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Abstract. Unprecedented urbanization in China has led to serious urban heat island (UHI) issues, exerting
intense heat stress on urban residents. Based on the observed temperature and PM2.5 concentrations in Beijing
over 2016–2020, we find diverse influences of aerosol pollution on urban heat island intensity (UHII) under
different circulations. When northerly winds are prevalent in urban Beijing, UHII tends to be much higher in
both daytime and nighttime and it is less affected by aerosol concentrations. However, when southerly and
westerly winds are dominant in rural Beijing, UHII is significantly reduced by aerosol pollution. Using coupled
aerosol-radiation weather simulations, we demonstrate the underlying physical mechanism which is associated
with local circulation and resulting spatial distribution of aerosols. Our results also highlight the role of black
carbon in aggravating UHI, especially during nighttime. It could thus be targeted for cooperative management
of heat islands and aerosol pollution.

1 Introduction

The dramatic global rise of urbanization has led to a rapid
growth of urban populations (Elmqvist et al., 2013) and a
rapid enlargement of urban sizes (Seto et al., 2012). The mas-
sive use of cement and asphalt in urban construction changes
local topography and thermal properties of urban surfaces

(Mohajerani et al., 2017; Voogt and Oke, 2010). Coupled
with elevated anthropogenic heat and air pollutants from
booming human activities, expansion of impervious surface
exacerbates urban warming (Grimmond, 2007; Oke, 1982)
and degrades diffusion of pollutants (Lewis, 2018; Olivier et
al., 2020; Seinfeld, 1989; Zhao et al., 2021), leading to a se-
ries of environmental and social issues (Kumar et al., 2017;
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Mcdonough et al., 2020). Urbanization has been demon-
strated as a critical factor contributing to global warming
(Argüeso et al., 2013; Sun et al., 2016; Wilke et al., 2019)
and more frequent occurrences of extreme high-temperature
events (Sun et al., 2019; Wang and Wang, 2021; Xiao et al.,
2022; Zhou et al., 2020). Emissions of trace gases and par-
ticles from transportation, industries, and residential activ-
ities also threaten health and well-being of urban residents
(Crutzen, 2004; Salma et al., 2015; Wilke et al., 2019).

Different surface properties generated by urbanization
makes cities warmer than surrounding areas, and urban heat
islands (UHI) are thus created by such thermal gradients
(Oke, 1973). The UHI is usually calculated as the temper-
ature difference between urban and surrounding rural areas
(Deilami et al., 2018). It increases the frequency and intensity
of heat waves in urban areas, and thus aggravates heat stress
on urban residents (Cao et al., 2016; Li and Bou-Zeid, 2013;
Santamouris, 2014). The urban heat island intensity (UHII) is
influenced by multiple factors, including ground energy bal-
ance, anthropogenic heat release and sky view factors (Oke
and Stewart, 2012; Xie et al., 2016a, b). Air pollutants es-
pecially aerosols modify surface radiation balance through
aerosol radiative effects (ARE), exerting potential impacts
on UHII (Cao et al., 2016). The ARE reduce the amount of
downward shortwave radiation (SWD) reaching the ground,
reduces sensible heat (SH) flux, and lowers the height of the
planet boundary layer (PBLH) (Satheesh and Krishnamoor-
thy, 2005; Yu et al., 2006), which aggravates the severity of
haze events in China (aerosol-radiation feedback, ARF, Ding
et al., 2016; Gao et al., 2016b; J. Wu et al., 2019; Zhao et al.,
2017). The impacts of aerosols on UHI vary with locations,
seasons, and day or night (Han et al., 2020). Urban areas are
usually the center of pollution with relatively higher aerosol
concentrations than rural areas (Seinfeld, 1989). Under this
circumstance, aerosols can cut down more SWD and result
in stronger reduction of near surface temperature in urban ar-
eas, which reduces UHII in daytime (Li et al., 2018; H. Li
et al., 2020; Longxun et al., 2003; Sang et al., 2000; Yang
et al., 2020). However, absorbing aerosols (e.g., black car-
bon, BC) absorb and release radiation to increase longwave
radiation energy received on urban surfaces, resulting in in-
tensified UHI, especially during nighttime (Cao et al., 2016;
Chen et al., 2018; Zheng et al., 2018).

China has been experiencing unprecedented urbanization
over the past four decades (Gong et al., 2020; Guan et al.,
2018). As the capital city Beijing has achieved a high level of
urbanization (Wang et al., 2019; Zhou et al., 2021), leading to
serious UHI (Miao et al., 2009; Yang et al., 2013). Although
the association between aerosol pollution and UHII in Bei-
jing has been realized, no consensus has been reached (Cao
et al., 2016; Li et al., 2020a; Yang et al., 2021, 2020; Yu et
al., 2020; Zheng et al., 2018). Yang et al. (2020) and Zheng
et al. (2018) found weakened UHI in winter by aerosols in
daytime but enhanced during nighttime. Li et al. (2020a) ar-
gued that aerosol concentrations in southern rural areas are

usually higher than those in urban or northern rural areas of
Beijing, causing a southward shift of UHI. However, Yang
et al. (2021) claimed that aerosols increased UHII in winter
in Beijing in daytime but weakened it during nighttime. The
contradictory results are partly due to the selection of urban
and rural monitoring stations, and a detailed explanation with
numerical experiments is still lacking. Beijing is located in
the North China Plain (NCP), with the Yan Mountains to the
northwest and the Bohai Gulf to the southeast. The special
topography induces local circulation patterns, such as foehn
wind and sea breeze, complicate spatial distribution of near-
surface air temperature and aerosol pollution, and thus the
influences of aerosol pollution on UHI (Bei et al., 2018; Li
et al., 2020b; Q. Wang et al., 2020). The aim of this study is
a better understanding of how aerosol pollution affects UHI
in Beijing using observations over 2016–2020 and a coupled
meteorology-chemistry model. The results would offer valu-
able information on cooperative management of heat islands
and pollution in China.

2 Data and methods

2.1 Observational data

The observed daily average, maximum and minimum tem-
peratures, wind speed and direction from automatic weather
stations (AWS) in Beijing over 2016–2020 were ob-
tained from the National Meteorological Information Cen-
ter (NMIC), China Meteorological Administration (CMA).
Preliminary quality control was implemented by the NMIC,
and potentially wrong records were checked and corrected
(Ren and Xiong, 2007; Ren et al., 2015). We chose two ur-
ban stations, Haidian and Guanxiangtai, and the five rural
stations Huairou, Shangdianzi, Pinggu, Yanqing and Xiayun-
ling (Fig. S1 and Table S1 in the Supplement) to characterize
UHII in Beijing. Hourly PM2.5 concentrations over the same
period were taken from the China National Environmental
Monitoring Center (CNEMC) network.

2.2 Weather research and forecasting model coupled
with chemistry configuration

In this study we used the weather research and forecasting
model coupled with chemistry (WRF-Chem) version 3.6.1 to
explore formation of aerosols and their interactions with ra-
diation and weather (Grell et al., 2005). We configured three
domains with grid resolutions of 81, 27 and 9 km. To cap-
ture the actual land use types better, we used the moderate
resolution imaging spectroradiometer (MODIS) land cover
data in 2010 and 2018 (Fig. S1). We used the carbon-bond
mechanism version Z (CBMZ, Zaveri and Peters, 1999) and
the 8-bin version of the model for simulating aerosol inter-
actions and chemistry (MOSAIC, Zaveri et al., 2008) to sim-
ulate gas phase and aerosol chemistry. We added heteroge-
neous reactions (Gao et al., 2016a) to solve the problem of
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underestimation of sulfate. For other options, we followed
Wang et al. (2022) to use Lin cloud microphysics (Lin et al.,
1983) for cloud microphysics, the Grell 3D ensemble scheme
(Grell, 1993) for precipitation, the rapid radiative transfer
model (RRTM) (Mlawer et al., 1997) for subgrid longwave
radiation and Goddard (Chou et al., 1998) for shortwave ra-
diation. We also used the Noah land surface model (Tewari et
al., 2004) for land-atmosphere exchange, Yonsei University
planetary boundary layer parameterization (Noh et al., 2006)
for boundary layer processes, and the urban canopy model
(UCM, Chen et al., 2011) to include the three-dimensional
city structure and associated energy balance. For anthro-
pogenic emissions, we used the monthly 0.25◦×0.25◦ multi-
resolution emission inventory for China (MEIC 2010 and
MEIC 2018) (Li et al., 2017) in 2010 and 2018. Biogenic
emissions were estimated online using the model of emis-
sions of gases and aerosols from nature (MEGAN, Guenther
et al., 2006), and we did not include open biomass burning
as it was not significant in Beijing during our study period
(Gao et al., 2016b). Meteorological initial and boundary con-
ditions were taken from the 6-hourly National Centers of En-
vironmental Prediction (NCEP) final analysis (FNL) dataset.

The difference in heat storage is one important factor that
affects the diurnal variation of UHII. In the WRF-Chem
model, heat storage is calculated with the land surface model,
and we applied the Noah land surface scheme for non-urban
grids and the urban canopy model for urban grids. In the
Noah land surface scheme, heat storage is calculated using
the following equations:

G=
(
1−Fveg

)
Gb+FvegGv, (1)

Gb =
2λisno+1

1zisno+1
(Tg,b− Tisno+1), (2)

Gv =
2λisno+1

1zisno+1
(Tg,v− Tisno+1), (3)

where Fveg denotes fractional vegetated area, Gb and Gv are
heat storage for bare ground and vegetated ground, respec-
tively, and λisno+1 represents the thermal conductivity of the
surface layer (snow or soil), zisno+1 is the layer thickness of
the surface layer (snow or soil), Tisno+1 represents the tem-
perature of the surface layer of snow (under isno+ 1< 0) or
soil (under isno= 0), and Tg,b and Tg,v stand for ground sur-
face temperature at bare ground fraction and vegetated frac-
tion, respectively. In the urban canopy model, heat storage is
calculated using

G=G0+ 2
∫ zr

0

[
∂(ρbcbTb)

∂t

]
dz, (4)

where G0 denotes the surface heat flux into the ground per
unit area, , zr is the urban layer, and ρb, cb, and Tb represent
the density, specific heat, and temperature of buildings.

2.3 Experimental design

We designed two groups of simulations of a severe haze event
in the winter of 2010 (case_2010) and a light pollution event
in the spring of 2018 (case_2018). Both cases had four sets
of simulations, namely AF, NAF, NBC and Ndust, to explore
the impacts of aerosols on UHII, including roles of scatter-
ing and absorbing aerosols. The AF cases were performed
with actual conditions, while we turned off aerosol-radiation
feedbacks in NAF. The NBC was designed as the simula-
tion that ignored the absorption of black carbon (BC) and
absorption of dust was turned off in Ndust. In case_2010,
the simulation period covered from 11 to 20 January 2010
with the first 5 days as spin-up. The study period included 3
days and nights from 08:00 LST on 16 January to 08:00 LST
on 19 January 2010. It covered an entire severe haze pollu-
tion event in winter, during which UHI was formed and the
wind direction changed over days, providing conditions to
analyze the impacts of ARF on UHII under different circula-
tion conditions. In case_2018, the simulation period covered
from 19 to 28 April 2018 with the first 5 days as model spin-
up time. The study period was from 07:00 LST on 24 April to
07:00 LST on 27 April 2018. It covered a light aerosol pol-
lution in spring and was used to evaluate if the impacts of
aerosols on UHII are consistent under different seasons and
aerosol pollution conditions. As changes from turning off ab-
sorption of dust were negligible, we did not show the results
from Ndust in figures.

2.4 Calculation of UHII

We defined UHIIobs as observed differences in average 2 m
air temperature (T2 m) between all urban stations and all ru-
ral stations. Following Yang et al. (2020), we also calculated
UHIImax and UHIImin as differences in daily maximum tem-
perature (Tmax) and daily minimum temperature (Tmin). As
Tmax often occurs in the afternoon and Tmin usually hap-
pens late at night or in the early morning before sunrise, we
used UHIImax and UHIImin to refer to daytime and nighttime
UHII. For simulated UHII, we defined UHIIsim as the differ-
ence in average T2 m between urban areas and a buffer zone
around the urban area that has the same size as the urban
area, which is similar to the conditions adopted with satellite
products in Zhou et al. (2014). We chose these two different
definitions of UHII for observation and simulation to evalu-
ate uncertainty induced by the spatial limitation of monitor-
ing stations.

3 Results and discussion

3.1 Observational evidence of circulation-regulated
impacts of aerosol pollution on UHII

Figure 1 presents the probability distributions of UHII un-
der different PM2.5 concentrations. On clean days (daily av-
erage PM2.5 concentration below 75 µg m−3), the distribu-
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Figure 1. Probability distribution of UHIIobs (a, d), UHIImax (b, e) and UHIImin (c, f) under clean (a–c) and polluted (d–f) conditions. The
bold curve in each subgraph is normal distribution curve, and µ denotes the average value.

tion of UHII tends to be more towards larger values with a
mean of 2.34 K. It decreases to 1.8 K on pollution days (daily
average PM2.5 concentration above 75 µg m−3) (Fig. 1a, d).
UHII exhibits higher values in nighttime than in daytime.
In both daytime and nighttime, PM2.5 pollution is associ-
ated with decreased UHII in Beijing. In this analysis, we
calculated the mean PM2.5 concentration of all stations (Ta-
ble S2) in Beijing and used it to determine if Beijing is
polluted (daily mean PM2.5 concentration ≥ 75 µg m−3) or
clean (daily mean PM2.5 concentration < 75 µg m−3). We
also examined the distribution of daily mean urban and ru-
ral PM2.5 concentrations under clean and polluted conditions
(Table S3), and we found that 17.07 % of clean days at ru-
ral stations were classified as polluted ones of urban stations
due to the pollution gradient between urban and rural areas.
However, these misclassified days were mostly slightly pol-
luted with PM2.5 concentrations over 60 µg m−3 (Table S3).

We also evaluated how different standards of polluted or
clean would affect the results and we included results based
on the standard that PM2.5 concentrations of all stations in
Beijing meet the thresholds of clean or polluted (Fig. S2)
and results based on the standard that both average PM2.5
concentrations of all urban stations and rural stations meet
the criterion (Fig. S3). Compared with Fig. 1 using mean
PM2.5 concentration of all stations, we found similar dis-
tributions and negligible differences in mean values. When
PM2.5 concentrations of all stations met the criterion, we
found the mean values increased by 0.03–0.04 K for clean
conditions but decreased by 0.14 K during the daytime and
0.06 K during the nighttime. When we used average PM2.5

concentrations of all urban stations and rural stations to de-
termine clean or polluted conditions, the mean values de-
creased by 0.01 K for clean conditions and increased by 0.01
and 0.06 K during daytime and nighttime, respectively. We
thus believe that using the daily mean PM2.5 concentrations
averaged over all stations can accurately represent the re-
gional feature of aerosol pollution and would not affect our
findings.

It was previously found that aerosol pollution led to de-
creased UHIImax (daytime) but increased UHIImin (night-
time) (Yang et al., 2021, 2020). This discrepancy is associ-
ated with the differences in regions that were considered as
rural in the calculation. We used rural stations located in the
west and north of Beijing as rural in the calculation of UHII,
and PM2.5 concentrations are usually much lower there. As
a result the temperature at these rural stations is less affected
by aerosol pollution. We designed a simplified flow chart to
show how UHII is changed in the daytime and nighttime, as-
suming that rural areas are not influenced by ARE (Fig. 2).
The ARE reduces near surface temperatures in urban areas,
leading to a weakened UHII and heat storage throughout the
day. Although the strengthened longwave radiation process
in nighttime that due to absorption of aerosols in daytime
alleviates the reduction of temperature in urban areas, de-
creased daytime temperature and heat storage release con-
tribute more to near surface temperatures and results in weak-
ened UHII. The increase of UHII due to a strengthened long-
wave radiation process is smaller than the decrease of UHII
caused by reduced temperatures and heat storage release dur-
ing the daytime (see difference between Fig. 1b, c, e and f).

Atmos. Chem. Phys., 22, 13341–13353, 2022 https://doi.org/10.5194/acp-22-13341-2022



F. Wang et al.: Circulation-regulated impacts of aerosol pollution on urban heat island 13345

Figure 2. Flow chart showing how UHII is changed in daytime and nighttime, assuming that rural areas are not influenced by ARE. Pink
boxes show a increasing trend while blue ones show a decreasing trend.

Figure 3. Distribution of UHII under different wind and pollution conditions, (a) and (c) are classified based on the wind direction in urban
areas, while (b) and (d) are based on wind direction in rural areas. Green triangles represent average values, red lines are median values, box
chart values denote mean values minus standard deviation, 25 % quantile, 75 % quantile, and the mean value plus standard deviation from
bottom to top, respectively.

Figure 3 displays the UHII under different wind directions
and PM2.5 pollution. As the wind direction usually differs in
urban areas and rural areas in the west and north of Beijing
(Chen et al., 2017), they are discussed separately based on
the wind direction in urban sites and rural sites. We observe
elevated UHII when northerly winds are prevalent in urban
areas on polluted days (Fig. 3a, c). The mean UHIIs are 2.0
and 1.8 K in daytime and 2.9 and 2.8 K in nighttime on clean
and polluted days, respectively. This is associated with re-
duced aerosol concentrations in urban regions by northerly
winds in urban areas (Table 1). From clean to polluted con-
ditions under northerly winds, a lower reduction in UHII by

aerosols is accordingly found (Fig. 3). Larger decreases in
UHII in daytime can be found from clean to polluted condi-
tions under easterly, southerly and westerly wind conditions,
and these decreases are weakened at nighttime. The weak-
ening may be caused by the longwave radiation process as
absorptive aerosols release heat during night to alleviate de-
creases in surface temperature, especially in urban areas (Cao
et al., 2016; Yang et al., 2020). This process has also been
confirmed with our simulation that ARE-induced enhanced
longwave radiation reduces the weakening of UHII in night-
time (Fig. S4).
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Table 1. Average PM2.5 concentrations (unit: µg m−3) in urban and
rural areas under different prevalent wind directions.

Wind directions Easterly Southerly Westerly Northerly

Urban PM2.5 58.23 53.88 52.24 49.49
Rural PM2.5 50.82 47.34 44.68 43.31

When sorted by wind directions in rural areas, we still
find the strongest UHII under northerly wind conditions
(Fig. 3b, d). However, UHII is relatively weak and the prob-
ability of “cold islands” in daytime increases when west-
erly or southerly winds are prevalent. The weak UHII un-
der westerly wind conditions is associated with foehn wind
that travel northwesterly or westerly through the Yan Moun-
tains, as foehn wind is able to heat rural areas and reduce
the urban-rural thermal gradient (Ma et al., 2013). When
southerly winds are prevalent, warmer southerly winds from
lower latitudes tend to heat southern rural areas faster than
urban areas due to blocking of air by buildings and larger
heat capacities of urban impervious surfaces and buildings.
We also detect larger reductions of UHII by aerosols when
westerly or southerly winds are dominant (Fig. 3b, d), sug-
gesting that foehn wind and warm southerly winds are likely
to amplify the weakening effect of aerosols on UHII.

3.2 Diurnal variations in the impacts of ARE on UHII

Although we identified consistent weakening of UHII by
aerosols during both daytime and nighttime, the influences
vary with wind directions, which are regulated by back-
ground circulation patterns. To understand the underlying
mechanism of the varying influences and to reduce uncer-
tainty induced by selection of monitoring stations, we con-
ducted model simulations of a typical haze event that oc-
curred in winter in Beijing (Gao et al., 2016b) as aerosol
concentrations are usually higher in winter in Beijing (Gao
et al., 2018). We also designed simulations of a light pollu-
tion event in spring to evaluate if the results are robust un-
der different seasons and aerosol pollution conditions. As
the aim of this section is to explore the underlying mecha-
nism of interactions between aerosol pollution and urban heat
islands, although the period differs from the observations
shown above, the selected cases are sufficient to represent
the observed varying wind conditions. Model configurations
in this study follow Gao et al. (2016b), and extensive model
evaluations using multisource observations indicated reliable
reproduction of the wintertime haze event (case_2010) by
WRF-Chem. We additionally evaluated the performance of
WRF-Chem in simulating case_2018 (Fig. S6 and Table S4),
and similar results were obtained. Further validation of the
ability of the model to simulate site-based UHII is shown in
Figs. S7 and S8. The model successfully reproduces the tem-
poral variation of UHII in Beijing, and differences in values

are generally within the trusted range, compared with previ-
ous simulations (Li and Bou-Zeid, 2013; Miao et al., 2009).
For a better clarification of the influence induced by selec-
tion of rural areas, we added Fig. S9 to show the simulated
UHII calculated based on site locations and area average. An
apparent difference can be found that site-based1UHII (dif-
ference due to ARE) decreases more than area-based UHII
especially in nighttime because of lower PM2.5 concentra-
tions in the rural sites than selected rural areas.

Figure 4 shows the temporal variation of UHII of three
cases, namely AF, NAF and NBC in case_2010. Given the
negligible contribution of absorption of dust to UHII, the
results from the Ndust case are not shown. The impacts of
ARE on UHII exhibit a bimodal distribution during daytime
(Fig. 4a). The first peak and valley appear after sunrise, and
the second peak and valley occur before sunset. These vari-
ations are associated with the fact that changes in T2 m occur
earlier in rural areas. Aerosol pollution cuts down SWD in
both urban and rural areas (Fig. S10a, b) after sunrise. Near
surface temperature in rural areas usually increases faster
than in urban areas (Oke, 1982). As a result, temperatures
in rural areas exhibit earlier declines in response to ARE, as
indicated by ARE-induced changes in T2 m in Fig. 4b, d, f, g.
The second peak is caused by a similar reason that ARE re-
sults in the earlier decrease in T2 m in rural areas (Fig. 4b, f),
but the release of heat storage also contributes to the second
peak. Heat storage of rural areas is usually lower than that of
urban areas, yet heat is released more slowly in rural areas, as
suggested in Fig. S10 that heat storage is smaller in daytime
but reaches zero later than in urban areas (Fig. S10c, d). Heat
storage release contributes to upward sensible heat flux at the
ground, which further increases T2 m after midday and slows
down the decreases after the peak in the afternoon (Oke et
al., 1992). As a result, a faster decline of T2 m in rural areas
is found than in urban areas (Fig. 4b, f). The ARE reduces
heat storage in both rural and urban areas, and the smaller
heat storage and slower release of heat in rural areas make
T2 m decrease earlier, leading to the second peak and valley.
Figure 5 shows related results for case_2018 and we find
that ARE generally reduces UHII except on 26 April. The
bimodal distribution during daytime still exists but is incon-
spicuous. This is because the lower ambient PM2.5 concen-
trations in the spring of 2018 reduce the gradient between
urban and rural areas, and weaken the impact of ARE on
shortwave radiation and near-ground air temperature.

3.3 Diverse influences of ARE on UHII and the role of
local circulation

We label days and nights of the study period as D1, N1, D2,
N2, D3, N3 in case_2010 and D4, N4, D5, N5, D6, N6 in
case_2018 in order, and find diverse influences under dif-
ferent wind patterns. On D1 and N1, we observe that ARE
weakens UHII by 0–0.4 K if the absorption of BC is not con-
sidered, due to larger amount of scattering aerosols in urban
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Figure 4. Variations of UHIIsim of all cases and differences between them (a) in case_2010. Variations of T2 m (b) and 1T2 m (d) in urban
and rural areas. Variations of PM2.5 (c) and 1PM2.5 (e) in urban and rural areas of AF case. Hourly changes in T2 m (f) and 1T2 m (g) in
urban and rural areas, where AF-NAF represents the influence of ARE on UHII, NBC-NAF represents the influence of ARE on UHII by all
aerosols but BC and AF-NBC represents the influence of BC absorption on UHII.

areas (Cao et al., 2016; Yang et al., 2020). The weakening is
larger in the daytime and UHII is enhanced in the nighttime
when absorption of BC is considered (Fig. 4a). BC is potent
in absorbing radiation, and it causes larger decreases in SWD
in daytime. BC also warms the atmosphere which increases
downward longwave radiation (Figs. S11 and S12) in night-
time (Cao et al., 2016; Zheng et al., 2018). On D2, a cold
island with an intensity of ∼−0.8 K is formed in Beijing,
and ARE enhances the intensity of the cold island. Due to
the large reduction of UHII by aerosols in daytime (Fig. 4a),
we still find negative effects of ARE on UHII on N2. Yet
the negative effects weaken and become positive before sun-
rise. Different from the previous 2 days, ARE enhances UHII
with a maximum value of 1 K on D3. This is associated with

reduced differences in PM2.5 concentrations between urban
and rural areas on D3 (Figs. 4c and S13c). The conditions on
N3 are similar with those on N2. The impacts of aerosols on
UHII in nighttime are mainly generated by modified down-
ward longwave radiation (Yang et al., 2021; Zheng et al.,
2018), which influences the UHII maintained after sunset.
BC is the main light-absorbing aerosol (Gao et al., 2021;
Ramanathan and Carmichael, 2008), and higher concentra-
tions of BC (Fig. S11) lead to enhanced UHII in nighttime
(Fig. S12). This explains the larger intensified UHII (∼ 2 K)
on N2. On D4 and D5, due to a much lower PM2.5 concen-
tration, ARE reduces UHII by less than 0.2 K (Fig. 5). The
lower concentration also diminishes absorption of shortwave
radiation during the daytime, which further reduces down-
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Figure 5. Same as Fig. 4 but for Case_2018.

ward longwave radiation and causes weakened UHII on N4
and N5. On N5, we find a sudden ARE-induced increase in
UHII (Fig. 5), and it is associated with the elevated PM2.5
concentration on N5 (Fig. 5c).

The abovementioned diverse influences on different days
of the study period are mainly controlled by local circula-
tion. Figure 6 presents spatial distributions of daytime 2 m
air temperatures and 10 m wind fields over the study pe-
riod. On D1 (Fig. 6a, d, g), southerly winds dominate the
NCP, bringing warmer air to Beijing. However, due to rel-
atively higher PM2.5 concentrations in the south of Beijing
(Fig. S13), ARE decreases T2 m as well as wind speeds. As
a result, the warmer air transported from the southern re-
gions to the south of Beijing is weakened, and only south-
ern rural areas can be significantly heated, reducing the UHII
of Beijing. This explains why UHII tends to be relatively
weaker and there are larger reductions of UHII by aerosols

when southerly winds are prevalent in NCP (Fig. 3). On D2
(Fig. 6b, e, h), strong northwesterly winds (foehn wind) in-
fluence Beijing, and the entire western suburbs of Beijing
heat up rapidly, forming a cold island. Meanwhile, moun-
tains block strong northwesterly winds, and wind speeds on
NCP are relatively weak, favoring accumulation of aerosols
in urban areas (Fig. S13). Accordingly, ARE significantly re-
duces T2 m in urban areas and further inhibits the UHII in the
west of the city, consistent with the results shown in Fig. 3b
that the largest reduction in UHII was caused by aerosol pol-
lution. On D3 (Fig. 6c, f, i), we detect a southeasterly sea
breeze coming from the Bohai Gulf. Under the influence of
the Yan Mountains, wind directions change to northeasterly
when they reach Beijing. Consequently, more aerosols ac-
cumulate in the southern rural areas of Beijing (Fig. S13)
and ARE contributes to larger decreases in T2 m in rural areas
than that in urban areas. We thus observe an enhanced UHII
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Figure 6. Simulated 2 m air temperatures and 10 sm wind fields in AF (first row), NAF (second row) and differences between AF and NAF
(third row) on D1 (first column), D2 (second column), and D3 (third column). The areas within the blue (a–f) and orange (g–i) line are urban
areas of Beijing.

caused by ARE on that day (Fig. 4a). This situation is consis-
tent with observations that the strongest UHII and alleviated
reduction of UHII by aerosol pollution occur when urban
areas are under northerly winds (Fig. 3a, c). When a slight
pollution event happens, similar responses (except results on
N5) but smaller values are found (Fig. S14). The identified
sudden ARE-induced increase in UHII on N5 (see Fig. 5) is
caused by southerly winds. Southerly wind transports warm
air masses with high PM2.5 concentrations from lower lati-
tude to the north, and this process enhances the downward
longwave radiation to heat the surface of urban and south-
ern rural regions, resulting in enhanced UHII (Fig. S15). This
also explains why UHII tends to decrease less when southerly
winds are prevalent in nighttime (Fig. 3c).

4 Summary

The observed temperatures and PM2.5 concentrations in Bei-
jing over 2016–2020 suggest that aerosol pollution is asso-
ciated with decreased UHII in Beijing in both daytime and
nighttime, yet the influences of aerosol pollution on UHII are
diverse under different circulation patterns. When northerly
winds are prevalent in urban Beijing, UHII tends to be much
higher in both daytime and nighttime and it is less affected by
aerosol concentrations. The mean values are 2.0 (1.8) and 2.9
(2.8) K in clean (polluted) conditions in daytime and night-
time, respectively. However, when southerly and westerly
winds are dominant in rural Beijing, UHII is significantly
reduced by aerosol pollution by over 0.5 K. Using coupled
aerosol-radiation-weather simulations, we demonstrate the
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underlying physical mechanism, which is associated with lo-
cal circulation and resulting spatial distribution of aerosols.

Previous studies documented opposite effects of aerosol
pollution on UHII in Beijing (Cao et al., 2016; Yang et al.,
2021, 2020; Yu et al., 2020; Zheng et al., 2018), and other
cities (Li et al., 2018; H. Li et al., 2020; Wu et al., 2017;
H. Wu et al., 2019). Our study highlights that the influ-
ences of aerosol pollution on UHII vary with local circula-
tion, which is particularly important for Beijing due to the
complex topography. Besides, heat can be modulated by lo-
cal circulation to influence the impacts of aerosol pollution
on UHII. Therefore, investigating the dominant synoptic pat-
terns in certain areas may contribute to a better understand-
ing of the aerosol-UHII interactions and provide guidance
for mitigation strategies (Yang et al., 2020; Yu et al., 2020).
Aerosol pollution in China has been significantly alleviated
since the implementation of strict clean air policies after
2013 (Gao et al., 2020; Y. Wang et al., 2020). Yet there is
still no evidence showing that it has co-benefits of reducing
UHI (Li et al., 2007; Cao et al., 2016). It was found that de-
creasing aerosols led to intensification of urban warming and
UHI, which further contributed to aggravation of ozone pol-
lution (Y. Wang et al., 2020; Yu et al., 2020). Thus, control-
ling aerosol pollution might even pose greater challenges for
urban climate and environment management. In this study,
our model experiments emphasize the role of BC in aggra-
vating UHI, especially during nighttime (Fig. 4). It could thus
be targeted for cooperative management of heat islands and
pollution. Some climate and environment friendly measures
including urban greening (Chen et al., 2019; Knight et al.,
2016) could be adopted to further alleviate both urban heat
and air pollution, considering the evapotranspiration effects
and extra green space for deposition.
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