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Abstract. Satellite retrievals of column mass loading of volcanic ash are incorporated into the HYSPLIT trans-
port and dispersion modeling system for source determination, bias correction, and forecast verification of prob-
abilistic ash forecasts of a short eruption of Bezymianny in Kamchatka. The probabilistic forecasts are generated
with a dispersion model ensemble created by driving HYSPLIT with 31 members of the NOAA global ensemble
forecast system (GEFS). An inversion algorithm is used for source determination. A bias correction procedure
called cumulative distribution function (CDF) matching is used to very effectively reduce bias. Evaluation is
performed with rank histograms, reliability diagrams, fractions skill score, and precision recall curves. Particular
attention is paid to forecasting the end of life of the ash cloud when only small areas are still detectable in satel-
lite imagery. We find indications that the simulated dispersion of the ash cloud does not represent the observed
dispersion well, resulting in difficulty simulating the observed evolution of the ash cloud area. This can be ame-
liorated with the bias correction procedure. Individual model runs struggle to capture the exact placement and
shape of the small areas of ash left near the end of the clouds lifetime. The ensemble tends to be overconfident but
does capture the range of possibilities of ash cloud placement. Probabilistic forecasts such as ensemble-relative
frequency of exceedance and agreement in percentile levels are suited to strategies in which areas with certain
concentrations or column mass loadings of ash need to be avoided with a chosen amount of confidence.

1 Introduction

We describe modeling efforts to provide quantitative proba-
bilistic forecasts of concentrations of volcanic ash for use by
the aviation sector with an emphasis on forecast verification
in which the properties of the joint distribution of forecasts
and observations are explored through the use of various sta-

tistical measures. No standard set of verification metrics for
probabilistic volcanic ash forecasts is currently in use.

Currently, forecasts for ash issued by Volcanic Ash Advi-
sory Centers (VAACs) consist of polygons denoting the area
of discernible ash. However, within the next 5 years, VAACs
may be producing gridded products of ensemble-relative fre-
quency of exceedances of prescribed concentration thresh-
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olds (International Civil Aviation Organization Meteorology
Panel, 2019).

Verification and evaluation metrics for probabilistic fore-
casts of a set of discrete predictands will guide model devel-
opment and the construction of dispersion model ensembles
and provide valuable information to end users of the fore-
casts. For instance, Prata et al. (2019) have developed a risk-
matrix approach for a risk-based approach to flight planning.
The approach depends on identifying probability thresholds
for less likely, likely, and very likely events. For a proof of
concept demonstration Prata et al. (2019) used a mostly ad
hoc set of probability thresholds for the events. Here we show
forecast verification metrics that can aid in producing mean-
ingful and appropriate probability thresholds for use in risk-
based approaches.

Ash forecasts often have a large bias largely due to uncer-
tainties in the source term. For binary predictands (e.g., fore-
casts which indicate areas of ash above a given threshold),
a frequency bias leads to either over- or underprediction of
the extent of the above-threshold area. We discuss measures
of bias and use a bias correction procedure called cumulative
distribution function (CDF) matching to successfully reduce
bias.

Section 2 describes the eruption of Bezymianny in Octo-
ber of 2020 which will be used as a case study. Section 3 dis-
cusses the observations of ash mass column loading. These
observations are used to help define the source term for
input into the model through both an inversion algorithm
(Sect. 4.3) and a bias correction procedure (Sect. 5). They
are also utilized for the evaluation of probabilistic forecasts
in Sect. 6.

2 Description of eruption of Bezymianny

Bezymianny began erupting on 21 October 2020 shortly af-
ter 20:00 UTC. Initial estimates reported that the ash cloud
reached a plume height of around 9 km (Sennert, 2020). Here
and throughout the text all heights are in reference to mean
sea level. The main ash producing portion of the eruption
lasted less than 2 h, although emissions of gas, steam, and
possibly some ash continued to be observed until around
03:00 UTC the next day (Sennert, 2020). Later analysis of
the eruption column height by Horváth et al. (2021) using
geometric estimation gave an initial height of around 9 km at
20:30 UTC, a top height of about 13 km at 20:40 UTC, and
a maximum altitude of an overshooting plume top of 15.3 to
15.7 km by 20:50 UTC.

Meteorological conditions above the vent are discussed
in Appendix A. Wind speeds reached about 14 ms−1 at
350 mbar according to numerical weather prediction models.

The eruption makes a particularly good test case for a few
reasons. The emission is relatively short and uncomplicated,
and thus the source term has less uncertainty than in longer
duration eruptions which may consist of many emissions of

varying intensities and eruption column heights. The result-
ing ash cloud forms a complicated three-dimensional struc-
ture as it is stretched and folded by the wind field over the
course of less than 1 d. As shown later, the exact location and
shape of these structures is difficult to forecast.

In many larger eruptions, such as Kasatochi (Crawford et
al., 2016) and Raikoke (de Leeuw et al., 2021), most of the
ash is drawn toward and around an area of low pressure, the
location of which is fairly easy to forecast. The end fate of
these large ash clouds is similar to that of the Bezymianny
cloud discussed here. However, it takes longer to occur and
the location of the smaller structures can be even more diffi-
cult to forecast because of the time passed.

The short duration of this Bezymianny eruption makes
running and testing many different simulation setups more
tractable. Most importantly perhaps is that eruptions of this
size occur fairly frequently. One aspect of concern to avia-
tion which has not received much attention in the literature is
how well forecasts predict the dissipation of the ash cloud, by
which we mean its gradual disappearance. This question be-
comes more urgent as areas of detectable ash become larger
due to improved detection methods and there may be more
reliance on models to estimate when concentrations drop be-
low a certain threshold.

3 Satellite data

Satellite retrievals were produced as part of the Volcanic
Cloud Analysis Toolkit (VOLCAT). For this eruption, satel-
lite retrievals are every 10 min from 21 October 2020,
20:40 UTC, to 22 October 2020, 21:10 UTC. The data were
from the Himawari-8 Advanced Himawari Imager, AHI,
Fulldisk scans. Satellite retrievals provide information on at-
mospheric column mass loading, hereafter just referred to
as mass loading, cloud top height, and effective radius. The
mass loading is the field which is most utilized here.

The VOLCAT ash detection algorithm (Pavolonis et al.,
2015a, b) is designed to mimic human expert analysis of
multispectral satellite imagery. Visual comparison to the cor-
responding satellite imagery indicates that the VOLCAT al-
gorithm accurately captured the spatial extent of the vol-
canic ash cloud throughout the analysis period, with a
scene-dependent lower limit of detection of approximately
0.2 mgm−2 (Prata and Prata, 2012). The mass loading is re-
trieved using the method described in Pavolonis et al. (2013).
Ash grains are assumed to follow a lognormal distribution.
The satellite retrievals are based on measurements from the
10–13 µm portion of the EM spectrum, so the retrieval will be
sensitive to ash grains with a radius of approximately 1 µm or
greater. Ash is assumed to be spherical and the refractive in-
dex of andesite is used (Pavolonis et al., 2013).

Figure 1 shows time series of some relevant properties of
the satellite retrievals. The total column mass is retrieved for
each satellite pixel where ash is detected. The total mass is
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computed by summing the product of column ash loading
and pixel area across all pixels in the detected ash cloud. The
total mass increases quickly at an approximately constant
rate for the first hour (21 October, 20:40 through 21:40 UTC).
The total area of the cloud keeps increasing sharply for about
another 2 h.

A rough calculation of mass eruption rate (MER) from
the change in mass in the satellite retrievals during this time
(Fig. 1a) gives approximately 1.5×104 kgs−1. After the first
hour, the total mass decreases and the rate of decrease is well
described by an exponential decay with a half-life of about
4 h. Presumably the decrease in detected mass over time is
due to physical processes such as dilution below detection
limits, gravitational settling, and wet and dry deposition.

Maximum retrieved heights are around 10 km during the
initial eruption period and increase to around 12 km. It is
expected that these heights would be somewhat lower than
those from the geometric estimation in Horváth et al. (2021).
The retrieved heights are not utilized here for the inversion
algorithm or the evaluation, although they will be considered
in future work.

For comparison to model output, the satellite data are
parallax-corrected using estimated cloud top heights and then
composited by first regridding to a regular 0.1◦ latitude–
longitude grid and subsequently taking the average of all
retrievals within a 1 h time frame. Cumulative distribution
functions (CDFs) of the composited data are shown in Fig. 2.
Mass loading values decrease over time as might be ex-
pected. Only the first two time periods contain mass loading
values greater than 10 gm−2.

4 HYSPLIT transport and dispersion model

HYSPLIT is a widely used Lagrangian atmospheric transport
and dispersion model (ATDM) developed and maintained by
the Air Resources Laboratory (ARL) at NOAA (Stein et al.,
2015a). It is used operationally by the Washington and An-
chorage VAACs to aid in producing Volcanic Ash Advisories
(VAAs). HYSPLIT requires both meteorological data and a
source term as input. The source term describes when and
where mass is initialized in the model.

HYSPLIT was run as a Lagrangian particle model and
choice of computational particle number is discussed more
in Appendix C. For all model runs the horizontal output res-
olution was 0.1◦× 0.1◦. This is smaller than in many other
studies. For instance Harvey et al. (2020) uses a 0.375◦×
0.5625◦ grid for mass loading. Kristiansen et al. (2012) uses
a 0.25◦× 0.25◦ grid. However more recently Folch et al.
(2022) uses a 0.05◦× 0.05◦ grid. A higher horizontal res-
olution was chosen partly because the observed ash cloud
was stretched into quite a thin line of ash, the properties of
which are not captured well by a coarse-resolution grid. Also,
coarser grid sizes can be investigated simply by averaging
over the finer one.

Table 1. Table describing HYSPLIT runs.

RunID Source Particle Source Met
diameter term

RunA 1 km 6 µm 2 h emission GEFS
RunA2 20 km 6 µm 2 h emission GEFS
RunB 1 km 6 µm inversion GFS 0.25◦

RunC 20 km 6 µm inversion GFS 0.25◦

RunD 1 km 20 µm inversion GFS 0.25◦

RunE 1 km 50 µm inversion GFS 0.25◦

RunM 1 km 6 µm inversion GEFS

The time for different particle sizes to produce signifi-
cantly different ash cloud distributions was tested using the
method described in Crawford (2020). By this method, it is
determined that particles with diameters of 6 and 0.6 µm do
not separate throughout the length of the period of interest.
However, 20 µm particles start to separate at about 22 Oc-
tober 2020, 00:00 UTC. This is discussed in more detail in
Appendix B. Most runs were performed with a single parti-
cle size of 6 µm. However, some runs were performed with a
20 or 50 µm particle size.

Table 1 summarizes the runs discussed in this paper.
RunA2, RunC, RunD, and RunE are discussed only briefly
to provide some information on the effect of varying parti-
cle size and initial eruption column width. RunB was used to
investigate the effect of utilizing different observational time
periods in the inversion algorithm as discussed in Sect. 4.3.
RunA and RunM were used for the bias correction procedure
and evaluation in Sects. 5.1, 5.2, and 6.

4.1 Meteorological models

HYSPLIT utilizes wind fields and other information from a
numerical weather prediction (NWP) model as inputs (Stein
et al., 2015a). For this study we considered two NWP models
produced by National Centers for Environmental Prediction
(NCEP): the Global Forecasting System (GFS) 0.25◦ resolu-
tion and the Global Ensemble Forecast System (GEFS). The
GEFS has 31 members and 0.5◦ horizontal resolution. The
GEFS has 23 vertical pressure levels. Levels from 1000 to
900 hPa are spaced 25 hPa apart and higher levels are spaced
50 hPa apart, with the highest levels at 50 and then 20 hPa.
For this particular dataset the 150 mbar level was not utilized
because of an error in converting the grid files to HYSPLIT
input format. The GFS 0.25◦ has 54 pressure–sigma hybrid
levels. Both datasets have 3 h temporal resolution and both
forecasts are produced every 6 h. For the HYSPLIT runs, the
most recent forecast was always utilized; e.g., for a 12 h fore-
cast two or three forecast cycles would be utilized. This does
not faithfully represent an operational framework in which
future forecast cycles would obviously not be available. We
expect it to produce a better forecast than for instance us-
ing only one cycle because of increased accuracy in wind
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Figure 1. (a) Total mass in satellite retrieval as a function of time. The y axis is a natural log scale and the orange line indicates a period
of exponential decay. (b) Total area of ash in satellite retrieval. (c) Rate of change in mass in satellite retrieval calculated by differencing the
mass between subsequent satellite retrievals and dividing by the time between them. (d) Maximum height in satellite retrieval.

speeds and directions. However this has not been investi-
gated in depth and some inconsistency in the wind fields may
be introduced, which could result in degraded model perfor-
mance. Meteorological conditions are discussed in more de-
tail in Appendix A.

4.2 Source term for RunA

RunA is a control run. The source term was initially esti-
mated using methods similar to those currently employed
in an operational setting. The start time of the eruption,
duration, eruption column height, and eruption column
width were all determined by human interpretation of avail-
able observations. Emission start was 21 October 2020 at
20:00 UTC. Emission duration was 2 h. Initial mass distribu-
tion was uniform throughout a cylinder centered at the vent

with a width of 1 km. The base of the cylinder was at 2.88 km,
the vent height. The top of the cylinder was at 12.88 km. This
is similar to current default operational settings at Washing-
ton and some other VAACs (Witham et al., 2007; Beckett et
al., 2020). A uniform vertical mass distribution is not partic-
ularly realistic, but it is practical for current operations as it
provides information on movement of ash from all heights
that can then be further interpreted by the analyst issuing the
final forecast.

Initially the constant emission rate was set at 1.5×
104 kgs−1 as this was consistent with a rough estimate from
Fig. 1c. However it was revised to approximately 3.75×
103 kgs−1 as described in Sect. 5.

The emission rate in the model is representative of the
mass eruption rate of fine ash (MERf). For comparison, the
widely utilized empirical relationship between total mass
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Figure 2. Cumulative distribution functions of composited VOL-
CAT retrievals. The dark purple line on the right is for satellite data
from 21 October 2020, 21:00–22:00 UTC. Colors repeat every 5 h.
The dark purple line on the left is for satellite data from 22 October
2020, 17:00–18:00 UTC. The vertical black lines denote 0.2, 2, and
20 g m−2.

eruption rate (MER) and eruption column height given in
Mastin et al. (2009) and a mass fraction of fine ash of 0.1
would result in an MERf of 4.85× 104 kgs−1 for a 10 km
high eruption column. This estimate is about 1 order of mag-
nitude larger than the value we use, but the uncertainty in it
is at least that large given that the fraction of fine ash can
vary between about 0.01 and 0.5 (Mastin et al., 2009), the
eruption column height estimate has an uncertainty of a few
kilometers, and the empirical fit itself has a large uncertainty
(Mastin et al., 2009).

4.3 Inversion algorithm

The inversion algorithm described in Chai et al. (2015, 2017)
was used to construct source terms for RunB and RunM. In
short, forward HYSPLIT dispersion runs were performed to
construct a transfer coefficient matrix (TCM) which provides
the contribution of each possible source location to each mea-
surement. The unknown emissions are estimated by minimiz-
ing a cost functional that integrates the differences between
the model predictions and the observations and deviations of
the solution from an a priori emissions (Chai et al., 2017).
As prior knowledge of the emissions is lacking, the a priori
emissions considered are negligible and the cost for deviating
from them is small.

Each individual HYSPLIT run used in constructing the
TCM released approximately 20 000 particles representing
1 unit mass over 1 h over a cylindrical volume 1 km in the
vertical and 1 km in diameter centered at the vent. The mod-
eling system does not consider plume dynamics, and spread-
ing of the umbrella cloud is only taken into account by uti-
lizing an initial source term above the vent with some width.
For this eruption, the initial plume width was not observed

to be large, and a relatively small width of only 1 km was
employed for most runs.

The HYSPLIT runs covered a vertical area from the vent
at 2.88 to 12.88 km. The HYSPLIT emissions covered a
time period from 21 October 2020, 19:00, to 22 October
2020, 00:00 UTC. No emissions outside of this time period
or above 12.88 km were considered in rest of the analysis.

A few inversions were performed with heights up to
16.88 km as Horváth et al. (2021) found that the maximum
plume height reached 15–16 km. However results from those
runs estimated no significant emissions above 12 km and we
do not discuss them further here. This is not surprising as
most of the mass is concentrated at the umbrella cloud height
rather than the top height, and these may differ significantly
(Mastin et al., 2009).

Clear-sky observations are pixels where no ash was de-
tected. Several options for the inclusion of clear-sky observa-
tions in the inversion were considered. Figure 3 shows emis-
sions determined with several different time periods and sev-
eral different ways of utilizing the clear-sky values.

When all clear-sky observations were included, emissions
tended to be lower, especially when using later time periods.
The vertical profile was also flatter, with the mass release
distributed more evenly throughout the column. Very little
mass was emitted at 19:00 UTC or below 4 or above 12 km.

When no clear-sky observations were included, estimated
emissions tended to be higher. When using later time peri-
ods, the peak in the emissions also tended to occur earlier,
around 19:00 UTC, which was the earliest time period con-
sidered for possible emissions. In the vertical profile there
was a strong peak between 7.5 and 10 km, but significant
mass was also emitted below 4 and above 12 km. Early emis-
sions at 19:00 UTC and significant amounts of mass below 4
or above 12 km are considered unlikely, and the presence of
mass at these times and locations indicates that the clear-sky
observations are important constraints.

A balance was struck when near-field clear-sky observa-
tions a certain distance, such as two or three pixels, from the
observations of ash were excluded. Excluding the near-field
clear-sky observations also made the emission estimates less
dependent on the time periods used in the inversion.

Increasing the width of the initial cloud increased the es-
timated emissions slightly when some clear-sky pixels were
utilized as shown in Fig. 3g and h. When all clear-sky pix-
els were utilized (not shown), emissions were very similar to
RunB with all clear-sky pixels. The results of the inversion
were not particularly sensitive to the eruption column width
within this range of 1 to 20 km.

The difference between using 20 and 6 µm particles is also
shown, with basically no difference when using time peri-
ods before particle separation begins at 22 October 2020,
00:00 UTC. For the other time periods the determined emis-
sions are quite similar. We attempted to use the inversion
to determine a simple particle size distribution by utilizing
output from three runs with 6, 20, and 50 µm sized particles
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Figure 3. Emissions determined from the inversion algorithm for several runs as indicated in the text. The left column (a, c, e, g, i) shows
mass eruption rate as a function of time. The time indicates the start time and the MERf would persist for 1 h. The right column (b, d, f, h, j)
shows total mass emitted as a function of height. The height indicates the bottom and the mass would be distributed over 1 km. The legend
indicates the hours of observations which were utilized for the inversion. Hours 21:00 and 23:00 UTC occurred on 21 October 2020, while
hours 00:00 to 07:00 UTC occurred on 22 October 2020. Some clear sky indicates that only clear-sky observations farther than three pixels
from an ash observation were used in the inversion.

as separate columns in the TCM. The contribution from the
6 µm size particle was the most dominant and stable, mean-
ing that the emissions amount did not exhibit much depen-
dence on the observational time periods utilized. The other
two particle sizes tended to have smaller emission rates and
emissions which were quite dependent on the observational
time periods utilized.

Figure 4 illustrates the effect of assimilating different time
periods in the inversion algorithm. Most of the mass is emit-
ted between 8 and 10 km between 20:00 and 22:00 UTC on
21 October. This is consistent with observations. The total
amount of mass that is estimated to have been emitted de-
creases as later time periods are assimilated (Fig. 4e). Al-
though there could be several reasons for this, we find that

this is in large part due to the dispersion of the ash cloud not
being adequately represented by the model. The spatial gra-
dient in the observed mass loading is much steeper than that
of the model, and this disparity becomes greater over time.

For RunM, using the GEFS, we look only at source terms
determined using observations up to 00:00 UTC and some
clear-sky observations as shown in Fig. 5. A separate in-
version is performed for each ensemble member. The aver-
age emissions are consistent with those estimated in RunB.
Two ensemble members, gep09 and gep11, estimated signif-
icantly less mass than the others due to less agreement be-
tween the simulated and observed ash cloud. In Sect. 5.2 we
discuss bias correction of RunM, and in Sect. 6 we discuss
the evaluation of this run. Because only observations up to
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Figure 4. Emissions determined from the inversion algorithm for RunB. Panels (a) and (b) are emissions determined using all observations
up to the time in the legend. Panels (c) and (d) are emissions determined using 2 h of observations ending at the time in the legend. Panels
(a) and (c) show MERf as a function of time. Panels (b) and (d) show total mass emitted as a function of height. Panel (e) shows the total
mass emitted for each. Clear-sky observations farther than two pixels from non-clear-sky observations were used.

00:00 UTC were utilized in the inversion algorithm, verifica-
tion of time periods after that can be considered verification
of short-term forecasts (0 to 12 h).

5 Bias correction with CDF matching

To correct bias, we employ a procedure called CDF matching
(Reichle and Koster, 2004; Piani et al., 2010; Gudmundsson
et al., 2012; Belitz and Stackelberg, 2021) which transforms
forecast values so that their CDF more closely matches that
of the observations. To our knowledge, this is the first time
this technique has been utilized for correcting output from
an ATDM model. We employ a relatively simple method
for creating the transform function. For each time period,
the modeled and observed values of mass loading are sorted
from greatest to least and then paired, so the greatest ob-
served value is paired with the greatest modeled value and
so forth. Here pairs in which either the observed or modeled
value are 0 are discarded. Usually there are more modeled
values above 0 than observed. A linear fit is applied to the
difference between the pairs as a function of forecast value.
Higher-order fits or other functional forms can be used or
a non-parametric approach sometimes referred to as quan-
tile mapping can be used (Piani et al., 2010; Gudmundsson
et al., 2012). Future work may include comparing different
methods of constructing the transform function. We find that
a linear fit is adequate and has the advantage that the mul-
tiplicative factor determined from the slope has a physical
interpretation as a correction to the mass eruption rate. The

intercept shifts all mass loading values in the direction oppo-
site to the sign of the intercept. The correction is applied at
each pixel.

s′ = (1−m)s− b, (1)

where s′ is the corrected mass loading, s is the original mass
loading, m is the slope, and b is the intercept.

There are several practical considerations in adding or sub-
tracting a constant value to the simulated mass loading or
concentration values. Propagating the additive correction to
ash concentrations would involve some assumptions such as
dividing the correction evenly among the number of vertical
levels containing ash.

s =

n∑
i

Lici (2)

s′ = (1−m)
n∑
i

Lici − b (3)

c′i = (1−m)Lici − bi (4)
n∑
i

bi = b, (5)

where n is the number of vertical levels. Li is the thickness
of level i. ci and c′i are the uncorrected and corrected con-
centrations at level i. bi is an additive correction applied to
the concentration at level i, and the sum of bi over all lev-
els must add to b. There are multiple strategies that could
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Figure 5. Emissions determined from the inversion algorithm utilized with all 31 members of the GEFS. (a, b) Emissions determined using
all observations up to 22 October 2020, 00:00 UTC. Thin lines in blue, green, and yellow show different ensemble members. The thick red
line shows the average. Panel (c) shows the total mass emitted for each ensemble member. Clear-sky observations farther than three pixels
from non-clear-sky observations were used.

be considered for estimating the bi . However, as we are only
considering mass loading values in this paper, we will not
delve into this further here.

Subtracting a value (positive intercept) is similar to apply-
ing a threshold, as negative values must be converted to 0.
When adding a value (negative intercept), the value is only
added to modeled values which have above zero mass load-
ing to begin with. As these procedures can decrease and in-
crease the spread of the forecast cloud, respectively, the in-
tercept can be loosely interpreted as an indicator of how well
the spread of the forecast cloud matches that of the observed
one.

In the next sections we describe the bias correction for
RunA and RunM. In Sect. 6 we evaluate how effective CDF
matching is at reducing bias. To evaluate whether it can be
used to improve the forecast, we apply the correction deter-
mined at 00:00 UTC to later time periods.

5.1 Bias correction for RunA

Figure 6a–d demonstrate the CDF matching procedure for
one ensemble member of RunA at two different time peri-
ods. Figure 6e–f show slope and intercept of the fit for all en-
semble members as a function of time. The slope increases
slightly over time with a mean value of 0.76 averaged over
all ensemble members and times through 12:00 UTC. The
average value from all the ensembles is 0.74 at 00:00 UTC
and almost 0.80 at 06:00 UTC. The almost constant value of
the slope over time can be translated into a correction to the
mass eruption rate. A new MERf of 0.25(1.5×104 kgs−1)=

3.75× 103 kgs−1 is consistent with the one being returned
from the inversion algorithm as described in Sect. 4.3.

The intercept is a fairly large negative number at early
times and increases to a small positive number at later times.
Negative intercepts shift the CDF to the right by adding a
constant. Figure 6b illustrates how the multiplicative value
of 0.26 shifts the CDF to the left, while the additive value
of 2.2 shifts it right. The drift from negative to slightly posi-
tive values occurs because the forecast cloud is initially more
compact than the observations, the high values are concen-
trated in a smaller area, and then over time the forecast cloud
becomes more disperse than the observations.

RunA2 was initialized with a 20 km cloud diameter to see
if this would create a more realistic initial condition. The
qualitative behavior of the slope and intercept of the fits was
the same as shown in Fig. 6. The slope was generally a bit
lower than RunA with an average value of 0.68 over all en-
semble members and time periods and 0.65 at 00:00 UTC and
increasing to about 0.74 at 06:00 UTC. Intercept values at
the early times, before 00:00 UTC, did become less negative;
however intercept values at later times became more posi-
tive. Increasing the spread of the cloud at early times to more
closely match observations caused the spread of the cloud at
later times to have a larger mismatch.

The modeled horizontal dispersion of the cloud is too fast.
As discussed in Sect. 4.3, this is also indicated by the behav-
ior of the inversion algorithm when utilizing different time
periods of observations. In addition, de Leeuw et al. (2021)
and Cai et al. (2022) found a similar issue in forecasting SO2
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Figure 6. Demonstration of CDF matching for RunA. (a, b) CDF matching for the time period 21 October 2020, 22:00–23:00 UTC, and
ensemble member gec00. (c, d) CDF matching for the time period 22 October 2020, 10:00–11:00 UTC, and ensemble member gec00. Panels
(a, c) show the linear fit (cyan) to the difference between observed and forecast values (thick black line). Panels (b, d) show the CDF of the
forecast values, observed values, and corrected forecast values. Panel (e) shows the slope and (f) shows the intercept of the linear fit as a
function of time for each ensemble member. The thick gray line is the mean of all the ensemble members.

emissions from Raikoke with the Numerical Atmospheric-
dispersion Modeling Environment (NAME) and Massive-
Parallel Trajectory Calculations (MPTRAC) models, respec-
tively.

5.2 Bias correction for RunM

As discussed in more detail later, even the ensemble pro-
duced using the source terms derived from the inversion al-
gorithm, RunM, was biased. We investigated whether utiliz-
ing the CDF matching technique could effectively reduce the
bias for this case.

Figure 7 shows slopes and intercepts from the fits to
RunM. As the initial bias was much smaller than for RunA,
the slopes are much smaller as well, with the average slope
around 0 through about 07:00 UTC. There are also some neg-
ative slopes, which indicate an increase in mass eruption rate.

The gep09 and gep11 ensemble members shown in cyan and
orange in Fig. 7 have more negative slopes and intercepts
than most of the other ensemble members. This is consistent
with the inversion algorithm estimating a lower mass erup-
tion rate for them, which the CDF matching then attempts to
correct.

The trend for the intercepts is very similar to that seen for
RunA. Values start negative for the times which have been
utilized in the inversion algorithm (before 00:00 UTC) and
then become positive for most of the ensemble members.
This indicates that even with the improved source term, the
modeled cloud is initially more compact than observed and
then becomes more dispersed than observed. In later sections
we will see that the positive values of the intercept at later
times are indicative of a high bias in the ensemble.
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Figure 7. Demonstration of CDF matching for RunM. Panels (a–c) show column mass loading for VOLCAT (c) and ensemble member
gep12 on 22 October 2020, 06:00–07:00 UTC, with bias correction (b) and without (a). Panel (d) shows the slope and (e) shows the intercept
of the linear fit as a function of time for each ensemble member (different colored lines). The thick gray line shows the mean.

6 Evaluation

We make the assumption that verification of modeled col-
umn mass loading values can be used as a proxy for the
verification of forecast concentrations. The reason for this is
practical as column mass loading values are now generally
widely available for many eruptions of this size and larger,
while measurements of concentrations are not. The validity
of this assumption may be investigated in the future by em-
ploying data from lidar which can give information on ash
cloud thicknesses or by utilizing any in situ measurements
that may be available from aircraft flights.

Table 2 summarizes the measures which will be discussed
in detail in the following sections.

6.1 Setting thresholds

The concentration thresholds of interest for aviation are 0.2,
2, 5, and 10 mgm−3 (Prata et al., 2019). Proxy mass load-

ing thresholds are formed by assuming that in some cases
ash layers are approximately 1 km thick and then the thresh-
olds have the same values but with units of grams per square
meter. In some cases, it may be desirable to set the proxy
mass loading thresholds according to the vertical resolution
of the model output. For instance, with a vertical resolution
of FL50 (flight level 50), approximately 1.5 km, modeled av-
erage concentrations of 0.2 mgm−3 which are one layer thick
would result in mass loadings of 0.3 gm−2.

6.2 Qualitative comparison

A qualitative comparison between modeled and forecast data
provides context for discussion of the verification metrics.
Consequently we start the discussion with a side by side com-
parison of composited VOLCAT observations and HYSPLIT
model output of ash column mass loadings shown in Fig. 8.
Six time periods are shown, which range from 4 to 16 h after
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Table 2. Summary of measures categorized by the main aspect of forecast performance they evaluate.

Name Summary

Are the forecast probabilities well calibrated?

Reliability diagram made up of the refinement distribution and calibration function
Refinement distribution histogram which indicates forecast sharpness
Calibration function ideally lies along 1 : 1 line

Does the ensemble satisfy the consistency condition?

Rank histogram flat histogram is ideal

Is the forecast better than a reference forecast?

Brier skill score (BSS) 0 (worst) to 1 (best)

At what spatial resolution does the forecast have skill?

Fractions skill score (FSS) similar to BSS as a function of spatial resolution
0 (worst) to 1 (best)

What is the frequency bias of the forecast?

Asymptotic fractions skill score (AFSS) 0 (worst) to 1 (best)

What probability threshold is appropriate for risk-based approaches?
How well does the forecast classify above and below mass loading threshold areas?

Precision recall curve (PRC) plots precision vs. POD for different probability thresholds
Precision 0 (worst) to 1 (best)
Probability of detection (POD) 0 (worst) to 1 (best)
Receiver operating characteristic (ROC) plots POD vs. POFD for different probability thresholds
Probability of false detection (POFD) 0 (best) to 1 (worst)

General measure

Area under the PRC curve (AUPRC) 0 (worst) to 1 (best)

Method to spatially coarsen the probabilistic forecast

Neighborhood ensemble probability (NEP) used in FSS, AFSS, and PRC

the eruption start time. The evolution of the ash cloud can be
described as follows.

Part of the ash cloud is stretched in the north–south direc-
tion. This piece is initially located to the west of the volcano
but gradually moves to the east. As it moves east, it becomes
longer and thinner and forms a bow, as the parts to the north
and south of the volcano move more slowly. By 12:00 UTC,
this line of ash has broken into three small areas: one just to
the east of the volcano, which has the highest retrieved top
heights of around 10–11 km; one to the south with the low-
est retrieved top heights of between 5–7 km; and one to the
northwest with retrieved top heights of between 7–9 km. Pre-
sumably there might be ash at very low concentrations still
connecting the pieces.

At 00:00 UTC, another part of the cloud is located to the
southeast of the volcano. This portion breaks off from the
piece discussed above by 04:00 UTC and moves to the south-
east. By 08:00 UTC, this piece is no longer observed.

The model run shown reproduces the general trend fairly
well. However, the placement and shape of the line of ash
are not reproduced perfectly. In many of the model runs, in-
cluding this one, the simulation does not stretch the line far
enough north nor are the placement and shape of the south-
east piece of ash correct. The two pieces of ash remain at-
tached in the model runs for a longer period of time which
results in a v shape for the modeled cloud. The southeast
piece of ash remains above the threshold for much longer in
the simulation.

In general, all the individual model runs follow these
trends. Model runs which utilize the inversion algorithm for
source determination tend to show better qualitative agree-
ment. However, the exact evolution of the ash cloud is not
faithfully reproduced by any run.
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Figure 8. Evolution of observations and model results for RunB for emissions determined from the inversion algorithm incorporating 3 h of
observations from 21 October, 21:00 UTC, through 22 October, 00:00 UTC. The time stamp for each indicates the beginning of a 1 h average.
Thus the top row is a 1 h forecast, the second row is a 4 h forecast, and so forth. The black triangle shows the location of the vent. Note that
the color scale changes for each time period. The left panel shows composited VOLCAT data. The middle panel shows model output. The
left and middle panels have same color scale. The right panel shows composited VOLCAT data in dark green, while the modeled data are in
light purple. Units on all color bars are grams per square meters.
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6.3 Agreement in threshold level and agreement in
percentile level

For probabilistic forecasts we follow Galmarini et al. (2004).
Agreement in threshold level (ATL) is the normalized num-
ber of ensemble members which predict values above a given
threshold. It can also be referred to as ensemble-relative fre-
quency of exceedance. Figure 9c shows the number of model
runs exceeding a given mass loading threshold. Figure 9e
shows an example of the agreement in percentile level (APL),
which is the value at each location for which a given percent-
age of the model runs is smaller. This example shows con-
centrations for which 84 % of the runs (26/31) gave smaller
concentrations and 16 % of runs (5/31) gave larger concen-
trations. An APL with a percentile of 50 % would provide the
median values, and an APL with a percentile of 100 % would
provide maximum values.

A binary predictand can be recovered from the ATL by ap-
plying a probability threshold. In Fig. 9d a probability thresh-
old of 16 % (5/31 ensemble members) is applied to (c). A
binary predictand can be recovered from the APL by apply-
ing a mass loading (or concentration) threshold. In Fig. 9f a
threshold of 0.2 gm−2 was applied to (d). As shown, apply-
ing a probability threshold of the APL subtracted from 100
to the ATL for a given mass loading threshold (Fig. 9d) is
equivalent to applying the quantitative threshold to the APL
(Fig. 9f).

6.4 Dosage and ash cloud extent

Some sources indicate that it is dosage rather than concen-
trations that are the relevant factor for airlines (Prata et al.,
2019; Hirtl et al., 2020). To compute a dosage from gridded
concentrations, just sum over the time spent in each grid cell,
ti , multiplied by the concentration in the grid cell, Ci(t).

D =
∑

i

tiCi(ti) (6)

If velocity is constant, then D is not sensitive to spatial
averaging that is performed parallel to the flight path.

For the probability of exceeding a critical dosage Dc, this
equation should be applied to each ensemble member and
ensemble-relative frequency of exceeding the dosage com-
puted from the resulting ensemble of dosages, P (D > Dc).

The most straightforward way to verify forecast P (D >

Dc) would be to use data from aircraft fitted with sensors that
can measure ash concentrations. However, until such data be-
come widely available, we might ask what the verification
of the probability of exceedances of mass loadings can tell
us about the probability of exceedances of dosages along a
flight route.

The probability of exceeding a dosage through a certain
grid cell, xj , can be related to the probability of exceeding
a concentration in that grid cell. However, combining these
utilizing the probability of exceeding a concentration or ATL

to get the probability of exceedance of dosage along a route
containing multiple grid cells is not possible because infor-
mation about the relationship between concentrations in ad-
jacent grid cells for each member is not preserved by the ATL
field.

A dosage could also be computed from an applied per-
centile level as in Hirtl et al. (2020) which utilizes the 75 %
percentile level to produce a concentration field similar to
that shown in Fig. 9e. This seems straightforward, but as for
the APL, the relationship between concentrations in adjacent
grid cells for each member is not preserved by the APL field
and it is not clear what such a dosage represents. If the en-
semble members have significant spread in space, as occurs
here, the dosage would be too conservative for a high APL
as the planned route would essentially take the plane through
multiple instances of the cloud. On the other hand if too small
an APL is used, high concentrations in an area may be missed
entirely. As each ensemble member may predict a high con-
centration but in a slightly different place, the probability that
a high concentration somewhere in the area exists could be
high while the probability at each spatial location is low.

If dosage is the relevant quantity, then predicting the ex-
tent of the ash cloud accurately is critical. Assuming airspeed
is around v = 250 ms−1 and the dosage threshold is around
Dt = 14.4 gsm−3 (Prata et al., 2019), then the distance the
aircraft can safely travel through ash is given by

d =
Dt

C
v. (7)

If this is the case, even if the largest concentrations that are
expected in the distal ash cloud are 10 mgm−3, then only ash
areas with a width larger than d = 360 km (about 4◦) are of
concern.

Under these circumstances, accurately predicting the spa-
tial location of small areas of ash cloud may not be partic-
ularly important. Instead predicting the time at which the
ash cloud is small enough to no longer be of concern be-
comes important. Simply comparing the area of the obser-
vations to area of the simulations over time as in Fig. 10
provides information on whether the simulation is captur-
ing the evolution and end of life of the ash cloud correctly.
Without bias correction, both RunA and RunM overpredict
the lifetime of the ash cloud significantly. The extent of
lower mass loading of ash (0.2 gm−2) continues to increase
through 12:00 UTC (Fig. 10a left column). In contrast, the
extent of the higher mass loadings follows the observations
more closely (Fig. 10a right column). This mismatch occurs
because the spatial gradient of the mass loading field is much
steeper in the observation than in the simulation as can be
seen in Fig. 8. This could be an indication that the modeled
turbulent dispersion which controls the spread of the ash is
not reproducing what is observed.

Applying the bias correction brings the simulated areas of
both the lower and higher mass loadings in line with the ob-
served area (Fig. 10b). For some ensemble members the bias
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Figure 9. Observations and model forecast for 22 October 2020, 06:00 UTC. (a) VOLCAT observations. (b) One member of the HYSPLIT
dispersion ensemble using the gec00 control run from the GEFS meteorology. (c) Number of ensemble members showing mass loading
above 0.2 gm−2. If normalized by the number of ensemble members (31), this would be the ATL. (d) Areas above a 16 % ensemble-relative
frequency threshold (> five members) (e) Concentrations at APL of 84 %. Note that the color scale is designed to convey information
relevant to the thresholds described in Sect. 6.1 (f) Areas above the 0.2 gm−2 threshold in the APL of 84 %. No bias correction applied to
the simulations.

correction produces much too high areas at some times. This
is because a positive shift sometimes increases the area above
the threshold too much.

Applying the bias correction calculated at 00:00 UTC to
the forecasts also improves the estimation of the total area
above the threshold significantly for many of the ensemble
members. For some members in which the bias correction
has a positive shift at 00:00 UTC, the forecast area does be-
come too large. This can be ameliorated by applying only the
multiplicative correction when the shift is positive.

We will see later that allowing the positive shift helps en-
sure that a high probability of detection can be achieved,

which is important for a strategy of total avoidance of areas
of ash.

6.5 Rank histogram and reliability diagram

The reliability diagram, which is made of up the refinement
distribution and calibration function, illustrates how well cal-
ibrated the modeled probabilities are. The diagram is com-
puted from the ATL field which shows the modeled probabil-
ity of exceeding a given threshold at each observation point.
The modeled probabilities take on values of yi = i/Nens,
where i is an integer between 0 and the number of ensem-
ble members, Nens, which is 31 here.
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Figure 10. Area above the threshold as a function of time. The left column shows the area above 0.2 gm−2 threshold, and the right column
shows area above 2 gm−2 threshold. Pixel size is 0.1◦× 0.1◦. Thin lines are each ensemble member. (a) RunM with no bias correction. (b)
RunM with bias correction computed at each time period. (c) RunM with bias correction computed at 22 October, 00:00 UTC. (d) RunM with
bias correction computed at 22 October, 00:00 UTC and no positive shifts allowed. (e) RunA with bias correction computed at 22 October,
00:00 UTC and no positive shifts allowed.
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The refinement distribution is a histogram of how often
each modeled probability, yi , occurred. It provides informa-
tion on the sharpness of the forecast. According to Wilks
(2011b) “Forecasts that rarely deviate much from the cli-
matological value of the predictand exhibit low sharpness.
By contrast, forecasts that are frequently much different than
the climatological value of the predictand are sharp.” As the
presence of volcanic ash in the atmosphere is relatively rare,
we take the climatological value to be a low probability –
near 0 %. Thus we will describe forecasts with many values
of large yi as sharper than those with few values of large yi .

Refinement distributions for various time periods and mass
loading threshold levels are shown in the right-hand columns
of Figs. 11 and 12. These figures are the same except that
Fig. 11 is for RunM while Fig. 12 is for RunA. We only
look at 0.1, 0.2, and 2 gm−2 thresholds because there are few
points for higher threshold levels. The number of counts at
yi = 0 is the number of times no ensemble member predicted
an above-threshold value. This number is domain dependent,
but the number of counts for the rest of the bins is not. For the
earlier time periods, overlap between the ensemble members
was common and the ensemble often expressed high confi-
dence (near 100 %) that values were above the threshold. For
later forecast times, the frequency with which the ensemble
has high confidence in the forecast decreases. For example in
Fig. 11b there is never more than 60 % agreement among en-
semble members that mass loading is above 2 gm−2. These
later forecasts can be described as less sharp. In general, bias
correction decreased the sharpness of the forecasts. This oc-
curred because the reduction in the area above the threshold
also reduced overlap between ensemble members.

The calibration function is p(o1|yi), giving the probability
of observing the event defined as o1 given the modeled prob-
ability of the event, yi (Wilks, 2011b). Here the event, o1,
is that the mass loading exceeded the given threshold. Cal-
ibration functions for different mass loading thresholds are
shown in the middle columns of Figs. 11 and 12. To calculate
each point on the calibration function, the fraction of times
the observation was above the given threshold is calculated
for each yi . If the number of yi points is low, then the esti-
mated value of p(o1|yi) will have more uncertainty. Ideally,
the calibration function lies along the 1 : 1 line. For example,
we would expect that if we look at all the times the modeled
probability was 50 %, half the time the event would be ob-
served and half the time it would not be observed. When the
function lies below the 1 : 1 line, as it does here, the mod-
eled probabilities are overconfident. For instance a point at
(0.80,0.50) means that when the model predicted there was
an 80 % chance of occurrence, the actual event was observed
only 50 % of the time. The bias correction did not have much
of an effect on the calibration function. The high-confidence
forecasts remained overconfident. The improvement shows
up only in the refinement distribution, where we saw that the
bias correction reduced the number of these high-confidence
forecasts or the sharpness. Sharp forecasts are only desirable

if they are reliable, so the reduction in sharpness was appro-
priate.

The rank histogram evaluates whether the ensemble sat-
isfies the consistency condition (Wilks, 2011a, b). The rank
histograms shown in the left columns of Figs. 11 and 12 are
constructed from all points at which either the observation
or at least one of the simulations was above 0.1 gm−2 and
are constructed from forecasts for multiple time periods. The
values at each grid point of each simulation as well as the ob-
servation are ordered from least to greatest and the rank of the
observation is recorded in a histogram. When the observation
has the same value as several simulations, then the count for
that observation is divided evenly among those bins. This oc-
curs frequently in this case because there are many points at
which the observation as well as multiple simulations have 0
mass loadings.

Without bias correction, the rank histograms for RunM
and RunA show a high over-forecasting bias at all time pe-
riods. Too frequently the observation is the lowest or one of
the lowest values, which is often 0. The bias correction proce-
dure reduces the over-forecasting bias significantly. The use
of the inversion algorithm for source determination also im-
proves the rank histogram.

With the bias correction in place, the rank histogram ex-
hibits a U-shape at the earliest times. The U-shape indicates
that the ensemble is overconfident. The ensemble members
overlap with each other more than they overlap with the ob-
servations. This shows up in the reliability diagram as a line
which tends to be flatter than the 1 : 1 line so that high mod-
eled probabilities correspond to lower actual probabilities.

At later forecast times, the rank histogram with bias cor-
rection becomes flatter towards the left of the distribution and
then tends to smoothly decrease toward the right half of the
distribution, with an uptick toward the second to last bin and
an abrupt decrease in the last bin. The flatness on the left-
hand side is mainly due to areas in which the observation and
many ensemble members show below-threshold mass load-
ings. The smooth decrease with the slight uptick toward the
right is due to the ensemble members overlapping more with
each other than with the observation. The uptick occurs in the
second to last bin rather than the last bin because a few en-
semble members had a high-frequency bias at later times due
to the addition of a constant in the bias correction. Thus the
observation was rarely the highest value but often the second
highest value. If the bias correction was performed so as not
to allow the addition of a constant, then the uptick occurred
in the last bin.

As forecast time increases, the ensemble members overlap
less and less with each other which is indicated in the re-
finement distribution. The calibration function becomes flat
with all simulated probabilities corresponding to a low ac-
tual probability. The rank histogram becomes quite flat on
the lower end indicating a large number of points with below-
threshold values for the observations and more than half the
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Figure 11. Rank histograms (left column), calibration function (middle column), and refinement distribution (right column) for RunM with-
out bias correction (blue bars and solid lines) and with bias correction (red bars and dotted lines). Bias correction determined at 00:00 UTC
and allowing positive shifts. Rank histograms are for all points above 0.1 gm−2. Calibration function and refinement distributions are for
three different thresholds shown in the legend. Each row is for a different time period on 22 October 2020 as indicated in the gray box.

ensemble members. This is due to increasing difficulty in
predicting the location of the ash.

Utilizing the inversion algorithm to determine the source
term improved the rank histogram and reliability diagram.

As time passes, the forecast approaches but does not reach
a situation in which none of the ensemble members over-
lap with each other or with the observation. In such a situa-
tion, the rank histogram will be perfectly flat if the average

area covered by the ensemble members is the same as the
area covered by the observations. If on average the ensemble
members covered more area but there was still no overlap,
then the first bin in the rank histogram would be populated
more, indicating over-forecasting bias, while if the ensem-
ble members covered less area on average then the last bin
in the rank histogram would be populated more, indicating
under-forecasting bias.
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Figure 12. Rank histograms (left column), calibration function (middle column), and refinement distribution (right column) for RunA with-
out bias correction (blue bars and solid lines) and with bias correction (red bars and dotted lines). Bias correction determined at 00:00 UTC
and allowing positive shifts. Rank histograms are for all points above 0.1 gm−2. Calibration function and refinement distributions are for
three different thresholds shown in the legend. Each row is for a different time period on 22 October 2020 as indicated in the gray box.

The rank histogram might look very good in such a situ-
ation, indicating that the ensemble is providing accurate in-
formation on the size of the ash cloud. However the relia-
bility diagram would reveal that the ensemble is not able to
provide information on the actual location of the ash cloud.
The refinement distribution would show that the forecast has
no sharpness. Values of yi would be limited to only 0 % and
1/Nens %. The calibration function would consist of only two

points. The point at yi = 0 would be associated with a finite
chance of an observation, while p(o1|(1/Nens))= 0.

6.6 Fractions skill score and Brier skill score

So far we have seen that, especially with bias correction, the
model ensemble can capture the area and qualitative structure
of the observed ash cloud but struggles to capture the exact
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placement and shape. By utilizing the fractions skill score
(FSS) we can investigate whether the forecasts become more
skillful at a different spatial scale.

FSS determines the resolution at which the forecast has
skill. It was developed to evaluate precipitation forecasts
(Roberts and Lean, 2008) but has also been used to evalu-
ate volcanic ash forecasts (Harvey and Dacre, 2015; Dacre et
al., 2016). For deterministic forecasts, the gridded data with
domain size of Nx ×Ny are converted to a binary field us-
ing a threshold. Observed and modeled fractions are then
computed for different neighborhood sizes, n. Here that is
achieved by convolution of the field with a square kernel of
size n. The result can be interpreted as gridded data of the
same size and resolution in which the fraction indicates the
probability of finding ash above the threshold within an area
n× n centered at that pixel. The mean square error (MSE)
skill score is then computed for each n, and the FSS is com-
puted by comparing the MSE of the forecast with a reference
forecast.

MSE(n)=
1

NxNy

Nx∑
i=1

Ny∑
j=1

((O(n)i,j −m(n)i,j )2 (8)

FSS(n)= 1−
MSE(n)

MSE(n)ref
, (9)

where O(n) is the modeled fraction, m(n) is the modeled
fraction, Nx and Ny are the number of grid cells in the x

and y directions, and N is used hereafter to refer to the larger
of these.

The MSE described in Roberts and Lean (2008) is the
same as the Brier score (BS), and the FSS is equivalent to the
Brier skill score (BSS) as defined in Wilks (2010, 2011b) and
utilized by Zidikheri et al. (2018) and Zidikheri and Lucas
(2020). The BSS is commonly used to evaluate probabilistic
forecasts.

When computing the FSS, it is standard for the reference
forecast to be defined as the largest possible MSE that can be
obtained from the forecast and observed fractions (Roberts
and Lean, 2008).

MSE(n)ref =
1

NxNy

Nx∑
i=1

Ny∑
j=1

(
O(n)2

i,j +m(n)2
i,j

)
(10)

Although the FSS generally has been used with a deter-
ministic forecast as a starting point, there is no reason that
the modeled field, mi,j , cannot be probabilistic output con-
sisting of values between 0 and 1. This combines the prob-
ability of the ensemble predicting an above-threshold event
at the grid square with the probability of the model predict-
ing an above-threshold event within a certain area. Ma et al.
(2018) refers to this as the neighborhood ensemble proba-
bility (NEP) and found that it generally performed better for
precipitation forecasts than the ensemble mean.

At some value of n≤ 2N − 1, the forecast becomes uni-
form; the same fraction is in each grid square and these frac-

tions are proportional to the fraction of observed values, fo,
and the fraction of modeled values, fm. At this point the
value of the FSS is given by the asymptotic fractions skill
score (AFSS).

AFSS= 1−
(fo− fm)2

f 2
o + f 2

m
=

2fofm

f 2
o + f 2

m
(11)

If there is no frequency bias, then AFSS= 1. However, un-
less a pixel matching technique is used (Harvey and Dacre,
2015; Dacre et al., 2016), generally there will be a frequency
bias and AFSS < 1. It should be noted that because zero val-
ues outside of the domain are used in the convolution to cal-
culate values at the edges of the domain, contrary to what is
implied in Roberts and Lean (2008), the FSS is not always
monotonically increasing and can obtain values somewhat
larger than the AFSS when AFSS < 1 and n < 2N − 1.

Figure 13 shows the AFSS for RunM and RunA as a func-
tion of time. Figures 14 and 15 show FSS for RunM and
RunA with and without bias correction at four different fore-
cast time periods. A threshold of 0.2 mgm−2 was utilized.
The score for a uniform and random forecast is also shown
for comparison (Roberts and Lean, 2008).

The bias correction has a significant impact on FSS,
mainly by decreasing the frequency bias and thus increasing
the AFSS. A bias correction procedure which does not allow
the addition of positive values (Figs. 14 and 15, right column)
produced significantly better FSS scores for the NEP and en-
semble mean than one that did allow the addition of positive
values (Figs. 14 and 15, middle column) at larger scales but
slightly worse FSS scores at the smaller scales. Allowing the
addition of positive values in the bias correction led to more
spread in the FSS values of the individual ensemble mem-
bers.

As expected, skill decreases with time. The scale at which
the NEP became greater than the uniform forecast in the third
column reached about 2.5◦ for the 09:00–10:00 UTC fore-
cast. In agreement with Ma et al. (2018), we found the NEP
was more skillful than the ensemble mean.

6.7 Precision recall curve

Many evaluation measures in use are based on a 2× 2 con-
tingency table in which the joint distribution of observations
and forecasts can be split into four groups (Barnes et al.,
2009; Wilks, 2011b; Miao and Zhu, 2021). The groups are
the number of occasions that both the forecast and the ob-
servations are above the threshold (a); the forecast is above
the threshold but the observation is not (b); the forecast is
not above threshold but the observation is (c); neither the
observation nor the forecast is above the threshold (d). y1
denotes that the forecast is above the threshold, while y2 in-
dicates it is not. o1 indicates an observation above the thresh-
old, while o2 indicates an observation below the threshold.
This section will discuss the precision, probability of detec-
tion (POD), probability of false detection (POFD), and prob-
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Figure 13. AFSS. Top row (a–c) shows RunA. Bottom row (d–f) shows RunB. Each column shows FSS for a different bias correction
indicated by the text at the top of the column. Thin lines not shown in the legend are individual ensemble members. The time is for the
beginning of the 1 h forecast time period.

ability of false alarm, (POFA). We follow Barnes et al. (2009)
for the naming conventions of these quantities.

Precision= P (o1|y1)=
a

a+ b
(12)

POD= P (y1|o1)=
a

a+ c
(13)

POFD= P (y1|o2)=
b

b+ d
(14)

POFA= P (o2|y1)=
b

a+ b
(15)

Evaluation statistics which employ d are generally heavily
dependent on the domain chosen as the forecast usually con-
sists of one or possibly a few clouds of ash, surrounded by a
large ash-free area. d can be changed from a small to a large
number simply by cropping the domain close to the cloud or
including a large area around the cloud. For instance, a mea-
sure such as POFD is highly sensitive to the domain size.
The BS is sensitive to domain size, but skill scores, such as
the BSS, discussed earlier, are not sensitive to domain size
because they utilize a reference forecast with the same do-
main size.

The following steps are used to create contingency tables
for the probabilistic forecasts. First the ATL field is computed
for a given mass loading threshold. The ATL field consists
of values from 0 % to 100 %. To convert the ATL field to
a binary field, a probability threshold is applied as shown
in Fig. 9c. Alternatively one could start with the APL field

shown in Fig. 9e and then apply the mass loading threshold
to arrive at Fig. 10d.

The receiver operating characteristic (ROC) is a com-
monly used graphical forecast verification tool which plots
POD vs. POFD for various probability thresholds applied to a
probabilistic forecast (Wilks, 2011b; Saito and Rehmsmeler,
2015; Miao and Zhu, 2021). Generally speaking as the prob-
ability threshold increases, both POD and POFD decrease.
However, some care must be taken in the interpretation of
the curves as POFD, which is plotted on the x axis of the
ROC curve (not shown), is dependent on d and thus can be
increased or decreased by changing the size of the domain.

The precision recall curve (PRC) is a more appropriate
evaluation tool (Saito and Rehmsmeler, 2015; Miao and Zhu,
2021) than the ROC as it does not depend on d. The PRC
curve plots the precision vs. the POD. Although the curves
tend to be more complicated than the ROC, the interpreta-
tion is still relatively straightforward.

The area under the curve (AUC) for either the ROC or PRC
can be utilized to compare different forecasts. For both cases,
an area closer to 1 is indicative of a better forecast.

Precision recall curves are shown in Fig. 16. Points toward
the right side of the curve are for low-probability thresholds.
The first point on the right is a 0 % probability threshold or
uniform forecast in which all points in the scene are assumed
to have some probability of ash. In this case the POD= 1 and
the precision is equal to the fraction of ash in the scene. The
value of this point is also considered the baseline. When the
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Figure 14. FSS vs. neighborhood size for RunM. Yellow, orange, and pink lines not shown in the legend are the results for individual
ensemble members. Each row shows FSS for a different time period on 22 October 2020 indicated in the gray box. Each column shows FSS
for a different bias correction indicated by the text at the top of the column. Note the change in scale on the x axis for rows (c) and (d).

area under the PRC curve is larger than the baseline value,
the forecast skill is better than a uniform forecast. Note that
the baseline value is dependent on the domain size.

As the probability threshold increases, the POD either
stays the same or decreases, while the precision can either
increase or decrease. For this case precision tends to in-
crease sharply and then level off, while POD decreases. In
addition, the area under the PRC curve drops rather quickly
with increasing forecast time. This is due mainly to a de-
crease in precision but a decrease in POD is also a significant
factor. For the time period from 09:00–10:00 UTC, a low-
probability threshold of 1/31= 3 % does produce a POD of 1
indicating complete overlap with the observations. However,
precision is also very low at this point: around 5 %. Increas-
ing the probability threshold further causes the POD to drop
below 20 %. The baseline value also decreases with forecast
time largely because the domain increases. We crop the scene
in a rectangular area that will include all ensemble members
as well as the observation.

The bias correction only has a small effect on the PRC
curve. It tends to increase precision, mostly at higher-
probability thresholds. For the bias correction shown in the

figures, which allows positive shifts, the POD is sometimes
improved at low-probability thresholds due to a few ensem-
ble members with positive shifts covering a much larger area.
If no positive shifts are allowed in the bias correction, then
the POD is generally decreased.

The bias correction on the individual ensemble members
is not effective at improving the PRC curve because it does
not reduce the spatial spread of the entire ensemble. While
the area covered by individual ensemble members is sig-
nificantly decreased for many of the ensemble members by
the bias correction, the area covered by the lower-probability
thresholds does not change much.

What does improve the PRC curve is using a coarser spa-
tial scale. In order to look at different spatial scales, we uti-
lize the NEP, which was introduced in Sect. 6.6. To calculate
the PRC curve, the NEP with various probability thresholds
is compared to the observed field as illustrated in Fig. 17.
First, a mass loading threshold is chosen: here, 0.2 gm−2.
The observed field is converted to a binary field (Fig. 17a),
and the simulated field is converted to ensemble frequency
of exceedance (Fig. 17d). Then a convolution between these
fields and a square kernel of size n, the neighborhood size,
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Figure 15. FSS vs. neighborhood size for RunA. Yellow, orange, and pink lines not shown in the legend are results for individual ensemble
members. Each row shows FSS for a different time period on 22 October 2020 indicated in the gray box. Each column shows FSS for a
different bias correction indicated by the text at the top of the column. Note the change in scale on the x axis for rows (c) and (d).

is performed (Fig. 17b and e). Finally the simulated field is
converted back to a binary field by the application of succes-
sive probability thresholds. The observed field is converted
back to a binary field by setting any pixel that is above 1/n2

to one. This expands the observed field to all pixels within a
distance n of the original field, the rationale being that these
pixels have a 100 % probability of ash within a distance n.
The fields shown in Fig. 17c and f are then used to compute
the POD and precision for the PRC curve.

This method has some advantages over simply using a spa-
tial average of the observed and modeled fields. First, we
saw that the NEP performed fairly well as measured by the
FSS. Secondly, spatial averaging will tend to decrease mass
loadings especially for the small areas of ash considered in
this case and would result in large areas and, at some time
periods, the whole observed and/or simulated cloud being
below the 0.2 gm−2 threshold. The method considered here
provides information on how well the ensemble can predict
when ash is above the threshold within a neighborhood of
size n.

Note that Folch et al. (2022) utilize what they call a gen-
eralized POD, POFA, precision, and figure of merit in space
(FMS). Folch et al. (2022) refer to POFA as the false alarm
rate, but this terminology can be confusing as it has been

used to describe both Eqs. (14) and (15) (Barnes et al.,
2009). These quantities could be computed for precision or
any quantity computed from the contingency table. Their use
may be simpler for comparing different forecasts. On the
other hand, we find the PRC curve to concisely convey in-
formation that is relevant to decision makers.

7 Conclusions

The flow field stretches and folds the ash cloud into complex
three-dimensional shapes, the exact placement and shape of
which can be quite difficult to predict. Due to the chaotic na-
ture of the flow field, a probabilistic approach is necessary.
As there is little turbulent mixing high in the atmosphere,
these areas are likely to have a high concentration gradient,
and thus fairly high concentrations of ash may exist within a
small area. The location of those areas may be highly uncer-
tain, and to obtain a high-POD, a low-probability threshold
for the ensemble frequency of exceedance may be needed. A
low precision may be the trade-off. However, if dosage rather
than concentration is the relevant quantity, then ensemble-
relative frequency of exceedance or ATL or APL should
not be utilized but instead the probability of exceeding the
dosage should be made from the dosage calculation for each
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Figure 16. Top row (a–c) is RunM comparing bias-corrected to non-bias-corrected at the original spatial resolution. Second row (d–f) is
RunM with bias correction and two different neighborhood sizes. Third row (g–i) is the same as the second row but for RunA. First (a, d, g)
and second columns (b, e, h) show PRC for different time periods. Third column (c, f, i) compares AUC and baseline. Precision and POD are
computed for every probability threshold possible. For clarity, symbols are only shown for probability thresholds of 3 %, 26 %, 48 %, 74 %,
and 94 % (corresponding to 1, 8, 15, 23, and 29 members out of 31 predicting the event). Additionally a red star is placed on the symbol
representing the 48 % probability threshold.

ensemble member. If dosage is the relevant quantity, then
predicting the exact location of small areas of ash may be
less important than predicting their extent.

We utilized one simple case that is representative of com-
mon medium-sized eruptions in the northern latitudes with
the goal of developing a workflow which includes source
determination, bias correction, and forecast verification for
probabilistic forecasts of ash for aviation. The workflow
could be relevant for other applications in which gridded ob-
servations of the entire pollutant cloud are available.

When satellite retrievals of column mass loading are avail-
able, an inversion algorithm to determine height and time-
resolved emissions above the vent is an effective method of
improving the forecast. In agreement with Chai et al. (2017),

we found that utilizing all clear-sky pixels in the inversion
tended to depress emission estimates due to transport er-
rors in the simulation. However, utilizing no clear-sky pix-
els tended to produce emission estimates which were not as
realistic or stable. For instance, the emission peak could be
at the earliest time considered and was more dependent on
the time range of the observations used. Using clear-sky pix-
els which were several pixels away from the observations al-
lowed for some transport error while removing from consid-
eration emissions which produced areas of ash well removed
from the observations.

This case illustrated the effectiveness of the CDF match-
ing bias correction technique. The method is simple and fast,
does not rely on spatial overlap between the simulated and
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Figure 17. (a) Composited VOLCAT observations above 0.2 gm−2. (b) VOLCAT observations from (a) convolved with a square kernel of
size 15×15 pixels (1.5◦). (c) Pixels from (b) with values above 1/(15×15). (d) Ensemble-relative frequency of exceedance of 0.2 gm−2. (e)
The NEP at 1.5◦ spatial scale, i.e., values from (d) convolved with the square kernel. (f) Values from (e) which are above 2/31= 0.06= 6 %.

observed fields, and can be utilized to improve the short-term
forecast. One factor left to be determined is whether allow-
ing positive shifts in the forecast values is desirable. Allow-
ing positive shifts can increase the POD but may increase
bias in some ensemble members at later forecast times and
decrease the ensemble skill at larger neighborhood sizes (see
Sect. 6.6). The technique as presented here assumes that it
is desirable for the model to reproduce the observed CDF
and does not consider possible errors in the observed CDF.
The CDF matching is not affected by errors which do not
change the CDF of the observations, e.g., errors with Gaus-
sian or uniform distribution and zero mean. However it is not
unusual for mass loading retrievals to miss parts of the ash
cloud due to meteorological cloud cover which could result
in bias in the observed mass loadings. If the model bias is
potentially very large, as it was for RunA initially, then uti-
lizing the CDF matching with biased observations may still
result in a smaller model bias. Ideally any bias in the obser-
vations would be corrected first. This could possibly be done
by identifying areas which may be covered by meteorologi-
cal cloud as well as identifying the shape the observed CDF
should take.

The fit from the CDF matching may also simply be used
for identifying how far apart the modeled and observed CDFs
are in a similar fashion to the Kolmogorov–Smirnov (KS)
parameter that has been used (Stein et al., 2015a; Crawford
et al., 2016).

We introduced a suite of verification measures specifically
for probabilistic forecasts of volcanic ash. The FSS was used
to evaluate both the ensemble mean and NEP and indicates
the spatial scale at which the ensemble has skill, while the

AFSS measures bias. The NEP, which combines ATL or
ensemble-relative frequency of exceedance with the proba-
bility of finding ash within a neighborhood, n, performs bet-
ter than the ensemble mean. The rank histogram and relia-
bility diagram provide information on ensemble consistency,
calibration, and sharpness. The PRC curve provides POD
and precision for different probability thresholds, informa-
tion that may be used in risk-based approaches to flight plan-
ning.

Verification was performed on forecasts which utilized
observations up to 00:00 UTC on 22 October 2020 for the
source determination and observations up to 01:00 UTC for
the bias correction. The time periods for verification were
within the 12:00–13:00 UTC forecast time, at which point
the observed ash cloud covered less than 100 pixels of the
size 0.1◦× 0.1◦. Bias increased with forecast time. The spa-
tial scale at which the forecasts showed skill increased with
time. Reliability, resolution, and sharpness of the probabilis-
tic forecast also decreased with forecast time.

This work paves the way for future investigations and de-
velopment. We found evidence similar to the findings of de
Leeuw et al. (2021) and Cai et al. (2022) that the modeled
dispersion of the ash cloud does not match the observations.
Further work should investigate possible reasons for this,
including revisiting model turbulence parameterizations for
high altitudes.

Considerable work may be done to improve the construc-
tion of the ensemble. For instance, using an ensemble reduc-
tion or weighting technique (Stein et al., 2015b; Zidikheri
et al., 2018) may be able to improve the ensemble perfor-
mance. The verification measures introduced here are suit-
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able for understanding how such techniques affect ensemble
performance.

Appendix A: Meteorological conditions

Profiles of some of the model winds and temperature as well
as time series of the planetary boundary layer height (PBLH)
and precipitation are shown in Fig. A1.

The temperature profile indicates that the tropopause is
around 300 mB, which is approximately the height of in-
jection estimated from the inversion algorithm in Sect. 4.3.
Wind shear at and below this altitude is strong with wind
speeds reaching a strong peak around 350 mbar for the GFS
and most GEFS ensemble members and wind direction also
shifting from about 150 to 300◦ over about 5 km height dif-
ference. The inversion algorithm should be more accurate in
conditions of strong wind shear. The height of the PBLH is
not particularly important for this case as ash is injected well
above this height.

Figure A1. Time series of precipitation (a) and PBLH (b). Vertical profiles of wind direction (c), wind speed (d), and temperature (e) on 10
October 2020 at 21:00 UTC. Thin lines not shown in the legend are the different members of the GEFS.
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Appendix B: Particle separation

Three HYSPLIT runs were performed with all inputs iden-
tical except for the particle size. Particle diameters of 0.6,
6, and 20 µm were used. The particle positions were output
once every hour. A Gaussian mixture model (GMM) con-
sisting of 10 Gaussians was fit to the output at each hour as
described in Crawford (2020). The score, Sij , which is the
per-sample average log-likelihood of the fit, was calculated
for the fits at each time. i indicates the particle positions that
the fit was made for, and j indicates the particle positions that
the score was calculated for. Figure B1 shows Sij as a func-
tion of time. The lines for i = j can be used as a reference.
When the score for i 6= j drops below the score for i = j , the
fits for the two particles sizes can be said to be significantly
different. We see that the position of the 20 µm particles be-
comes significantly different than those of the 6 µm particles
at about 22 October 2020, 00:00 UTC. The positions of the
0.6 µm particles do not become significantly different than
those of the 6 µm particles during the period of interest. Fig-
ure B2 illustrates the separation of the 20 and 6 µm particles.
As might be expected, the position of the larger particles is
shifted downwards. Additionally there are far fewer particles
at latitudes below 49◦.

Figure B1. Score, Sij , as a function of time. p0.6, p6, and p20 indicate 0.6, 6, and 20 µm particle positions, respectively. (a) Comparison of
scores for 6 and 20 µm size particles. (b) Comparison of scores for 0.6 and 6 µm size particles.
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Figure B2. Comparison of computational particle positions for 6 and 20 µm diameter particles at one time period. Panels (a) and (c) show
particle positions of 20 µm size particles. Panels (b) and (d) show particle positions of 6 µm size particles. The colors show log likelihood
that the particle belongs in the fit that was created for the particles of other sizes. Thus darker colors indicate particles which have more
displacement.

https://doi.org/10.5194/acp-22-13967-2022 Atmos. Chem. Phys., 22, 13967–13996, 2022



13994 A. Crawford et al.: Evaluation and bias correction of probabilistic volcanic ash forecasts

Appendix C: Particle number

The basic output of a Lagrangian particle model is the po-
sition of computational particles and the amount of mass
each represents. This information is transformed into a con-
centration field by density estimation. HYSPLIT utilizes a
simple bin counting density estimation scheme in which the
total mass in the user-defined bins is found by summing
over the residence time-weighted mass of each particle in the
bin. Then time-averaged concentration is arrived at by divid-
ing by the volume. Although this scheme generally requires
more particles than others, it has the advantage that the num-
ber of particles needed for a simulation can be estimated in a
straightforward way for many model configurations (Craw-
ford, 2020).

C1 Particle number for inversion

We suppose that the quantity of 0.1 gm−2 should be rep-
resented by at least 10 computational particles. Then with
a horizontal resolution of 0.1◦× 0.1◦ at about 54◦ latitude,
the amount of mass on each computational particle should
be no larger than 7.24× 105 g. Therefore the total mass of
each emission chunk which is represented by 2× 104 parti-
cles should be no larger than about 0.0145 Tg. This condition
is generally satisfied for this case.

To test we created runs identical to RunB but with 1×105

particles per emission chunk as well as 2× 103 particles per
emission chunk. Both of these runs produced almost identical
emission estimates; that is, Fig. 4 is almost the same for these
runs.

C2 Particle number for RunA and RunM

For RunA, 2×104 particles were released over a 2 h time pe-
riod. With a mass eruption rate of 3.75×103 kgs−1, a model
time step of 5 min, and an averaging time of 1 h, the lowest
mass loading that the model can produce (from one parti-
cle spending one time step in a grid cell) is 0.0016 gm−2.
The mass loadings of interest are about 100 times this, so we
conclude that the particle number is sufficient.

The situation for RunM is somewhat more complicated.
For the individual runs for the inversion algorithm, 2× 104

particles were used as described above for RunB. Then a
run with emissions that vary in time and space was created
from the emission estimates. Currently HYSPLIT evenly dis-
tributes the number of particles in time and space so when the
emissions are varying, the amount of mass on the computa-
tional particles also varies. This makes a simple calculation
such as done above difficult. To be on the safe side and be-
cause we did not have time constraints on the runs, we ran
with more than 2× 106 particles in total. The exact number
varied for different ensemble members because of the way
we handled emission chunks with essentially zero emissions.

Code and data availability. HYSPLIT code is available at https:
//ready.noaa.gov/HYSPLIT.php (NOAA Air Resources Labora-
tory, 2022). Code which was used to create the HYSPLIT
runs and post-process the results as well as data are available
from a GitHub repository https://github.com/amcz/hysplit_asheval_
notebooks (Crawford, 2022). Data in the form of meteorological
files, HYSPLIT outputs, and satellite retrievals are available upon
request.
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