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Abstract. Improved knowledge of the chemistry and drivers of surface ozone over the Qinghai-Tibet
Plateau (QTP) is significant for regulatory and control purposes in this high-altitude region in the Himalayas. In
this study, we investigate the processes and drivers of surface ozone anomalies (defined as deviations of ozone
levels relative to their seasonal means) between 2015 and 2020 in urban areas over the QTP. We separate quanti-
tatively the contributions of anthropogenic emissions and meteorology to surface ozone anomalies by using the
random forest (RF) machine-learning model-based meteorological normalization method. Diurnal and seasonal
surface ozone anomalies over the QTP were mainly driven by meteorological conditions, such as temperature,
planetary boundary layer height, surface incoming shortwave flux, downward transport velocity and inter-annual
anomalies were mainly driven by anthropogenic emission. Depending on region and measurement hour, diur-
nal surface ozone anomalies varied over −27.82 to 37.11 µg m−3, whereas meteorological and anthropogenic
contributions varied over −33.88 to 35.86 µg m−3 and −4.32 to 4.05 µg m−3 respectively. Exceptional meteo-
rology drove 97 % of surface ozone non-attainment events from 2015 to 2020 in the urban areas over the QTP.
Monthly averaged surface ozone anomalies from 2015 to 2020 varied with much smaller amplitudes than their
diurnal anomalies, whereas meteorological and anthropogenic contributions varied over 7.63 to 55.61 µg m−3

and 3.67 to 35.28 µg m−3 respectively. The inter-annual trends of surface ozone in Ngari, Lhasa, Naqu, Qamdo,
Diqing, Haixi and Guoluo can be attributed to anthropogenic emissions in 95.77 %, 96.30 %, 97.83 %, 82.30 %,
99.26 % and 87.85 %, and meteorology in 4.23 %, 3.70 %, 2.17 %, 3.19 %, 0.74 % and 12.15 % respectively. The
inter-annual trends of surface ozone in other cities were fully driven by anthropogenic emission, whereas the
increasing inter-annual trends would have larger values if not for the favorable meteorological conditions. This
study can not only improve our knowledge with respect to spatiotemporal variability of surface ozone but also
provide valuable implications for ozone mitigation over the QTP.
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1 Introduction

The Qinghai-Tibet Plateau (QTP) (27–45◦ N, 70–105◦ E),
with an average altitude of 4000 m a.s.l. (above sea level),
is the highest plateau in the world. It is known as the “Roof
of the World” and the “Third Pole” (Qiu, 2008; Yang et al.,
2013; Yin et al., 2017). The QTP has an area of approxi-
mately 2.5× 106 km2 and accounts for about one quarter of
China’s territory (Duo et al., 2018). The QTP is the source
region of five major rivers in Asia, i.e., the Indus, Ganges,
Brahmaputra, Yangtze and Yellow rivers, which provide wa-
ter resources to more than 1.4 billion people (Immerzeel et
al., 2010). The QTP has been verified to be a critical re-
gion for regulating Asian monsoon climate and hydrologi-
cal cycle, and it is thus an important ecological barrier for
the whole of Asia (Loewen et al., 2007; Yanai et al., 1992).
The QTP has long been regarded as a pristine region ow-
ing to its low population and industrial levels (Zhu et al.,
2013). Because of its unique features of landform, ecosystem
and monsoon circulation pattern, the QTP has been regarded
as a region that is sensitive to anthropogenic impact, and is
referred to as an important indicator of regional and global
climate change (Qiu, 2008). The exogenous and local atmo-
spheric pollutants have the potential to accelerate the melting
of glaciers, damage air quality, water sources and grasslands,
and threaten climate on regional and global scales (Yin et al.,
2017; X. F. Yin et al., 2019; Sun et al., 2021d; Pu et al., 2007;
Kang et al., 2016). Therefore, improved knowledge of the
evolutions and drivers of atmospheric pollutants in the QTP
is of great importance for understanding the local ecological
situation and formulating regulatory policies.

Surface ozone (O3) is a major air pollutant that threatens
human health and vegetation growth (Jerrett et al., 2009; Yin
et al., 2021b). Surface ozone over the QTP is generated either
from its local anthropogenic and natural precursors such as
nitrogen oxides (NOx), volatile organic compounds (VOCs)
and carbon monoxide (CO) via a chain of photochemical re-
actions or transported from long-distance regions by down-
welling from the stratosphere. Surface ozone level is sensi-
tive to local emissions, meteorological conditions and trans-
port. Meteorological conditions affect surface ozone level in-
directly through changes in natural emissions of its precur-
sors or directly via changes in wet and dry removal, dilution,
chemical reaction rates and transport flux. Emissions of air
pollutants affect surface ozone level by perturbing the abun-
dances of hydroperoxyl (HO2) and alkylperoxyl (RO2) rad-
icals, which are the key atmospheric constituents in the for-
mation of ozone. Some previous studies have presented the
variability and analyzed qualitatively the drivers of surface
ozone over the QTP at a specific site or region (Xu et al.,
2016; X. Yin et al., 2019; Yin et al., 2017; Zhu et al., 2004).
However, none of these studies has quantitatively separated
the contributions of anthropogenic emission and meteorol-

ogy. Separation of anthropogenic and meteorological drivers
is very important as it conveys to us exactly which processes
drive the observed ozone anomaly and therefore the correct
conclusions can be drawn on whether an emission mitigation
policy is effective.

Chemical transport models (CTMs) are widely used to
evaluate the influences of meteorology and anthropogenic
emission on atmospheric pollution levels (Hou et al., 2022;
Sun et al., 2021a; Yin et al., 2020; Yin et al., 2019). How-
ever, there are significant uncertainties in the emission in-
ventories and in the models themselves, and shutting down
an emission inventory in CTMs may cause a large nonlin-
ear effect, which inevitably influences the accuracy, perfor-
mance and efficiency of CTMs (Vu et al., 2019; Zhang et al.,
2020). Mathematical and statistical models such as the multi-
ple linear regression (MLR) model and general additive mod-
els (GAMs) have also been used in many studies to quantify
the influence of meteorological factors (Li et al., 2019; K. Li
et al., 2020; Yin et al., 2021a; Yin et al., 2022; Zhai et al.,
2019).

Machine learning (ML) is a well-known field that has been
developing rapidly in recent years. ML is a fusion of statis-
tics, data science and computing that experiences use across a
very wide range of applications (Grange et al., 2018). Unlike
most ML models, such as artificial neural networks, whose
working mechanisms are hard to understand, the random
forest (RF) model is not a “black-box” method, its predic-
tion process can be explained, investigated and understood
(Gardner and Dorling, 2001; Grange et al., 2018; Grange and
Carslaw, 2019; Shi et al., 2021). Recently, the RF model-
based meteorological normalization technique has been pro-
posed and used to decouple the influence of meteorology on
atmospheric pollution. For example, Vu et al. (2019) have
used this technique to demonstrate that the clean air ac-
tion plan implemented in 2013 was highly effective in re-
ducing the anthropogenic emissions and improving air qual-
ity in Beijing. Shi et al. (2021) have used this technique to
quantitatively evaluate changes in ambient NO2, ozone, and
PM2.5 concentrations arising from these emission changes in
11 cities globally during the COVID-19 lockdowns.

In this study, we investigate the evolutions, implications
and drivers of surface ozone anomalies (defined as deviations
of ozone levels relative to their seasonal means) from 2015
to 2020 in the urban areas over the QTP. Compared with pre-
vious studies, which focused on surface ozone over the QTP,
this study involves a larger area and a longer time span. Most
importantly, this study separates quantitatively the contribu-
tions of anthropogenic emission and meteorology to surface
ozone anomalies by using the RF model- based meteoro-
logical normalization method. This study can not only im-
prove our knowledge with respect to spatiotemporal variabil-
ity of surface ozone but also provide valuable implication
for ozone mitigation over the QTP. We introduce detailed
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Figure 1. Geolocations of each city over the Qinghai-Tibet Plateau (QTP). The base map of the figure was created using the Basemap
package in Python.

descriptions of the surface ozone and meteorological field
dataset in Sect. 2. The method for separating contributions
of meteorology and anthropogenic emission is presented in
Sect. 3. Section 4 analyzes spatiotemporal variabilities of
surface ozone from 2015 to 2020 in each city over the QTP.
The performance of the RF model used for surface ozone
prediction over the QTP is evaluated in Sect. 5. We discuss
the implications and the drivers of surface ozone anomalies
from 2015 to 2020 in each city over the QTP in Sect 6. We
conclude this study in Sect. 7.

2 Data sources

2.1 Surface ozone data

The QTP covers an area of 2.5 million square meters and
has a population of around 3 million, with most of them
living in several cities. During the in-depth study of the at-
mospheric chemistry over the Tibetan Plateau, @Tibet field
campaign, ozone photochemistry and its roles in ozone bud-
get are of great interest in both background atmosphere and
in QTP urban areas. The former represents the influence of
anthropogenic emission and cross-boundary transport on the

nature cycle of ozone in pristine atmosphere. The latter rep-
resents not only the upper limit of ozone photochemistry
contribution to its budget, also demanding knowledge for
the sake of ozone pollution management. As illustrated in
Fig. 1, the QTP (latitude range: 26◦00′–39◦47′, longitude
range: 73◦19′–104◦47′) covers the Kunlun Mountain, the A-
erh-chin Mountain and the Qilian Mountain in the north, the
Pamir Plateau and the Karakorum Mountains in the west, the
Himalayas in the south, and the Qinling Mountains and the
Loess Plateau in the east. The 12 cities are the most popu-
lated areas over the QTP. All these cities except for Aba and
Diqing are located in the Tibet or Qinghai provinces. Aba
and Diqing are in the Sichuan and Yunnan provinces respec-
tively. The area of these cities ranges from 7.7 to 430 thou-
sand km2, the altitude ranges from 2.3 to 4.8 km a.s.l. and the
population ranges from 0.12 to 2.47 million. The residents
within the 12 cities number about 3.85 million and account
for about 51 % of the population over the QTP.

Hourly surface ozone data in the urban areas over the QTP
are available from the China National Environmental Moni-
toring Center (CNMEC) network (http://www.cnemc.cn/en/,
last access: 26 November 2021). The CNMEC network-
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Table 1. Geolocations of each city over the QTP. Population statistics are available from the 2020 nationwide population census issued by
the National Bureau of Statistics of China.

Name Latitude Longitude Number Altitude Population Area
of site (km) (million) (thousand

km2)

Ngari 32.5◦ N 80.1◦ E 2 4.5 0.12 345.0
Shigatse 29.3◦ N 88.9◦ E 3 4.0 0.80 182.0
Lhasa 29.7◦ N 91.1◦ E 6 3.7 0.87 31.7
Shannan 29.2◦ N 91.8◦ E 2 3.7 0.35 79.3
Naqu 31.5◦ N 92.1◦ E 3 4.5 0.50 430.0
Nyingchi 29.6◦ N 94.4◦ E 2 3.1 0.23 117.0
Qamdo 31.1◦ N 97.2◦ E 3 3.4 0.76 110.0
Diqing 27.8◦ N 99.7◦ E 2 3.5 0.39 23.9
Haixi 37.4◦ N 97.4◦ E 1 4.8 0.47 325.8
Guoluo 34.5◦ N 100.3◦ E 1 4.3 0.21 76.4
Xining 36.6◦ N 101.7◦ E 5 2.3 2.47 7.7
Aba 32.9◦ N 101.7◦ E 3 3.8 0.82 84.2

based ozone measurements have been widely used in many
studies for the evaluation of regional atmospheric pollution
and transport over China (Lu et al., 2019a, 2020, 2021; Sun
et al., 2021c, d; Yin et al., 2021a, b, 2022). The CNEMC net-
work has deployed 33 measurement sites in 12 cities over the
QTP (Table 1). The number of measurement sites in each city
varies from 1 to 6. All surface ozone time series at each mea-
surement site are provided by active differential absorption
ultraviolet (UV) analyzers. For all the 33 measurement sites,
hourly surface ozone data since 2015 are available. We first
removed unreliable measurements at all measurement sites
in each city by using the filter criteria following our previous
studies (Lu et al., 2018, 2020; Sun et al., 2021b, d; Yin et
al., 2021a, b), then averaged all measurements in each city
to generate a city representative dataset. All investigations in
this study are performed on such a city representative basis.

The filter criteria can be summarized as follows. Hourly
observed data points were first transformed into Z scores
via Eq. (1) and the observed data were then removed if
the corresponding Zi value met one of the following con-
ditions: (1) Zi is larger or smaller than the previous one
(Zi−1) by 9 (|Zi −Zi−1|> 9), (2) the absolute value of Zi
is greater than 4 (|Zi |> 4) or (3) the ratio of the Z value
to the third-order center moving average is greater than
2
(

3Zi
Zi−1+Zi+Zi+1

> 2
)

.

zk =
xk − uk

σk
, (1)

where uk and σk are the average and 1σ standard devia-
tion (SD) of xk , and zk is the pre-processed value for pa-
rameter xk .

2.2 Meteorological data

Meteorological fields used in this study are from the Modern-
Era Retrospective analysis for Research and Applications
Version 2 (MERRA-2) dataset (Gelaro et al., 2017). The
MERRA-2 dataset is produced by the NASA Global Mod-
eling and Assimilation Office and it can provide time series
of many meteorological variables with a spatial resolution of
0.5◦×0.625◦ (GMAO, 2022). The boundary layer height and
surface meteorological variables are available per hour and
other meteorological variables are available every 3 hours.
It has been verified that the MERRA-2 meteorological fields
over the QTP are in good agreement with the observations
(Wang and Zeng, 2012; Xie et al., 2017). This MERRA-2
dataset has been extensively used in evaluations of regional
atmospheric pollution formation and transport over China
(Carvalho, 2019; Kishore Kumar et al., 2015; Song et al.,
2018; Zhou et al., 2017; Li et al., 2019; K. Li et al., 2020;
Yin et al., 2022; Zhai et al., 2019).

3 Methodology

3.1 Quantifying seasonality and inter-annual variability

We quantify the seasonality and inter-annual variability of
surface ozone from 2015 to 2020 in each city over the QTP
by using a bootstrap resampling method. The principle of
such a bootstrap resampling method was described in detail
in Gardiner et al. (2008). Many studies have verified the ro-
bustness of Gardiner’s methodology in modeling the season-
ality and inter-annual variabilities of a suite of atmospheric
species (Sun et al., 2020; Sun et al., 2018, 2021a, b, d).
In this study, we used a second Fourier series plus a lin-
ear function to fit surface ozone monthly mean time series
from 2015 to 2020 over the QTP. The usage of measure-
ments on monthly basis can improve the fitting correlation
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and lower the regression residual. As a result, the relation-
ship between the measured and bootstrap resampled surface
ozone monthly mean time series can be expressed as

V (t,b)= b0+ b1t + b2 cos
(

2πt
12

)
+ b3 sin

(
2πt
12

)
+ b4 cos

(
4πt
12

)
+ b5 sin

(
4πt
12

)
(2)

F (t,a,b)= V (t,b)+ ε(t), (3)

where F (t,a,b) and V (t,b) represent the measured and fitted
surface ozone time series respectively. The parameters b0–
b5 contained in the vector b are coefficients obtained from
the bootstrap resampling regression with V (t,b). The b0 is
the intercept, the b1 is the annual growth rate and b1/b0 is
the inter-annual trend discussed below. The parameters b2–
b5 describe the seasonality, t is the measurement time in the
month elapsed since January 2015, and ε(t) represents the
residual between the measurements and the fitting results.
The autocorrelation in the residual can increase the uncer-
tainty in calculation of inter-annual trend. In this study, we
have followed the procedure of Santer et al. (2008) and in-
cluded the uncertainty arising from the autocorrelation in the
residual.

3.2 Random forest model

We have established a decision tree-based random for-
est (RF) machine-learning model to describe the relation-
ships between hourly surface ozone concentrations (response
variables) and their potential driving factors (predictive vari-
ables) in the urban areas over the QTP. As summarized in
Table 2, predictive variables used in this study include time
variables such as year 2015 to 2020, month 1 to 12, day of
the year from 1 to 365, hour of the day from 0 to 23 and me-
teorological parameters such as wind, temperature, pressure,
cloud fraction, rainfall, vertical transport, radiation and rela-
tive humidity. These time variables were selected as proxies
for emissions as pollutant emissions vary by the time of day,
day of the week and season (Grange et al., 2018).

The detailed descriptions of RF machine-learning model
can be found in Breiman (2001). Briefly, the RF model is an
ensemble model consisting of hundreds of individual deci-
sion tree models. Each individual decision tree model uses
a bootstrap aggregating algorithm to randomly sample re-
sponse variables and their predictive variables with a replace-
ment from a training dataset. In this study, a single regres-
sion decision tree is grown in different decision rules based
on the best fitting between surface ozone measurements and
their predictive variables. The predictive variables are se-
lected randomly to give the best split for each tree node. The
predicted surface ozone concentrations are given by the fi-
nal decision as the outcome of the weighted average of all
individual decision trees. By averaging all predictions from

Table 2. List of predictive variables fed into the RF model.

Parameters Description Unit

Meteorological variables by MERRA-2 dataset

Tsurface Surface air temperature ◦C
U10 m Zonal wind at 10 m height m s−1

V10 m Meridional wind at 10 m height m s−1

PBLH Planetary boundary layer height m
CLDT Total cloud area fraction unitless
PRECTOT Total precipitation kg m−2 s−1

OMEGA Vertical pressure velocity at PBLH Pa s−1

SWGDN Surface incoming shortwave flux W m−2

QV Specific humidity at 2 m height kg kg−1

TROPT Tropospheric layer pressure Pa

Time information

Year Year since 2015 –
Month Month of the year –
day Day of the month –
Hour Hour of the day –

bootstrap samples, the bagging process decreases variance
and thus helps the model to minimize overfitting.

As shown in Fig. 2, the whole dataset was randomly di-
vided into (1) a training dataset to establish the RF model
and (2) a testing dataset (not included in model training) to
evaluate the model performance. The training dataset was
randomly selected from 70 % of the whole data and the re-
maining 30 % was taken as the testing dataset. The hyperpa-
rameters for the RF model in this study were configured fol-
lowing those in Vu et al. (2019) and Shi et al. (2021) and are
summarized as follows: the maximum tree of a forest is 300
(n_tree= 300), the number of variables for splitting the de-
cision tree is 4 (mtry= 4) and the minimum size of terminal
nodes is 3 (min_node_size= 3). As the meteorological vari-
ables differ in units and magnitudes, which could lead to un-
stable performance of the model, we therefore uniformized
all meteorological variables via Eq. (1) before using them in
the RF model. This pre-processing procedure can also speed
up the establishment of the RF model.

3.3 Separation of meteorological and anthropologic
contributions

In order to separate the contributions of meteorology and
anthropological emission to surface ozone anomalies in
each city over the QTP, we have decoupled meteorology-
driven anomalies by using the RF model-based meteorologi-
cal normalization method. The meteorological normalization
method was first introduced by Grange et al. (2018) and im-
proved by Vu et al. (2019) and Shi et al. (2021). To decouple
the meteorological influence, we first generated a new input
dataset of predictive variables, which includes original time
variables and resampled meteorological variables (Tsurface,
U10, V10, PBLH, CLDT, PRECTOT, OMEGA, SWGDN,
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Figure 2. Flowchart for separation of meteorology and anthropological contributions.

QV, TROPH). Specifically, meteorological variables at a spe-
cific selected hour of a particular day in the input dataset
were generated by randomly selecting from the meteorolog-
ical data during 1980 to 2020 at that particular hour of dif-
ferent dates within a 4-week period (i.e., 2 weeks before and
2 weeks after that selected date). For example, the new in-
put meteorological data at 18:00 LT, 15 February 2018, are
randomly selected from the meteorological data at 18:00 LT
on any date from 1 to 29 February of any year during 1980
to 2020. This selection process was repeated 1000 times to
generate a final input dataset. The 1000 meteorological data
were then fed into the RF model to predict surface ozone con-
centration. The 1000 predicted ozone concentrations were
then averaged as Eq. (4) to calculate the final meteorological
normalized concentration (O3,dew) for that particular hour,
day and year. This process ensures that all kinds of weather
conditions around the measurement time have been consid-
ered in the model predictions, which eliminate the influence
of abnormal meteorological conditions and get concentra-
tions under the averaged meteorological conditions.

O3,dew =
1

1000

1000∑
i=1

O3,i,pred , (4)

where O3,i,pred is the surface ozone concentration predicted
by using the ith meteorological data randomly selected from
the meteorological data at the specific selected hour on any
date from 1 to 29 February of any year in 1980 to 2020.
O3,dew represents surface ozone concentration under the
mean meteorological conditions at the specific selected hour
between 1980 and 2020.

If the seasonal variabilities of anthropogenic emission and
meteorology are constant over the year, the variability of
the surface ozone can be exactly reproduced by Eq. (2),

i.e., the annual growth rate of surface ozone and the fitting
residual should be close to zero. But this is not realistic
in the real world. Any year-to-year difference in either an-
thropogenic emission or meteorology could result in anoma-
lies. We calculate surface ozone anomalies (O3,anomalies) in
each city over the QTP by subtracting their seasonal mean
values (O3,mean) from all hourly surface ozone measure-
ments (O3,individual) through Eq. (5) (Hakkarainen et al.,
2016, 2019; Mustafa et al., 2021).

O3,anomalies = O3,individual−O3,mean, (5)

where O3,mean in each city are approximated by the seasonal-
ity plus the intercept described in Eq. (1). As a result, the dif-
ference O3,meteo between O3,individual and O3,dew calculated
as Eq. (6) is the portion of anomalies induced by changes
in meteorology. The difference O3,emis between O3,anomalies
and O3,meteo calculated as Eq. (7) represents the portion of
anomalies induced by changes in anthropogenic emission.

O3,meteo = O3,individual−O3,dew (6)
O3,emis = O3,anomalies−O3,meteo. (7)

By applying the meteorological normalization method, we
finally separate the contributions of meteorology and an-
thropogenic emissions to the surface ozone anomalies in
each city over the QTP. Positive O3,meteo and O3,emis indi-
cate that changes in meteorology and anthropogenic emis-
sion cause surface ozone concentration above their seasonal
mean values respectively. Similarly, negative O3,meteo and
O3,emis indicate that changes in meteorology and anthro-
pogenic emissions cause surface ozone concentration below
their seasonal mean values respectively.

Atmos. Chem. Phys., 22, 14401–14419, 2022 https://doi.org/10.5194/acp-22-14401-2022
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Table 3. Statistical summary of surface ozone concentration (units: µg m−3) in each city over the QTP from 2015 to 2020.

City Mean Standard Median The number of non-attainment day

deviation 2015 2016 2017 2018 2019 2020

Ngari 74.18 34.26 73.50 0 0 8 9 1 13
Shigatse 79.25 31.62 82.00 0 5 0 5 5 2
Lhasa 77.90 32.63 78.67 10 20 2 5 0 0
Shannan 77.55 30.75 78.00 0 2 12 10 2 3
Naqu 52.43 26.27 53.00 0 0 0 0 0 0
Nyingchi 67.30 28.30 68.00 0 0 1 0 0 0
Qamdo 64.23 31.47 62.00 0 2 0 0 0 0
Diqing 57.50 27.64 54.50 0 0 0 0 0 0
Haixi 90.38 28.83 90.00 14 0 0 0 16 2
Guoluo 82.98 33.29 86.00 3 0 3 3 0 0
Xining 63.50 36.02 60.00 0 2 17 6 3 3
Aba 50.67 29.57 47.00 0 0 0 0 0 0

4 Variabilities of surface ozone over the QTP

4.1 Overall ozone level

Statistical summary and box plot of surface ozone concen-
tration (units: µg m−3) in each city over the QTP from 2015
to 2020 are presented in Table 3 and Fig. S1 in the Sup-
plement respectively. The average of surface ozone be-
tween 2015 and 2020 in each city over the QTP varied
over 50.67± 29.57 to 90.38± 28.83 µg m−3, and the me-
dian value varied over 53.00 to 90.00 µg m−3. In compari-
son, the average surface ozone between 2015 and 2020 in the
Beijing-Tianjin-Hebei (BTH), the Fenwei Plain (FWP), the
Yangtze River Delta (YRD) and the Pearl River Delta (PRD)
in densely populated and highly industrialized eastern China
was 140.76, 132.16, 125.09 and 119.82 µg m−3 respectively.
The average surface ozone between 2011 and 2015 at the
suburb Nam Co station in the southern-central part of the
QTP was 47.00± 12.43 µg m−3 (X. Yin et al., 2019). As a
result, surface ozone levels in the urban areas over the QTP
are much lower than those in urban areas in eastern China
but higher than those in the suburban areas over the QTP.
Among all cities over the QTP, the highest and lowest sur-
face ozone concentrations occur in Haixi and Aba, with mean
values of 90.38± 28.83 and 50.67± 28.83 µg m−3 respec-
tively. Generally, surface ozone concentrations in Qinghai
province are higher than those in Tibet province. We also
presented the percentile variation of surface ozone concen-
tration (units: µg m−3) in each city over the QTP from 2015
to 2020 in Fig. S2. The percentile variation modes of surface
ozone concentration in all cities over the QTP are similar. In
this study, only mean plus standard variance of surface ozone
concentration rather than its percentile variation in each city
was investigated. This prevailing method has been used in a
number of studies to describe the variabilities of atmospheric
compositions over the QTP (Li et al., 2020; Liu et al., 2021;
Ma et al., 2020; Xu et al., 2016, 2018; Yin et al., 2017, 2019).

The ambient air quality standard issued by the Chinese
government regularized that the critical value (Class 1 limit)
for the maximum 8 h average ozone level is 160 µg m−3.
With this rule, we summarize the number of non-attainment
day per year in each city over the QTP in Table 3. The num-
ber of non-attainment days per city and per year over the QTP
is only 2 between 2015 and 2020. Ozone non-attainment
events over the QTP typically occur in spring or summer. In
comparison, the number of non-attainment days per city and
per year over the BTH, FWP, YRD and PRD is much larger,
with values of 78, 36, 82 and 45 between 2015 and 2020 re-
spectively, and all ozone non-attainment events over these re-
gions occur in summer. The number of non-attainment days
in Ngari in 2020, Lhasa in 2016 and 2017, Shannan in 2017
and 2018, Haixi in 2015 and 2019, and Xining in 2017 are 13,
10, 20, 12, 10, 14, 16 and 17 d respectively. The number of
non-attainment days in all other cities over the QTP are less
than 10 d. In particular, surface ozone concentrations in Aba,
Naqu and Diqing in all the years between 2015 and 2020
are less than the Class 1 limit of 160 µg m−3. There are
only 1 and 2 non-attainment days in Nyingchi and Qamdo
between 2015 and 2020 respectively.

4.2 Diurnal variability

Diurnal cycles of surface ozone in each season and each city
over the QTP are presented in Fig. 3. Overall, diurnal cycle of
surface ozone in each city over the QTP presents a unimodal
pattern in all seasons. For all cities in all seasons, high lev-
els of surface ozone occur in the daytime (09:00 to 20:00 LT)
and low levels of surface ozone occur at nighttime (21:00 to
08:00 LT). As seen from Fig. 3, surface ozone levels usually
increase over time starting at 08:00 to 11:00 LT in the morn-
ing, reach the maximum values at 15:00 to 18:00 LT in the
afternoon, and then decrease over time till the minimum val-
ues at 08:00 or 09:00 LT the next day.
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Figure 3. Diurnal cycle of surface ozone (units: µg m−3) in each season and each city over the QTP. The vertical error bar is 1σ standard
variation (SD) within that hour.

The timings of the diurnal cycles in all cities over the
QTP were shifted by 1 to 2 h later in winter than those dur-
ing the rest of the year, most likely due to the later time
of sunrise. Yin et al. (2017) also observed such a shift in
the diurnal cycle at the suburb Nam Co station. The diur-
nal cycles of surface ozone in the urban areas over the QTP
spanned a large range of −43.73 % to 47.12 % depending
on region, season and measurement time. The minimum and
maximum surface ozone levels in the urban areas over the
QTP varied over (22.89± 15.55) to (68.96± 18.27) µg m−3

and (57.77±21.56) to (102.08±15.14) µg m−3 respectively.
On average, surface ozone levels in the urban areas over the
QTP have mean values of (72.41±33.83) µg m−3 during the
daytime (08:00–19:00 LT) and (60.89± 32.25) µg m−3 dur-
ing the evening (20:00–08:00 LT). The diurnal cycles of sur-
face ozone in all cities over the QTP are generally consistent
with the results reported in eastern China and the suburban
areas over the QTP (X. Yin et al., 2019; Yin et al., 2017;
Zhao et al., 2016; Shen et al., 2014).

4.3 Seasonal variability

Monthly averaged time series of surface ozone in each city
over the QTP between 2015 and 2020 are shown in Fig. 4.
Surface ozone levels in all cities over the QTP showed pro-
nounced seasonal features. Seasonal cycles of surface ozone
in most cities present a unimodal pattern with a seasonal
peak occurring around March-July and a seasonal trough oc-
curring around October–December. Specifically, maximum
surface ozone levels occur in spring over Diqing, Lhasa,
Naqu, Nyingchi, Qamdo, Shannan, Shigatse and Aba, and
occur in summer over Ngari, Xining, Guoluo and Haixi;
minimum surface ozone levels in Nyingchi and Diqing oc-
cur in autumn, and in other cities they occur in winter. The
minimum and maximum surface ozone levels between 2015
and 2020 over the QTP varied over (29.21± 19.03) to
(60.45± 31.35) µg m−3 and (71.25± 26.53) to (112.46±
28.92) µg m−3 respectively (Table S1 in the Supplement).
The peak-to-trough contrast in Diqing, Naqu, Nyingchi and
Aba were smaller than those in other cities. Owing to re-
gional deference in meteorology and anthropogenic emis-
sion, the seasonal cycle of surface ozone in the urban areas
over the QTP is also regional dependent.
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Figure 4. Monthly mean time series of surface ozone (units: µg m−3) between 2015 and 2020 in each city over the QTP. The vertical error
bar is 1σ standard variation (SD) within that month.

4.4 Inter-annual variability

The inter-annual variability of surface ozone between 2015
and 2020 in each city over the QTP fitted by the bootstrap
resampling method is presented in Figs. 5 and S3, and is also
summarized in Table S1. Generally, the measured and fitted
surface ozone concentrations in each city over the QTP are
in good agreement with a correlation coefficient (R) of 0.68–
0.92 (Fig. S4). The measured features in terms of season-
ality and inter-annual variability can be reproduced by the
bootstrap resampling model. However, owing to the year-
to-year deference in anthropogenic emission and meteorol-
ogy, both inter-annual variability and fitting residual were
not zero in all cities. The inter-annual trends in surface ozone
level from 2015 to 2020 over the QTP spanned a large range
of (−2.43± 0.56) to (7.55± 1.61) µg m−3 yr−1, indicating
a regional representation of each dataset. The inter-annual
trends of surface ozone levels in most cities including Diqing,
Naqu, Ngari, Nyingchi, Shannan, Shigatse, Xining, Abzhou
and Haixi showed positive trends. The largest increasing
trends were presented in Diqing and Nagri, with values of
(5.31± 1.28) and (7.55± 1.61) µg m−3 yr−1 respectively. In
contrast, surface ozone levels in Lhasa, Qamdo and Guoluo
presented negative trends, with values of (−1.62± 0.76),
(−2.43±0.56) and (−2.36±0.81) µg m−3 yr−1 respectively.

5 Performance evaluation

We evaluate the performance of the RF model in predict-
ing hourly surface ozone level in each city over the QTP
using the metrics of Pearson correlation coefficient (R), the
root means square error (RMSE), and the mean absolute er-
ror (MAE). They are commonly used metrics for evaluation
of machine-learning model predictions, and are defined as
Eqs. (8)–(10) respectively.

R =

n
n∑
i=0
xiyi −

n∑
i=0
xi ·

n∑
i=0
yi√

n
n∑
i=0
x2
i −

(
n∑
i=0
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)2

·

√
n

n∑
i=0
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i −

(
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(8)

RMSE=

√√√√√ n∑
i=1

(xi − yi)2

n
(9)

MAE=

n∑
i=1
|xi − yi |

n
, (10)

where xi and yi are the ith concurrent measured and pre-
dicted data pairs respectively. The n is the number of mea-
surements. The R value represents the fitting correlation be-
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Figure 5. Inter-annual trends of surface ozone levels between 2015 and 2020 in the urban areas over the QTP. Blue dots are the monthly
averaged surface ozone measurements. The seasonality and inter-annual variability in each city fitted by using a bootstrap resampling model
with a second Fourier series (red dots) plus a linear function (black line) are also shown.

tween the measurements and predictions. The RMSE value
measures the relative average difference between the mea-
surements and predictions. The MAE value measures the ab-
solute average difference between the measurements and pre-
dictions. The units of RMSE and MAE are same as the mea-
sured data, namely µg m−3.

Comparisons between the model predictions and measure-
ments for the testing data (not included in model training)
in each city over the QTP are shown in Fig. S5. Overall, the
RF model predictions and surface ozone measurements are in
good agreement, showing high R and low RMSE and MAE
for testing dataset in each city over the QTP (Fig. S5). De-
pending on cities, the R values varied over 0.85 to 0.94, the
RMSE over 10.24 to 17.55 µg m−3 and MAE over 7.32 to
12.76 µg m−3. The R, RMSE and MAE are independent of
city and surface ozone level. The results affirm that our model
performs very well in predicting surface ozone levels and
variabilities in each city over the QTP.

We further investigate the importance of each input vari-
able in the RF model for predicting surface ozone level in
each city over the QTP. As shown in Fig. S6, time infor-
mation such as hour term (Hour), year term (Year) or sea-
sonal term (Month) are the most important variables in the
RF model predictions in all cities except Xining and Haixi,

where temperature term (T2 m) is the most important variable.
For all cities, the aggregate importance of time information
is greater than 50 %. In all cities over the QTP, the meteoro-
logical variables such as temperature (T2 m), relative humid-
ity (QV), vertical pressure velocity (OMEGA) and planetary
boundary layer height (PBLH) play significant roles when
explaining surface ozone concentrations. For other variables,
although they are not decisive variables in the RF model pre-
dictions, they are not negligible in predicting surface ozone
in all cities over the QTP. Although time information is the
most important variable in the RF model predictions, it can
be used very precisely, and thus the RF model measurement
discrepancy in all cities could be from other predictive vari-
ables rather than from time information.

6 Drivers of surface ozone anomalies

In this section, we explore the drivers of surface ozone
anomalies between 2015 and 2020 over the QTP. We first
present descriptively the contributions of anthropogenic
emission and meteorology to surface ozone anomalies over
the QTP in Sects. 6.1 to 6.3, where statistics on different time
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Figure 6. Diurnal cycles of surface ozone anomalies (O3,anomalies, blue dots and lines) along with the meteorology-driven portions (O3,meteo,
red dots and lines) and the anthropogenic-driven portions (O3,emis, black dots and lines) in each city over the QTP. Bold curves and the
shadows are diurnal cycles and the 1σ standard variations respectively.

scales are summarized. We then present an in-depth analysis
of each driver in Sect. 6.4.

6.1 Diurnal scale

Figure 6 presents diurnal cycles of surface ozone anoma-
lies between 2015 and 2020, along with the meteorology-
driven and anthropogenic-driven portions in each city over
the QTP. In all cities, the anthropogenic contributions are
almost constant, but the meteorological contributions show
large variations throughout the day. Depending on region
and measurement hour, diurnal surface ozone anomalies on
average varied over −27.82 to 37.11 µg m−3 between 2015
and 2020, whereas meteorological and anthropogenic con-
tributions varied over −33.88 to 35.86 µg m−3 and −4.32 to
4.05 µg m−3 respectively. The least contrast between meteo-
rological contribution and anthropogenic contribution occurs
in Haixi. The diurnal cycles of meteorological contribution
are consistent with those of surface ozone anomalies. High
levels of meteorological contributions occur during the day-
time (09:00 to 20:00 LT) and low levels of meteorological
contributions occur in at nighttime. As a result, diurnal sur-
face ozone anomalies in each city over the QTP were mainly
driven by meteorology.

We further investigated the drivers of surface ozone non-
attainment events from 2015 to 2020 in each city over the
QTP. All ozone non-attainment events were classified as
meteorology-dominated or anthropogenic-dominated events
according to which one has a larger contribution to the ob-
served surface ozone non-attainment events. The statistical
results are listed in Table S2. Except for 1 d in Ngari in 2018,
1 d in Shigatse in 2016 and 1 d in Haixi in 2019, which
were dominated by anthropogenic emission, all other sur-
face ozone non-attainment events from 2015 to 2020 over
the QTP were dominated by meteorology. Exceptional mete-
orology drove 97 % of surface ozone non-attainment events
from 2015 to 2020 in the urban areas over the QTP. For
the meteorology-dominated surface ozone non-attainment
events, meteorological and anthropogenic contributions var-
ied over 32.85 to 55.61 µg m−3 and 3.67 to 7.23 µg m−3 re-
spectively. For the anthropogenic-dominated surface ozone
non-attainment events, meteorological and anthropogenic
contributions varied over 7.63 to 10.53 µg m−3 and 15.63 to
35.28 µg m−3 respectively.
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Figure 7. Seasonal cycles of surface ozone anomalies (O3,anomalies, blue dots and lines) along with the meteorology-driven por-
tions (O3,meteo, red dots and lines) and the anthropogenic-driven portions (O3,emis, black dots and lines) in each city over the QTP. Bold
curves and the shadows are monthly mean values and the 1σ standard variations respectively.

6.2 Seasonal scale

Figure 7 presents seasonal cycles of surface ozone anoma-
lies between 2015 and 2020 along with the meteorology-
driven and anthropogenic-driven portions in each city over
the QTP. In all cities, the monthly averaged surface ozone
anomalies between 2015 and 2020 varied with much smaller
amplitudes than their diurnal anomalies. Noticeable anoma-
lies include pronounced positive anomalies in December in
Nagri, in May in Lhasa, Shannan and Qamdo, in July in
Haixi, in June in Guoluo, and negative anomalies in July in
Lhasa, Nyingchi and Guoluo. Both meteorological and an-
thropogenic contributions are regional dependent and show
large variations throughout the year. Depending on region
and month, meteorological and anthropogenic contributions
varied over −4.54 to 3.31 µg m−3 and −2.67 to 3.35 µg m−3

between 2015 and 2020 respectively.
Seasonal surface ozone anomalies between 2015 and 2020

in all cities over the QTP were mainly driven by me-
teorology. For example, meteorology caused decrements
of 3.05 µg m−3 in July and 4.27 µg m−3 in September in
Diqing, whereas anthropogenic emission caused increments
of 0.64 and 1.34 µg m−3 in respective months. Aggregately,
we observed −2.41 and −2.89 µg m−3 of seasonal surface

ozone anomalies in July and September in Ngari respectively.
In all cities, seasonal cycles of meteorological contributions
are more consistent with those of surface ozone anomalies
over the QTP. In some cases, surface ozone anomalies would
have larger values if not for the unfavorable meteorological
conditions, e.g., surface ozone anomalies in June in Ngari
and in December in Shannan, Guoluo and Aba.

6.3 Multi-year scale

Annual mean surface ozone anomalies between 2015
and 2020, along with meteorology-driven and
anthropogenic-driven portions in each city over the
QTP are presented in Fig. 8. Surface ozone in Diqing,
Naqu, Nagri, Haixi and Shannan shows larger year-to-year
variations than that in other cities. Annual mean surface
ozone levels in Diqing, Naqu, Nagri and Haixi showed
significant reductions of 2.10, 10.32, 6.87 and 15.97 µg m−3

respectively, Shannan showed an increment of 9.12 µg m−3

and other cities showed comparable values in 2016 relative
to 2015. The largest year-to-year difference occurred in
Ngari during 2016 to 2017, which has an increment of
25.25 µg m−3. The results show that anthropogenic con-
tributions decreased by 1.85, 7.14, 5.65 and 15.98 µg m−3
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Figure 8. Annual mean surface ozone anomalies (O3,anomalies, blue dots and lines) along with meteorology-driven portions (O3,meteo, red
dots and lines) and anthropogenic-driven portions (O3,emis, black dots and lines) in each city over the QTP. Bold curves and the shadows are
annual mean values and the 1σ standard variations respectively.

respectively in Diqing, Naqu, Nagri and Haixi, increased
by 11.13 µg m−3 in Shannan in 2016 relative to 2015 and
increased by 20.85 µg m−3 in Ngari in 2017 relative to 2016.
As a result, all above reductions or increments in surface
ozone level were mainly driven by anthropogenic emission.
In contrast, surface ozone anomalies in Lhasa in 2017
and 2020, and in Shigatse and Nyingchi in 2019, were
mainly driven by meteorology.

Table S3 summarizes the inter-annual trends of surface
ozone anomalies, meteorological and anthropogenic contri-
butions from 2015 to 2020 in each city over the QTP. Ex-
cept for Guoluo, Qamdo and Lhasa, which show decreas-
ing trends, anthropogenic contributions in all other cities
showed increasing trends from 2015 to 2020. With respect
to meteorology contribution, Ngari, Naqu, Diqing and Haixi
showed increasing trends from 2015 to 2020 and all other
cities showed decreasing trends. The inter-annual trends of
surface ozone anomalies in Ngari, Lhasa, Naqu, Qamdo,
Diqing, Haixi and Guoluo can be attributed to anthropogenic
emissions in 95.77 %, 96.30 %, 97.83 %, 82.30 %, 99.26 %
and 87.85 %, and to meteorology in 4.23 %, 3.70 %, 2.17 %,
3.19 %, 0.74 % and 12.15 % respectively. The inter-annual
trends of surface ozone in other cities were fully driven by

anthropogenic emission, where the increasing inter-annual
trends would have larger values if not for the favorable me-
teorological conditions. As a result, the inter-annual trends
of surface ozone anomalies in all cities over the QTP were
dominated by anthropogenic emission.

6.4 Discussions

Typically, all cities over the QTP are formed in flat val-
leys, with surrounding mountains rising to more than 5.0 km
a.s.l., and maintain continuous expansion and development
over time. Inhibited by surrounding mountains, regional-
dependent emissions and mountain peak-valley meteorologi-
cal systems result in regional representation of surface ozone
level and their drivers on diurnal, seasonal and inter-annual
scales.

Correlations between O3,meteo and each meteorological
anomaly are summarized for all time, for the diurnal scale,
for the seasonal scale and for the multi-year scale in Ta-
bles S4–S7. We find that all-time scales of meteorology-
driven surface ozone anomalies in each city are positively re-
lated to anomalies of temperature, planetary boundary layer
height (PBLH), surface incoming shortwave flux (SWGDN),
downward transport velocity at the PBLH (OMEGA), and
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tropopause height (TROPH). Among all these positive cor-
relations, the correlations with temperature, PBLH and
SWGDN in all cities are higher than those with OMEGA
and TROPH. As high temperature and SWGDN facilitate the
formation of ozone via the increase in chemical reaction rates
or biogenic emissions, the meteorology-driven surface ozone
anomalies have the highest correlations with the changes in
temperature and SWGDN. Possible reasons for the ozone in-
creases with the increase in PBLH include lower NO concen-
tration at the urban surface owing to the deep vertical mixing,
which then limits ozone destruction and increases ozone con-
centrations (He et al., 2017), and more downward transport
of ozone from the free troposphere, where the ozone concen-
tration is higher than the near-surface concentration (Sun et
al., 2009). Large OMEGA and high tropopause height also
facilitate downward transport of stratospheric ozone, result-
ing in a high surface ozone level. The QTP has been iden-
tified as a hot spot for stratospheric–tropospheric exchange
(Cristofanelli et al., 2010; Škerlak et al., 2014), where the
surface ozone is elevated from the baseline during the spring
owing to frequent stratospheric intrusions. Generally, surface
ozone anomalies are negatively related to humidity, rainfall
and total cloud fraction in each city over the QTP. These wet
meteorological conditions inhibit biogenic emissions, slow
down ozone chemical production, and facilitate the ventila-
tion of ozone and its precursors (Gong and Liao, 2019; Jiang
et al., 2021; Lu et al., 2019a, b; Ma et al., 2019), and there-
fore contribute to ozone decrease.

The U10 m and V10 m represent the metrics for evaluat-
ing the horizontal transport. In most of the cities over the
QTP, noticeable ozone versus horizontal wind correlations
are observed, indicating that horizontal transport is an im-
portant contributor to surface ozone (Shen et al., 2014; Zhu
et al., 2004). The QTP region, as a whole, is primarily regu-
lated by the interplay of the Indian summer monsoon and the
westerlies, and the atmospheric environment over the QTP
is heterogeneous. Mount Everest is representative of the Hi-
malayas on the southern edge of the Tibetan Plateau and is
close to South Asia, where anthropogenic atmospheric pollu-
tion has been increasingly recognized as disturbing the high
mountain regions (Decesari et al., 2010; Maione et al., 2011;
Putero et al., 2014). The northern QTP, including Xining,
Haixi and Guoluo, is occasionally influenced by regional pol-
luted air masses (Xue et al., 2011; Zhu et al., 2004), in par-
ticular, the impacts of anthropogenic emissions from central
and eastern China in the summer (Xue et al., 2011). The cities
over the inland QTP are distant from both South Asia and
northwestern China; this area has been found to be influenced
by episodic long-range transport of air pollution from South
Asia (Lüthi et al., 2015), evidenced by the study of aerosol
and precipitation chemistry in these cities (Cong et al., 2010).

In order to determine which specific meteorological vari-
ables are responsible for the meteorology-dominated ozone
non-attainment events over the QTP, we have investigated the
correlations between each meteorological variable and ozone

anomalies in each city during the ozone non-attainment
days. As tabulated in Table S8, temperature is the dominant
meteorological variable responsible for the meteorology-
dominated ozone non-attainment events, especially in Shi-
gatse, Lhasa, Shannan, Haixi and Guoluo. In addition, the
OMEGA is an important meteorological variable in most
cities, especially in Guoluo, where the correlation is up
to 0.69. For other meteorological variables, winds (U10 m,
V10 m) and TROPH also have noticeable contributions to
some ozone non-attainment events.

The NOx and VOCs are the main precursors of sur-
face ozone. The monthly and annual averaged anthropogenic
emissions of NOx and VOCs in each city over the QTP
extracted from the Multi-resolution Emission Inventory for
China (MEIC) between 2015 and 2017 are presented in Ta-
bles S9–S12. Major anthropogenic emissions in each city
over the QTP are from the transport sector and residential
sector, including burning emissions of coal, post-harvest crop
residue, yak dung and religious incense (Chen et al., 2009;
Kang et al., 2016, 2019; Li et al., 2017). The NOx and VOCs
emissions have decreased in Diqing, Naqu, Nagri in 2016
relative to 2015. These reductions of NOx and VOCs emis-
sions have jointly driven the changes of ozone in these cities.
Although NOx emissions increased in Haixi during 2015
to 2016, VOCs emissions have significantly decreased by
6.82 t. As a result, the decreases in ozone in Haixi in 2016
relative to 2015 were attributed to VOCs reductions during
the same period.

The correlations of the monthly and annual averaged an-
thropogenic contributions against the NOx and VOCs emis-
sions are summarized in Table S13. The correlations of
the monthly averaged anthropogenic contributions against
anthropogenic NOx and VOCs emissions are within the
range 0.35–0.81 and 0.33–0.83 respectively. For the annual
averaged statistics, the correlations against NOx and VOCs
emissions are within the range 0.15–0.94 (except for Ny-
ingchi and Diqing), and 0.34–0.98 (except for Haixi) respec-
tively. For all cities except for Shannan, Qamdo and Haixi,
both the NOx and VOCs emissions are consistent with the
anthropogenic contributions. although only NOx emissions
in Qamdo and Haixi and VOCs emissions in Shannan are
consistent with anthropogenic contributions. In general, the
changes in NOx and VOCs emissions in the MEIC are able to
explain the variabilities of both monthly and annual averaged
anthropogenic contributions.

7 Conclusions

In this study, we have investigated the evolutions, implica-
tions and the drivers of surface ozone anomalies (defined as
deviations of ozone levels relative to their seasonal means)
between 2015 and 2020 in the urban areas over the QTP.
Diurnal, seasonal and inter annual variabilities of surface
ozone in 12 cities over the QTP are analyzed. The average
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surface ozone between 2015 and 2020 in each city over the
QTP varied over (50.67± 29.57) to (90.38± 28.83) µg m−3,
and the median value varied over 53.00 to 90.00 µg m−3.
Overall, the diurnal cycle of surface ozone in each city over
the QTP presents a unimodal pattern in all seasons. For all
cities in all seasons, high levels of surface ozone occur in
the daytime (09:00 to 20:00 LT) and low levels of surface
ozone occur at nighttime (21:00 to 08:00 LT). Seasonal cy-
cles of surface ozone in most cities present a unimodal pat-
tern with a seasonal peak occurring around March–July and
a seasonal trough occurring around October–December. The
inter-annual trends in surface ozone level from 2015 to 2020
over the QTP spanned a large range of (−2.43± 0.56) to
(7.55± 1.61) µg m−3 yr−1, indicating a regional representa-
tion of each dataset.

We have established a RF regression model to describe
the relationships between hourly surface ozone concentra-
tions (response variables) and their potential driving factors
(predictive variables) in the urban areas over the QTP. The
RF model predictions and surface ozone measurements are
in good agreement, showing high R and low RMSE and
MAE in each city over the QTP. Depending on the city, the
R values varied over 0.85 to 0.94, the RMSE over 10.24 to
17.55 µg m−3 and the MAE over 7.32 to 12.76 µg m−3.
The R, RMSE and MAE are independent of city and sur-
face ozone levels. The results affirm that our model performs
very well in predicting surface ozone levels and variabilities
in each city over the QTP.

We have separated quantitatively the contributions of an-
thropogenic emission and meteorology to surface ozone
anomalies by using the RF model-based meteorological
normalization method. Diurnal and seasonal surface ozone
anomalies over the QTP were mainly driven by meteorol-
ogy, and inter-annual anomalies were mainly driven by an-
thropogenic emission. Depending on the region and the mea-
surement hour, diurnal surface ozone anomalies varied over
−30.55 to 34.01 µg m−3 between 2015 and 2020, whereas
meteorological and anthropogenic contributions varied over
−20.08 to 48.73 µg m−3 and −27.18 to 1.92 µg m−3 re-
spectively. Unfavorable meteorology drove 97 % of surface
ozone non-attainment events between 2015 and 2020 in
the urban areas over the QTP. Monthly averaged surface
ozone anomalies varied with much smaller amplitudes than
their diurnal anomalies, whereas meteorological and anthro-
pogenic contributions varied over 7.63 to 55.61 µg m−3 and
3.67 to 35.28 µg m−3 between 2015 and 2020 respectively.
The inter-annual trends of surface ozone anomalies in Ngari,
Lhasa, Naqu, Qamdo, Diqing, Haixi and Guoluo can be at-
tributed to anthropogenic emissions in 95.77 %, 96.30 %,
97.83 %, 82.30 %, 99.26 % and 87.85 %, and to meteorology
in 4.23 %, 3.70 %, 2.17 %, 3.19 %, 0.74 % and 12.15 % re-
spectively. The inter-annual trends of surface ozone anoma-
lies in other cities were fully driven by anthropogenic emis-
sion, where the increasing inter-annual trends would have
larger values if not for the favorable meteorological condi-

tions. This study can not only improve our knowledge with
respect to spatiotemporal variability of surface ozone but
also provide valuable implications for ozone mitigation over
the QTP.
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