
polygons. For example, on 20 February 2020, because the
modeled plume at the OCO-3 overpass time (06:06 UTC) ap-
pears northward compared to the plume at the TROPOMI
overpass time (04:44 UTC), OCO-3 soundings were shifted
southward by zero to two grids, depending on their longitu-
dinal coordinates (Fig. S7). In other words, by shifting the FF
XCO2 enhancements, we better align the urban plume at the
OCO-3 time with the plume at the TROPOMI time. Every
OCO–TROPOMI coincidence is manually examined and as-
signed to one of the three categories, which are further sum-
marized in Sect. 4.1. Outliers are removed from this analysis,
since no simple wind or plume rotation would improve their
ERCO estimates.

Besides changes in wind directions, the CO and CO2 emis-
sions themselves can vary across daytime hours, likely driven
by the road transportation and residential sectors. As a result,
variations in the derived ERCO across multiple overpasses
may reflect not only the variation in combustion efficiencies
but also the mismatch in the emission timing. LA may be
a city with more distinct daytime changes in emissions com-
pared to industry-centered cities. Fortunately, based on a sup-
plementary sensitivity analysis using measurements from the
Total Carbon Column Observing Network in Pasadena (TC-
CON, Wennberg et al., 2017), observed ERCO values appear
to be less variable when limiting satellite overpasses to those
with a smaller time difference (Fig. S8). Future geostation-
ary satellite monitoring of NOx (e.g., TEMPO, Chance et al.,
2022) may provide better guidance regarding the hourly pat-
tern in urban emissions, especially from the traffic sector,
which show more daytime fluctuations, as discovered us-
ing surface monitoring networks (e.g., over Chicago; de Foy,
2018).

The last factor is the urban–background contrast in con-
tributions from non-FF sources and sinks. The biogenic
XCO2 anomaly modeled using SMUrF and X-STILT ranges
from −0.7 to 0.3 ppm per OCO-3 sounding, depending on
the hour of the day (i.e., the solar zenith angle), season,
and wind direction (Fig. S9). As explained in Sect. 2.2.2,
urban–background gradients in these biogenic anomalies
(i.e., δXbio) were used to correct the constant localized back-
ground Xbg (Eq. 1). Take the two overpasses with the largest
urban–background contrast as examples: as biospheric up-
take is normally weaker in urban areas than in surrounding
rural areas (often used as background regions), the urban–
rural gradient for locations in the plume region becomes
more positive (Fig. S10b). Nonetheless, even for the one
summertime SAM over Zibo on 21 June 2020, the sounding-
level δXbio ranges from 0 to 0.4 ppm, which remains small
compared to the sounding-level FFCO2 enhancements of 2
to 7 ppm (Fig. S11a, b). For most other overpasses, δXbio
aggregated according to the TROPOMI sampling stays low,

with an absolute value of< 0.3 ppm (as printed in each panel
of Figs. 6 and 7). Even with a bias in the resultant δXbio re-
sulting from an incorrect prior NEE, the effect on the derived
FF enhancements and ERCO would be small.

Although LA is surrounded by occasional intense wild-
fire activities, the column anomalies due to biomass burning
that are suggested by the coupling of GFAS and X-STILT
are minimal for the dates we examined. Yet, since wildfire-
related ERCO values are usually higher than the FF-related
ERCO (Fig. 1), properly accounting for pyrogenic contribu-
tions and gradients between urban and surrounding rural ar-
eas is important for cities in mountainous and forested areas
during fire seasons. For instance, Crounse et al. (2009) lever-
aged aircraft measurements of HCN and C2H2 over Mex-
ico City as indicators to disentangle the CO signals due to
biomass burning and urban emissions, respectively.

3.2 Intra-city ERCO variations and signals from heavy
industry

Observed enhancements are the net consequence of associ-
ated sources/sinks from source regions. That is, a high atmo-
spheric content of CO2 or CO at the sounding location does
not necessarily indicate a high emission rate at this location
(Kiel et al., 2021). Our derived emissions and ERs, although
reported for each sounding, indicate the overall emission and
combustion efficiency over its source region.

In the following subsections, we present ERs for each
sounding and the aggregate for each overpass and city. Since
the aggregation of sounding-level ERs to a single value per
overpass or city is sensitive to the method/statistic adopted,
we bootstrapped ECO and ECO2 based on their sounding-
specific values and uncertainties to generate a linear regres-
sion fit per bootstrap loop (light gray lines in Fig. 6). Specif-
ically, 1000 random sets of ECO and ECO2 were generated
according to assumed normal distributions, where sounding-
level emission estimates provided mean statistics with ob-
servational uncertainties as standard deviations. We used the
standardized major axis (SMA) solution for linear regres-
sion to minimize deviations of data points from the regres-
sion line for both axes. Eventually, we obtained 1000 boot-
strapped slopes and selected slopes with positive values,
which yielded the overpass-level ERCO and uncertainty (e.g.,
dashed colored lines and text in Fig. 6). Also, sounding-level
ERCO values from all overpasses are presented in histograms
and generally follow a log-normal distribution (Fig. 7b, d).

3.2.1 Baotou and Zibo

Combustion efficiencies are generally poor for the two
industry- and energy-oriented cities. The overpass-specific
ERs span from 9.3± 1.2 to 24.6± 3.8 mmol mol−1, with
an integrated city-level estimate of 17.3± 0.5 mmol mol−1

for Baotou (Fig. 6a). According to GID, the Baotou Iron
and Steel Group is located within the city and contributes
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Table 1. A summary of the total power generation capacity (from the Global Power Plant Dataset of the World Resources Institute, Byers
et al., 2018) and information on heavy industry, including the annual crude iron capacity (GID, Wang et al., 2019). Power plants are selected
from a 0.5◦× 0.5◦ region around each city; percentages indicate the partitioning by fuel type.

City Total power capacity (MW) and partitioning by fuel type Key industry OR annual crude steel capacity (kt yr−1)

Los Angeles 5808 MW (95.6 % fueled by gas; 0 % by coal) Refinery, shipping
Shanghai 16 031 MW (75.2 % fueled by coal; 24.4 % by gas) Iron & steel (25 099 kt yr−1)
Baotou 6470 MW (100 % fueled by coal) Iron & steel (12 619 kt yr−1)
Zibo (w/ Zouping) 9720 MW (100 % fueled by coal) Electrolytic aluminum; iron & steel (2532 kt yr−1)

Figure 6. Scatter plots of CO and CO2 fluxes [µmol m−2 s−1] and their uncertainties (error bars as dotted lines) for Baotou (a) and Zibo
(b). Linear regressions are applied to the data from each overpass (dashed colored lines) and from all overpasses (dashed black lines). Only
bootstrapped regression lines with positive slopes were chosen from the Monte Carlo experiment (dashed gray lines;∼ 98.4 % and 93.3 % of
the total 6000 bootstrapped lines for Baotou and Zibo, respectively). The TROPOMI overpass time (in UTC), the total TROPOMI sounding
number, the discrepancy in overpass times (1t , min), the impact of the AK and wind conditions between sensors (γfoot, unitless), and the
range of the urban–rural biogenic gradient (δXbio, ppm) are labeled in each panel. XCO2 values on 6 December and 28 December 2019 over
Zibo came from the non-SAM nadir OCO-3 observations.

to an annual capacity of crude iron of 12 619 kt yr−1, with
estimated CO2 emissions of 20 462 kt yr−1 (Table 1). The
slightly lower ERCO and FF enhancements in February 2021
coincide with the timing of the Spring Festival in 2021
(∼ 12 February). Standard deviations of bootstrapped slopes
are higher for overpasses with fewer high-quality satel-
lite soundings, e.g., 3.8 mmol mol−1 for overpasses with
seven available TROPOMI polygons in the urban plume on

31 May 2020. Utilizing the bootstrap method helps to ac-
count for the impact of the sounding number on the overall
city-level ER estimate.

Zibo, along with the nearby county-level city of Zouping,
accounted for over one-eighth of the total coal consump-
tion of Shandong Province in 2017. The coal-fired power
plants in the area contribute to a total power generation ca-
pacity of 9720 MW (Table 1), which is likely to support lo-
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Figure 7. (a, c) Same as Fig. 6 but for LA and Shanghai. Only bootstrapped regression lines with positive slopes are presented as light gray
lines (∼ 94.3 % and 88.4 % of the 1000 bootstrapped lines per overpass for LA and Shanghai, respectively). (b, d) Histogram of ERCO for
all soundings (black bars). Soundings impacted or strongly impacted by heavy industry are defined as having 〈Pind〉 larger than their 75th or
90th percentile (blue or red bars); the corresponding median ERs are also shown (vertical dashed lines). The industrial impact is quantified
using column footprints from X-STILT (to account for the atmospheric transport) together with localized information from the urban land
cover data WUDAPT.

cal metal industries, especially the producers of electrolytic
aluminum (they are the world’s top producers). The max-
imum XCO2 enhancement per OCO-3 sounding can even
reach up to 10 ppm for a few overpasses (not shown). Inter-
estingly, the ERCO for Zibo first declined from 10.1± 1.1 to
6.1± 0.6 mmol mol−1 during February 2020 and then gradu-
ally increased back to 18.2± 1.1 mmol mol−1 by June 2020
(Fig. 6b). Such temporal variations in ERCO agree nicely
with the timing of the initial phase of the COVID-19 lock-
down in China (i.e., February to May 2020) (e.g., Laugh-
ner et al., 2021). We suspect that changes in ERCO could be
driven by the partial shutdown and reopening of the multiple
coal-fired power plants and metal industries in the area.

3.2.2 Los Angeles and Shanghai

Although OCO-3 has sampled the Los Angeles Basin dozens
of times to date, many overpasses did not pass the quality
check (i.e., QF) and were removed from the final result due
to their noticeable shifts in urban plumes between two over-
pass times (e.g., 3 March, 15 April, and 5 May 2020 for
LA; discussed in Sect. 4.1). The overpass-level ER ranges
from 7.4± 0.8 to 11.7± 1.5 mmol-CO/mol-CO2, with a
city-level value of either 9.6± 0.5 mmol mol−1 (obtained us-

ing the regression approach; Fig. 7a) or 9.7 mmol mol−1 (ob-
tained using the histogram approach; Fig. 7b). Our space-
based ERCO estimates over LA fall within the range of 7.1
to 12.4 mmol mol−1 reported from prior studies (Wennberg
et al., 2012; Brioude et al., 2013; Hedelius et al., 2016; Silva
and Arellano, 2017). Small discrepancies in ERCO between
studies may be attributed to discrepancies in the times of
interest, sampling strategies, and techniques used for ERCO
calculations (e.g., background definition).

In contrast to LA, where urban plumes are usually well
constrained by the basin, wind speeds and directions vary
across different overpasses over Shanghai – i.e., there is a
southeasterly wind on 4 February and 20 February 2020,
a southwesterly wind on 24 February 2020 and 19 Febru-
ary 2021, and a northerly wind on 23 April and 30 Decem-
ber 2020. Such changes in the wind regime between over-
passes over Shanghai suggest that soundings from an indi-
vidual overpass may reflect emission patterns over different
source regions, which emphasizes the importance of integrat-
ing atmospheric transport when interpreting temporal varia-
tions in observation-based ERs. In other words, one cannot
simply use all the soundings over a city to calculate ERs; it is
necessary to select those soundings that are affected by emis-
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sions from that city. The overpass-specific ER ranges from
4.2± 1.2 to 17.1± 6.2 mmol mol−1, with a city-level aver-
age of 10.2± 0.4 mmol mol−1 based on the linear regression
approach (Fig. 7c) or 12.9 mmol mol−1 using the histogram
approach (Fig. 7d).

Now we focus on the distribution of sounding-level ERs
for these two megacities (Fig. 7b, d) to see if ERs associ-
ated with a part of a city (i.e., the heavy industry region) can
be revealed. As described earlier, to locate the soundings af-
fected or strongly affected by the heavy industry in a city
while accounting for the overpass-specific meteorology, we
coupled the LZC-based industrial coverage (Fig. 4c, f) with
X-STILT column footprints and quantified the industrial in-
fluence, 〈Pind〉, at each sounding location.

Industrial regions within the LA Basin are concentrated
to the south, near the Port of LA; and to the west of down-
town, near Los Angeles Airport and the Chevron Refinery in
El Segundo (Fig. 4e). The distribution of ERs for industry-
dominated soundings tends to shift slightly towards the lower
end (blue or red bars in Fig. 7b) compared to the distribution
for all soundings (gray bars in Fig. 7b). For example, ERs
of> 15 ppb ppm−1 are less frequently found for industry-
dominated soundings (red bars in Fig. 7b). The industry-
oriented soundings generally have slightly lower CO but
higher CO2 enhancements (Fig. 2b, c) compared to other
soundings within the basin, resulting in slightly lower ERCO.
No iron and steel facilities or coal-fired power plants are
found over the heavy industry area in LA according to GID
and GEM. We hypothesize that the slight shift of ERCO to-
wards the lower end may be explained by the heavy-duty
diesel engines and natural gas power plants in the Port of
LA versus the predominately gasoline vehicles across the
city, because the ERCO for heavy-duty diesel vehicles and
non-coal-fired power plants is generally lower than that for
light-duty gasoline vehicles. For example, a field campaign
in 2007 in Beijing that split observations into daytime ver-
sus nighttime observations suggested that the ER linked to
nighttime diesel transportation is much lower than that for the
gasoline sub-sector (Westerdahl et al., 2009, Fig. 1a). Similar
to LA, a higher fuel efficiency was found over the ship chan-
nel of Houston (ER of ∼ 4 ppb ppm−1) compared to down-
town Houston (ER of∼ 10 ppb ppm−1) (Brioude et al., 2012,
Fig. 1b). Unfortunately, only two good SAMs near Houston
from late 2019 to June 2021 are available, but future work
can further validate the urban-industry contrast in ERs from
space.

In Shanghai, the heavy industry is concentrated to the
north of the city center (Fig. 4a). Interestingly, in contrast to
LA, ERs affected by heavy industry are skewed towards the
higher end, with medians of 16.8 or 18.8 ppb ppm−1 (blue
or red bars in Fig. 7d) compared to the city-level median of
12.9 ppb ppm−1 (black bars in Fig. 7d). CO and CO2 en-
hancements and ERCO are all higher for industry-oriented
soundings than for all soundings combined. Such spatial di-
vergence in enhancements and ERs between heavy industry

and the entire city may be attributed to substantial CO emis-
sions from iron and steel production. Schneising et al. (2019)
also found that many hotspots with high TROPOMI CO en-
hancements in China and India are tied to the iron and steel
industries. During their production processes, iron ores are
reduced to crude iron and steel, with CO involved. Accord-
ing to a plant-level estimate in 2019 from GID, Baoshan Iron
& Steel Co., Ltd., located to the north of downtown Shang-
hai, has an annual crude steel capacity of 25 099 kt yr−1 (Ta-
ble 1) and a total CO2 emission of 32 148 kt yr−1 for all coke,
sinter, iron, and crude steel combined.

To validate the robustness of such ER shifts related to
heavy industry, we tested the use of different percentile
thresholds other than the 75th and 95th percentiles to deter-
mine industry-dominated soundings (Sect. 2.3). The above
statements on industry-impacted ERCO hold if using alter-
native thresholds, including the 50th, 60th, and 80th per-
centiles. An additional Welch two-sample t-test confirms that
ERs from industry-dominated soundings significantly differ
from the remaining soundings that are less affected by heavy
industry. When the adopted percentile threshold increases
from the 50th to the 95th, the divergence in ERs between
industrial and non-industrial soundings becomes more appar-
ent, and the p value for the statistical significance of this dif-
ference becomes smaller (p values are < 0.05 for all thresh-
olds). In addition, the average number of OCO-3 soundings
in a TROPOMI polygon is roughly the same for industry-
affected soundings versus the rest (e.g., 11.8 vs. 10.3 for LA
and 7.3 vs. 8.7 for Shanghai).

We acknowledge that although many iron/steel plants may
aim at combusting as much CO as possible before releas-
ing CO into the atmosphere, the indispensable role that CO
plays in the iron/steel industry makes it unique when assess-
ing its ERCO and combustion efficiency for various industrial
processes. Furthermore, it is difficult to separate combustion
signals of individual sectors from observations without prior
assumptions of sector-specific contributions, since the atmo-
spheric concentration at a given location arises from various
underlying combustion processes spread over the source re-
gion. Even using additional co-emitted species, it would be
risky to assume that a co-emitted species (e.g., CO or NOx)
comes solely from one individual emission sector.

4 Discussion

This study is one of the first to analyze intra-city varia-
tions of emission ratios between CO and CO2 using two
asynchronous satellite sensors. We describe complications
induced by discrepancies between satellite sensors and re-
trievals and demonstrate methods to mitigate these compli-
cations by accounting for sounding-specific averaging ker-
nels, atmospheric transport, and urban–background contrast
in the contribution from non-FF sources/sinks using an atmo-
spheric transport model.
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4.1 Influences from non-FF components and
atmospheric transport

Pyrogenic anomalies are minimal for the overpasses we ex-
amined but should be considered for certain cities (e.g., dur-
ing dry seasons over Mexico City, Crounse et al., 2009),
considering the high ERCO from forest wildfires of 35 to
80 ppb ppm−1 (Fig. 1a). Most overpasses we analyzed fall
within the dormant seasons. For the three overpasses dur-
ing the growing season, biogenic anomalies modeled using
the SMUrF model for a given OCO-2/3 sounding may reach
up to 0.5 ppm (Fig. S9). Even though modeled NEE and re-
sultant biogenic contributions/gradient can be uncertain, we
stress again that it is the urban–background biogenic con-
trast (δXbio in Eq. 1) that is important for estimating FFCO2
enhancements, given our setup for a local background value.
Satellite missions such as TROPOMI and the upcoming Geo-
stationary Carbon Cycle Observatory (GeoCarb) will provide
solar-induced fluorescence (SIF), which may help improve
spatially explicit SIF-based GPP and NEE estimates (Turner
et al., 2020; Wu et al., 2021), specifically by reducing the de-
pendence on other remote sensing products and the assump-
tion of model parameters for each plant functional type.

The biggest challenge affecting the robust estimation of
spatially resolved ERCO is the shift in wind directions be-
tween two overpass times. Substantial changes in wind di-
rections and urban plumes (e.g., the “outliers” in Fig. 5e, f)
were mostly found for overpasses with an absolute time dif-
ference |1t | of> 2 h (implied by the bars labeled with an as-
terisk in Fig. 8). If TROPOMI pixel sizes are relatively large
(i.e., non-nadir observations) or the wind is steadier, this |1t |
constraint may be relaxed as long as emissions for a specific
city are less driven by sectors with noticeable diurnal cycles
(e.g., road transportation). For instance, on 31 May 2020,
TROPOMI polygon sizes for the industry-dominated city
Baotou are sufficiently large compared to the shift in urban
plumes, despite its |1t | of 3 h (Fig. 8). In addition, we manu-
ally re-positioned the OCO-3 soundings to TROPOMI poly-
gons for a few cases (the bars with nonzero numbers on top
in Fig. 8) using the simple wind/plume shift demonstrated
in Sect. 3.1. Fortunately, future geostationary satellites will
be capable of mapping XCO and XCO2 simultaneously at a
higher temporal frequency, which will eliminate this issue.

4.2 ERs for an individual sounding, overpass, city, and
heavy industry region within a city

Contrary to previous work relying on inventory-based sector-
based ERs, we attribute the intra-urban gradient to heavy in-
dustry using an urban land cover classification dataset. Such
high-resolution localized maps help identify the observations
strongly influenced by heavy industry. Based on a limited
sample size, the heavy industry within the Greater Shanghai
area is tied to an ERCO that is higher than the city average,
reflecting poorer combustion efficiency (Fig. 7d). Industry-

and energy-centered cities such as Baotou and Zibo are
less efficient in their combustion activities. In particular, the
industry-dominated ER over Shanghai (18.8 mmol mol−1, as
indicated by the dashed red line in Fig. 7d) aligns better with
the overall city-scale ER over Baotou of 17.3 mmol mol−1

(Fig. 6). The previously reported urban-integrated ERCO
values are mostly constrained within the range of 5 to
20 ppb ppm−1, with a few exceptions in East Asia before
2010 that are over 30 ppb ppm−1 (Fig. 1). Our city-level es-
timates from space agree well with the range of previously
reported values.

A city-scale ERCO derived from spatially explicit ERs can
be influenced by (1) the adopted statistic, (2) overpass dates
and overpass-specific wind conditions, and (3) estimated un-
certainties in ERCO. For example, the overall ER derived
from all soundings within the urban plume differs from
that derived from a selection of soundings. Even though we
started with all quantified OCO-2/3 observations in a SAM,
only those located within the urban plumes (black curve in
Fig. 3) can be used to estimate ERs, as this allows ERs
from overpasses with different meteorological conditions to
be compared in an unbiased way. The mean or median value
of the sounding-level ERCO (e.g., 13.4 or 9.6 ppb ppm−1 for
LA in Fig. S12) differs slightly from the city average ob-
tained using the regression slope method when observational
uncertainties are taken into account (e.g., 9.6 ppb ppm−1 for
LA in Fig. 7a). Apart from these bulk quantities, the dis-
tribution of ERCO in the linear space is negatively skewed
and roughly follows the log-normal distribution (Fig. S12),
where a few observations with higher ERCO values are in-
fluenced by point sources with poorer combustion efficiency.
More observations with finer satellite pixels across the city
would improve the robustness of both the spatial distribution
and bulk estimates of ERs.

4.3 Limitation

The main limitation of this work is the relatively low sam-
ple size, which is largely constrained by the requirement
for small differences in overpass times. When more satel-
lite data or upcoming data from geostationary satellites be-
come accessible, intra-city ERs can be used to more ro-
bustly assess the temporal variation in sector-oriented com-
bustion efficiency, including across seasons or times (e.g.,
business-as-usual scenarios versus pandemic-disturbed time
frames). Beyond the sheer number of soundings, uncertainty
arises when aggregating CO2 enhancements from the finer-
resolution OCO-3 grid to the TROPOMI sampling. The cen-
tered lat/long coordinates of OCO-2/3 soundings are chosen
to determine the corresponding TROPOMI polygon, while
very few OCO soundings may be located right on the bound-
aries of TROPOMI polygons. Nevertheless, we find no sig-
nificant bias associated with the number of OCO soundings
per TROPOMI polygon in the heavy industry analysis.

https://doi.org/10.5194/acp-22-14547-2022 Atmos. Chem. Phys., 22, 14547–14570, 2022



14562 D. Wu et al.: Intra-city variation of emission ratios

Figure 8. A summary of the wind directional shift between OCO-2/3 and TROPOMI overpass times. The y axis denotes the absolute time
difference (|1t | in hours) per overpass. The color of the bar represents the instantaneous modeled surface wind speed [m s−1] from OCO-2/3
Lite files. Bars labeled with an asterisk indicate that urban plumes between two overpass times differ so much that they cannot be brought
into agreement with a simple plume rotation. The number on each bar (e.g., 0–1) denotes the number of TROPOMI polygons that had to
be shifted to align the urban plumes at the two times. For example, 0–1 means that TROPOMI polygons over certain locations are shifted
by one grid. Bars labeled with a zero on top indicate that a manual plume shift was not required. Bars with white outlines indicate that the
sampled TROPOMI soundings on that date were non-nadir with larger pixel sizes.

Another factor that we did not explicitly account for is
the secondary CO production from both anthropogenic and
biogenic VOCs (AVOCs, BVOCs). Under a cascade of reac-
tions in favorable conditions, VOCs emitted from the upwind
source location are oxidized to CO at various rates, which
may result in higher CO at the downwind sounding location
and divergence between enhancement ratios and emission ra-
tios. As BVOCs are usually associated with shorter lifetimes
compared to many AVOCs (e.g., Surl et al., 2018), we dis-
cuss BVOCs and AVOCs separately. BVOCs can contribute
significantly to the total CO source at the regional scale, es-
pecially during growing seasons (e.g., Miller et al., 2008;
Hudman et al., 2008; Gonzalez et al., 2021). However, since
BVOCs, like biogenic CO2, come mainly from rural areas
outside the city, subtracting the localized CO background us-
ing CO observations outside the urban plume minimizes the
impact of BVOCs on the derivation of CO enhancements.
The lifetimes of AVOCs are long enough, except for a few
species, including alkenes (Surl et al., 2018). Without a good
observational constraint on the VOC composition and group-
specific emissions for different cities around the globe over
the years, it would be challenging to accurately quantify the
impact on atmospheric XCO and ERCO of AVOCs emitted
from urban areas or specifically from industrial areas. More
future efforts regarding urban VOCs may include (1) identi-
fying good proxies that can be measured from space and can
capture the bulk AVOC characteristics (e.g., formaldehyde,
Zhu et al., 2014) and (2) interpreting such observations, e.g.,
by utilizing chemical transport models for source attribution
(Gonzalez et al., 2021). Note that the noise/uncertainty in

current daily TROPOMI formaldehyde observations may be
too large for daily resolved analyses.

4.4 Implications for inventory evaluation

This work provides insights into estimating emission ratios
from future satellite sensors, as ERs help pinpoint hotspots
with poor combustion efficiency, which inform sub-city
emission/pollution control efforts.

Satellite-based ER estimates help in the evaluation of
sector-specific emission factors and source locations adopted
in bottom-up emission inventories (e.g., Silva and Arellano,
2017). Substantial contrast in both the magnitudes and spa-
tial distribution of enhancement ratios can be found between
the observations and forward simulations (using X-STILT
column footprints and sectoral emissions from EDGARv5).
Taking Shanghai as an example, simulated enhancement ra-
tios using prior emissions appear to be much higher (>
50 ppb ppm−1, Fig. S13b) than observed ratios (mostly<
30 ppb ppm−1, Fig. S13a). Regarding the spatial distribu-
tion, simulated enhancement ratios using total FF emissions
mimic simulated enhancement ratios using only industry-
related emissions (Fig. S13b versus c), and both simulated
ratios differ substantially from observed enhancement ratios.
Such model–data mismatches may result from inaccurate ac-
tivity data and emission factors of EDGAR as well as atmo-
spheric transport uncertainties. This preliminary analysis il-
lustrates that satellite observations of trace gases could be
used to evaluate emission factors adopted in bottom-up emis-
sion inventories. More sophisticated approaches, such as flux
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inversions (Hedelius et al., 2018; Brioude et al., 2011, 2012;
Palmer et al., 2006), may better constrain sector-specific CO
and CO2 emissions from inventories.

Spatial proxies, including nightlight data from the
Black Marble (https://blackmarble.gsfc.nasa.gov/, last ac-
cess: 1 July 2022) and sophisticated urban land cover
datasets, can support not only the development of emission
inventories but also sector-orientated evaluations with atmo-
spheric observations of CO2 and co-emitted pollutants. This
work demonstrates the benefit of using high-resolution urban
land cover classifications to provide independent information
about locations of various anthropogenic activities, building
structures, and vegetation coverage.

5 Conclusions

We investigated fossil fuel combustion efficiency by quan-
tifying the emission ratios of CO and CO2 across Los An-
geles, Shanghai, Baotou, and Zibo (Zouping) using nearly
coincident observations of TROPOMI XCO and OCO-2/3
XCO2. Multiple swaths of observations collected by OCO-
3 SAMs cover a much broader area relative to the OCO-2
swaths, facilitating the determination of background values
and the separation of emission signals from different parts of
a city. We incorporated spatial gradients in background val-
ues by calculating the background per swath and correcting
for the urban–background gradient due to non-anthropogenic
sources and sinks. Sensor-specific averaging kernel pro-
files and meteorological conditions were accounted for us-
ing an atmospheric transport model (X-STILT). The ratio
between XCO and XCO2 enhancements without consider-
ing such sensor-specific factors is normally lower than the
emission ratio. Cases with severe asynchronicity, specifi-
cally those with overpass time differences of over 3 h, cor-
respond to significant changes in urban plumes. Properly
accounting for the overpass-specific meteorological condi-
tions or source–receptor relationship and identifying only the
soundings influenced by urban emissions is critical when
estimating ERs for cities, and is realized using an atmo-
spheric transport model. Our model approach is then used
to identify soundings strongly affected by heavy indus-
try. As a result, the overall city-level ERCO for Shanghai
(10.2± 0.4 mmol mol−1) is slightly larger than that for Los
Angeles (9.6± 0.5 mmol mol−1). Industry-related ERCO val-
ues for Shanghai are much larger than its city-level average,
whereas industry-related ERCO values for LA are slightly
lower than its city-level average. ERs tied to heavy-industry
regions in Shanghai (18.8 mmol mol−1) are approximately
equal to the city-level ERCO for the industry-orientated city
of Baotou (17.3± 0.5 mmol mol−1). High ERs highlight the
poor combustion efficiency tied to certain industrial activi-
ties, e.g., metal production (Table 1).

Future satellites (e.g., GeoCarb, TEMPO, CO2M) will
provide better spatial and temporal coverage of XCO2 and
relevant co-located tracer observations, making it possible
to monitor and verify temporal trends and variations in the
combustion efficiency over hotspots within an urban area,
which will provide significant guidance for urban planning
and emission control.
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Appendix A: List of prior studies collected in Fig. 1

Table A1. A summary table of sector-specific and city-specific emission ratios of CO to CO2 reported based on prior studies (including
measurement years, locations, paper references, and additional notes). NA = not available.

Sector in Fig. 1a Location Years Reference Additional notes

Traffic Denver, US 1997 Bradley et al. (2000)
Traffic Switzerland 2004 Vollmer et al. (2007), Table 2 Gubrist Tunnel
Traffic CONUS 2005–2007 Bishop and Stedman (2008) Chicago, Denver, Los Angeles, Phoenix
Traffic Paris 2012 Ammoura et al. (2014), Table 2 Tunnel (congestion vs. moving)
Traffic Switzerland 2011 Popa et al. (2014), Table 1 Islisberg Tunnel (moving)
Traffic Beijing, China 2007 Westerdahl et al. (2009) Diesel heavy-duty vs. gasoline light-duty

Shipping China 2011 Zhang et al. (2016), Table 3 Diesel engines; estimated from EFs
Shipping Western Europe 2007 Moldanová et al. (2009), Table 5 Diesel engine; estimated from EFs
Shipping Texas 2006 Williams et al. (2009), Fig. 2 Diesel engines; estimated from EFs

Biomass burning Global NA Akagi et al. (2011), Tables 1–2 Estimated from EFs

Urban areas in Fig. 1b Observation years Reference

Los Angeles (LA) 2002 and 2010 Brioude et al. (2013)
LA 2007–2008 Djuricin et al. (2010)
LA 2008 and 2010 Wennberg et al. (2012)
LA 2010 Silva et al. (2013); Silva and Arellano (2017)
LA 2013–2016 Hedelius et al. (2016)
LA 2019–2021 This study, Fig. 7
Pasadena 2007 Wennberg et al. (2012), Table 2
Sacramento 2009 Turnbull et al. (2011a), Sect. 3.2
Indianapolis (Indy) 2012–2014 Turnbull et al. (2015)
Salt Lake City (SLC) 2015–2016 Bares et al. (2018), Table 2

Edinburgh 2005 Famulari et al. (2010), Table 1
Paris 2010 Lopez et al. (2013)
Paris 2010–2014 Ammoura et al. (2016), Table 1
London 2006 Harrison et al. (2012), Fig. 27
London 2012 O’Shea et al. (2014), Table 3
London 2016 Pitt et al. (2019), Table 2
Rotterdam 2011 Super et al. (2017)
German Alps 2012–2013 Ghasemifard et al. (2019)
Hungary 2017 Haszpra et al. (2019), Table 1
St. Petersburg 2019 Makarova et al. (2021)

Miyun 2004–2008 Wang et al. (2010), Table 2
Beijing 2006 Han et al. (2009), Fig. 11
Shangdianzi 2009–2010 Turnbull et al. (2011b)
Nanjing 2011 Huang et al. (2015), Sect. 3.4.2
Seoul 2016 Tang et al. (2018), Table 3
Seoul 2019 Sim et al. (2020), Table 2
Jingdezhen 2017–2018 Xia et al. (2020), Table 3
Beijing 2019 Che et al. (2022), Table 2
Zibo, Baotou, Shanghai 2019–2021 This study, Figs. 6–7
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Code and data availability. OCO-3 L2 B10r XCO2
data and TROPOMI XCO data were accessed at
https://doi.org/10.22002/D1.2046 (Eldering, 2021) and
https://doi.org/10.5270/S5P-1hkp7rp (ESA, 2018), re-
spectively. X-STILT code has been modified to work
with TROPOMI data archived on GitHub branch at
https://github.com/uataq/X-STILT (last access: 1 July 2022)
(DOI: https://doi.org/10.5281/zenodo.1241514, Wu et al.,
2019). We kindly ask users to follow the code policy for
utilizing and acknowledging the X-STILT code for inter-
preting TROPOMI column data. Hourly NEE fluxes from
SMUrF are archived in the Oak Ridge National Lab DAAC at
https://doi.org/10.3334/ORNLDAAC/1899 (Wu and Lin, 2021).
The urban land cover classification from WUDAPT can be down-
loaded from https://www.wudapt.org/the-wudapt-portal/ (DOI:
https://doi.org/10.5281/zenodo.6364594, Stewart and Oke, 2012;
Demuzere et al., 2022b).
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