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Abstract. High spatial resolution PM2.5 data covering a long time period are urgently needed to support pop-
ulation exposure assessment and refined air quality management. In this study, we provided complete-coverage
PM2.5 predictions with a 1 km spatial resolution from 2000 to the present under the Tracking Air Pollution in
China (TAP, http://tapdata.org.cn/, last access: 3 October 2022) framework. To support high spatial resolution
modeling, we collected PM2.5 measurements from both national and local monitoring stations. To correctly
reflect the temporal variations in land cover characteristics that affected the local variations in PM2.5, we con-
structed continuous annual geoinformation datasets, including the road maps and ensemble gridded population
maps, in China from 2000 to 2021. We also examined various model structures and predictor combinations to
balance the computational cost and model performance. The final model fused 10 km TAP PM2.5 predictions
from our previous work, 1 km satellite aerosol optical depth retrievals, and land use parameters with a random
forest model. Our annual model had an out-of-bag R2 ranging between 0.80 and 0.84, and our hindcast model
had a by-year cross-validation R2 of 0.76. This open-access, 1 km resolution PM2.5 data product, with com-
plete coverage, successfully revealed the local-scale spatial variations in PM2.5 and could benefit environmental
studies and policymaking.

1 Introduction

Air pollution has been a non-negligible environmental prob-
lem around the world. China implemented strict clean air
policies in the past decade that considerably improved air
quality. To support the policy evaluation and air quality man-
agement, we constructed the Tracking Air Pollution in China
(TAP) platform (http://tapdata.org.cn/, last access: 3 October
2022), which provides a near real-time distribution of air pol-
lutants – i.e., PM2.5 and O3 – at a 0.1◦ (approximately 10 km)
spatial resolution, from the fusion of ground measurements,

satellite retrievals, and chemical transport model (CTM) sim-
ulations (Geng et al., 2021). The TAP data benefited the eval-
uations of clean air policies and the characterization of air
pollution exposure (Xiao et al., 2020, 2021b, c). However,
with the improved air pollution control targets that require
refined air quality management, the detailed monitoring of
air pollution distribution at higher spatial resolutions is ur-
gently needed.

Recent developments in machine learning algorithms
and remote sensing techniques have fueled the production
of air pollution data at high spatiotemporal resolutions.
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For example, moderate-resolution imaging spectroradiome-
ter (MODIS) products provide aerosol optical depth (AOD)
retrievals at a 3 km resolution, contributing to the predic-
tion of ground-level PM2.5 concentrations at the local scale
(Xie et al., 2015; He and Huang, 2018; Hu et al., 2019). The
multiangle implementation of atmospheric correction (MA-
IAC) algorithm provides AOD retrievals at a 1 km resolu-
tion and benefits predictions of PM2.5 distribution at a 1 km
(Wei et al., 2021; Goldberg et al., 2019; Xiao et al., 2017;
Bai et al., 2022b) or higher spatial resolution (Huang et
al., 2021). Recently, with the Gaofen-5 satellite retrieval,
Zhang et al. (2018) predicted the PM2.5 concentration at a
160 m resolution. However, most of these high-resolution
data products are limited to after 2013 or cover a specific
region of China. Few studies have filled the missing predic-
tions that have resulted from missing satellite retrievals (Bai
et al., 2022b; Ma et al., 2022). This discontinuous PM2.5
prediction in space and time not only limits the application
of PM2.5 products in scientific research and environmental
management but also biases the characterization of popu-
lation exposure to PM2.5 pollution (Xiao et al., 2017). Ad-
ditionally, although high-resolution PM2.5 prediction mod-
els widely included various land use data, e.g., road maps,
land cover types, and points of interest (POIs), to describe
the local-scale spatial variations in air pollution emissions
and air pollution levels, most studies used only 1 or 2 years
of land use data during the whole study period and ignored
the critical variations in them. This lack of temporal varia-
tions in land use data may affect the spatial accuracy of high-
resolution PM2.5 predictions.

In this study, we constructed a high-resolution PM2.5 con-
centration prediction system under the TAP framework in or-
der to provide 1 km resolution full-coverage PM2.5 retrievals
covering a long time period. To correctly reveal the spatial
characteristics of PM2.5 distribution at such a high spatial
resolution, we processed MAIAC satellite retrievals as well
as evaluated and constructed various temporally continuous
land use parameters with statistical and geospatial modeling
that have not been included in previous TAP models. By fus-
ing high-resolution MAIAC satellite retrievals, TAP PM2.5
products at a 10 km resolution, satellite normalized differ-
ence vegetation index (NDVI) products, and various contin-
uous long-term land use data, we provide 1 km resolution
PM2.5 predictions from 2000 to the present, with complete
coverage and timely updates. The high quality and easy ac-
cessibility of our high-resolution PM2.5 data could support
research on air pollution and environmental health at local
scales and contribute to the management of local air quality.

2 Data and method

The workflow of this study is shown in Fig. 1. First, we pro-
cessed and assimilated various predictors. The daily-scale
varying predictors include satellite retrieval, TAP 10 km
PM2.5 predictions, and meteorological fields, and the land
use variables include road maps, population distribution,
artificial impervious area, and vegetation index. In China,
the high-speed economic development in the past several
decades has led to significant changes in land use and popu-
lation distribution. To correctly reveal the temporal variations
in land use parameters and further benefit the description of
local-scale PM2.5 concentration variations, we constructed
temporally continuous land use predictors through statistical
and spatial modeling. We then optimized the model structure
and selected model predictors through various examinations
to balance the model performance and computing cost. With
the selected model design, we fitted three models under the
TAP framework: the hindcast model, with training data from
2013 to 2020 to predict historical PM2.5 concentrations from
2000 to 2014; the annual model, with training data of each
corresponding year from 2015 to 2020; and the near real-
time model, with rolling 1-year training data that provides
near real-time PM2.5 predictions until the day before present
day.

2.1 Ground measurements of PM2.5

The hourly PM2.5 measurements from national air quality
monitoring stations were downloaded from the China Na-
tional Environmental Monitoring Center (http://www.cnemc.
cn/, last access: 3 October 2022). To examine the model’s
prediction ability in space, we also collected PM2.5 mea-
surements from local air quality monitoring stations oper-
ated by local government agencies (Fig. S1 in the Supple-
ment). The hourly PM2.5 concentration measurements below
1 µgm−3, the lowest measurement limit of most monitors,
and above 2000 µgm−3 were excluded for quality control
of measurements. Identical continuous hourly measurements
found within at least 3 h of each other were also removed.
Daily average PM2.5 concentration data generated with fewer
than 18 hourly measurements were removed.

In order to examine whether the quality of the measure-
ments from national monitors and from regional monitors is
comparable, we matched the nearest national and regional
monitors to compare their measurements. Specifically, we
selected such national–regional monitor pairs with a dis-
tance of less than 0.5◦ between them and compared their
daily average PM2.5 measurements. This comparison illus-
trates that measurements from regional monitors matched
well with measurements from the nearest national monitors,
with the linear regression coefficient of determination (R2)
of 0.89 (slope of 0.99 and intercept of 1.00). The average
difference between daily matched regional and national mea-
surements is 1.6 µgm−3.

Atmos. Chem. Phys., 22, 13229–13242, 2022 https://doi.org/10.5194/acp-22-13229-2022

http://www.cnemc.cn/
http://www.cnemc.cn/


Q. Xiao et al.: Spatiotemporal continuous daily 1 km PM2.5 estimation in China 13231

Figure 1. Workflow of this study.

2.2 Full-coverage PM2.5 predictions at a 10 km
resolution

The 10 km resolution PM2.5 predictions, which were esti-
mated from a two-stage machine learning modeling system,
were downloaded from the TAP website (http://tapdata.org.
cn/, last access: 3 October 2022) (Xiao et al., 2021c). Pre-
vious evaluations reported that the PM2.5 prediction model
with the out-of-bag (OOB) R2 (the R2 of the linear regres-
sion between measurements and predictions from trees that
did not include these measurements for training) ranged be-
tween 0.80 and 0.88 (Geng et al., 2021). These TAP PM2.5
data at a 10 km resolution with complete coverage are up-
dated in near real-time.

2.3 MAIAC retrievals

The multi-angle implementation of atmospheric correction
(MAIAC) (Lyapustin et al., 2011a, b) data were down-
loaded from the NASA Earthdata site (https://lpdaac.usgs.
gov/products/mcd19a2v006/, last access: 3 October 2022).
Only pixels with high-quality retrievals were included (QA.
CloudMask=clear and QA. AdjacencyMask=clear) (Kloog
et al., 2015; Lyapustin, 2018). Since the Aqua and Terra
satellites cross over at around 10:30 and 13:30 local time
respectively, the daily spatial missing patterns of Aqua and
Terra AOD retrievals are different. To improve the cover-
age of AOD, we fitted daily linear regressions between Aqua

AOD and Terra AOD (Eqs. 1–2). Then we predicted the miss-
ing AOD of one satellite when the AOD of another satel-
lite exists. After the daily linear interpolation, the Aqua and
Terra AODs were averaged to reflect the daily aerosol load-
ings.

AODAqua,i,g = µi +βi ×AODTerra,i,g , (1)
AODTerra,i,g = µi +βi ×AODAqua,i,g , (2)

where AODAqua,i,g and AODTerra,i,g represent the Aqua and
Terra AOD of grid g on day i, respectively. µi and βi repre-
sent the intercept and slope on day i, respectively.

2.4 Meteorological fields and evaluation

Various reanalysis data products, including ERA5, MERRA-
2, and GEOS-FP, have been used to provide meteorologi-
cal files in previous air pollution prediction models (Geng
et al., 2021; Wei et al., 2021; Xiao et al., 2017). In this study,
to select the best-performing meteorological data with long
temporal data coverage (from 2000 to the present) and timely
updating, we evaluated ERA5-Land, ERA5, and MERRA-2
meteorological datasets with meteorological measurements
at regional air quality monitoring stations during 2019. The
evaluation results showed that ERA5-Land data at a 0.1◦ res-
olution outperformed the MERRA-2 reanalysis data and the
ERA5 reanalysis data (Table S1 in the Supplement). We ex-
tracted and processed the ERA5-Land parameters – includ-
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ing 2 m temperature, 10 m u and v components of wind, sur-
face pressure, and total precipitation – for model predictor
selection. The 2 m relative humidity was calculated from the
2 m temperature and the 2 m dew point temperature.

2.5 Construction of the time series of land use variables

2.5.1 Population density

We evaluated and fused various global gridded population
density data that were publicly available, including the Land-
Scan Global Population Database from 2000 to 2019 (Dob-
son et al., 2000); the Gridded Population of the World (GPW)
data product (version 4) for 2000, 2005, 2010, 2015, and
2020 (Doxsey-Whitfield et al., 2015); and the annual World-
Pop data at a 1 km resolution from 2000–2020 (Wardrop et
al., 2018; Reed et al., 2018). We linearly interpolated the
GPW data for each year. For data quality evaluation, we ob-
tained the sum population at the county or city level from
2000 to 2019 from the China City Yearbooks. The gridded
population datasets were aggregated to county or city sums
and compared to the yearbook records. The LandScan data
outperformed the other two datasets (Fig. S2); however, the
spatial distributions of the LandScan data showed an unrea-
sonable pattern and were excluded. As shown in Fig. S4, the
LandScan data present very high population density along
the road and many randomly distributed, high-population
grids in certain square areas on the map. Due to the sig-
nificant spatial variations in data accuracy (Bai et al., 2018;
Wang et al., 2011), we fused the GPW and WorldPop data
to improve data quality across space. We first fitted linear
regressions between the gridded population and yearbook
records of each county or city that had at least six matched
data pairs. Then, we averaged the gridded population with the
R2 as a weight (Eq. 3). We selected the R2 rather than the
root mean square error (RMSE) as the weight, because the
spatial variation trends were more important than the num-
ber of populations in the prediction of PM2.5.

Popg(i),y

=

GPWg(i),y ×R
2
GPW,i +WorldPopg(i),y ×R

2
WorldPop,i

R2
GPW,i +R

2
WorldPop,i

, (3)

where Popi,y represents the ensemble population of grid g in
the county or city i of year y; GPWg(i),y and WorldPopg(i),y
represent the population of grid g, year y of dataset GPW
and WorldPop, respectively; and R2

GPW,i and R2
WorldPop,i rep-

resent R2 of GPW and WorldPop in the county or city i.
For counties or cities that did not have sufficient matched

data pairs for regression fitting, we employed the weight of
the nearest county or city for the ensemble (Fig. S3). We sub-
sequently constrained the city level and national sum popu-
lation to be consistent with the record from the China City
Statistical Yearbook and the China Statistical Yearbook.

2.5.2 Land cover

The percentage of artificial impervious area of each 1 km
modeling grid was calculated from the annual global artifi-
cial impervious area (GAIA) data at a 30 m resolution from
2000 to 2018 (http://data.ess.tsinghua.edu.cn/gaia.html, last
access: 15 March 2022). To estimate the GAIA distribution
after 2018, we fitted linear regressions with data from 2016
to 2018 for each grid and extrapolated the GAIA values of
2019, 2020, and 2021. The data from 2013 to 2017 were used
to evaluate the performance of this linear extrapolation. The
examination results comparing the GAIA data and the first-
year, second-year, and third-year extrapolated GAIA predic-
tions showed that the R2 values ranged from 0.996 to 0.999,
0.985 to 0.989, and 0.969 to 0.979, respectively.

2.5.3 Road map

Limited road maps are available in China. We col-
lected the annual road maps from 2013 to the present
from OpenStreetMap (https://www.openstreetmap.org, last
access: 3 October 2022) (Barrington-Leigh and Millard-Ball,
2017), a crowdsourced, collaborative geographic information
collection project. OpenStreetMap data have been widely
used for road density analysis and the construction of world
road data products (Zhang et al., 2015; Meijer et al., 2018). A
previous evaluation study reported on the considerable accu-
racy of the OpenStreetMap data (Haklay, 2010). To evaluate
the quality of the OpenStreetMap data and to fill the histor-
ical data gap before 2013, we also collected the road maps
of 2000, 2004, 2005, 2010, 2012, 2014, and 2015 from the
survey.

We first extracted the length of various types of roads from
the OpenStreetMap data and from the road survey at the grid
level. We combined some road types to make the road classi-
fication more comparable in OpenStreetMap and in the sur-
vey (Table S2). To estimate the annual road distribution be-
fore 2013, we first compared the grid-level road length of
2014 extracted from OpenStreetMap and the survey map (Ta-
ble S3). Then, we modified the survey map data to construct
the OpenStreetMap-type gridded road length of the years that
the survey map data were available using the equation listed
below:

RLOSM,i,j =
RLOSM,i,2014×RLroad,i,j

RLroad,i,2014
, (4)

where RLOSM,i,j represents the OpenStreetMap-type road
length of year j over grid i, and RLroad,j represents the
survey-type road length of year j over grid i.

After estimating the OpenStreetMap-type road length of
years when the survey maps were available, we filled the gap
years by weighted linear interpolation. First, we estimated
the city-level sum road length of different road types by a
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linear mixed effects model (LME) (Meijer et al., 2018):

RLOSM,c,p,j =
(
µ+µ′

)
+

(
β1+β

′
1
)
×Popc,p,j

+β2×GDPc,p,j +β3×Areac,p

+β4×Elec,p +β5×GAIAc,p,j , (5)

where RLOSM,c,p,j represents the sum road length of city c
in province p of year j ; µ represents the fixed intercept, and
µ′ represents the province-level random intercept; β1, β2, β3,
β4, and β5 represent the fixed slope of the city’s average pop-
ulation density, per capita gross domestic product (GDP),
city area, city average elevation, and city average GAIA;
β ′1 represents the province-level random slope of population
density. The log10 transformation was conducted for all the
continuous variables to account for the skewed distribution
(Meijer et al., 2018). Stepwise linear regression was used to
select the significant predictors (Meijer et al., 2018). To eval-
uate the LME model performance, by-year cross-validation
and 4-year cross-validation were conducted. Regarding the
by-year cross-validation, we selected 1-year’s data for model
testing in sequence and used the data of the remaining years
for model training. Regarding the 4-year cross-validation, we
selected 2013, 2014, and 2015 for model testing in sequence
and used the data from 4 years after the corresponding test-
ing year for model fitting. For example, when selecting 2013
for model testing, the data from 2017, 2018, and 2019 were
used to fit the model.

After estimating the city-level sum road length, we further
used the sum road length as a weight to assign the road length
changes to each gap year. The equation is listed below:

RLOSM,i,j = RLOSM,i,start+
(
RLOSM,i,end−RLOSM,i,start

)
×

RLOSM,c,j −RLOSM,c,start

RLOSM,c,end−RLOSM,c,start
, (6)

where RLOSM,i,start and RLOSM,i,end represent the road
length over grid i of the starting and ending year with avail-
able OSM-type road data, respectively; RLOSM,c,start and
RLOSM,c,end represent the road length of city c of the starting
and ending year with available OSM-type road data, respec-
tively; and RLOSM,c,j represent the road length of city c of
the gap year j .

2.6 Other auxiliary datasets

We downloaded the monthly Terra MODIS NDVI
(MOD13A3) at a 1 km resolution and filled the miss-
ing NDVI data by the nearest neighbor spatial smoothing
approach. The average elevation data at a 30 m resolution
were extracted from the Advanced Spaceborne Thermal
Emission and Reflection Radiometer (ASTER) Global
Digital Elevation Model (GDEM) version 2.

2.7 Data assimilation

All the predictors were assimilated to the 1 km MAIAC pix-
els by various geostatistical methods. The meteorological
data and PM2.5 predictions at a 0.1◦ resolution were down-
scaled to the 1 km MAIAC pixels with the inverse distance
weighting method. The elevation pixels falling in each 1 km
grid cell were averaged. The NDVI data were assigned to the
MAIAC pixels by the nearest neighbor method.

2.8 Optimization and evaluation of the prediction model

To make the PM2.5 prediction process efficient and highly
accurate, we designed various examinations to optimize the
model structure and identify key predictors of the PM2.5 pre-
diction system.

Three model structures were evaluated: modelTwoStage has
a two-stage design, with the first-stage model predicting the
high pollution indicator and the second-stage model predict-
ing the residual between 10 km TAP PM2.5 predictions and
measurements (Xiao et al., 2021c); modelResi is a one-stage
model that predicts the residual between 10 km TAP PM2.5
predictions and measurements; and modelBase is a one-stage
model that directly predicts the PM2.5 concentration with the
10 km TAP PM2.5 prediction as a predictor. Since the un-
derestimation of high pollution events are widely reported,
in addition to the evaluations including all the test measure-
ments, we conducted additional evaluations focusing on the
prediction accuracy of haze events when the daily average
PM2.5 concentration was higher than the 75 µgm−3 national
secondary air quality standard.

Then, we selected the critical predictors of the PM2.5 pre-
diction model (Fig. 1). We first constructed the full model
with all the predictors, and then we removed the meteoro-
logical predictors in sequence, according to the importance
of parameters estimated from the full model. Predictors with
the smallest importance were removed first. Data from 2019
were used for model predictor optimization.

Various statistics were employed to characterize model
performance. The OOB predictions, which predicted the
measurements by trees that were trained with randomly se-
lected samples excluding these measurements, were pro-
vided during the training of the random forest. Comparing
the OOB predictions with measurements in linear regression
provided us with the OOB R2, the RMSE, and the mean pre-
diction error (MPE). To evaluate the model’s ability to reveal
PM2.5 variations at the local scale and at locations without
monitoring, we used the measurements from national sta-
tions for model training and the measurements from the high-
density local stations from model evaluation. These local sta-
tions are primarily located in Hebei, Henan, Shandong, and
Chengdu (Fig. S1). The evaluation results of OOB and with
test data were used to optimize the model structure and se-
lect predictors. Then, to evaluate the optimized final model’s
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prediction ability in time, we conducted a by-year cross-
validation.

Consistent with the previous TAP PM2.5 prediction frame-
work, the missing satellite AOD retrievals were filled by ad-
justing the first layer of the decision tree and setting the
availability status of AOD as the cutoff point of the first
layer of the decision trees. The performance of this gap-
filling method has been fully evaluated in our previous stud-
ies (Xiao et al., 2021a; Geng et al., 2021).

3 Results

3.1 Temporal variations in predictors

The high-resolution PM2.5 prediction was supported by var-
ious high-resolution predictors. In addition to the 1 km reso-
lution MAIAC AOD, we also constructed and presented var-
ious 1 km resolution predictors, including road maps, pop-
ulation distribution, artificial impervious area, and NDVI
(Fig. 2).

We evaluated the road length model for various road
types through by-year cross-validation and 4-year cross-
validation (Table S4). The cross-validation predictions of
all road types were highly correlated with the OSM data.
The 4-year cross-validation performance were comparable to
the by-year cross-validation performance, indicating that the
model’s temporal prediction ability was robust. The perfor-
mance of the secondary road model was slightly better than
that of the highway model and primary road model, show-
ing higher correlations between local socioeconomic factors
and secondary road length relative to highways and primary
roads that are constructed nationally. The predicted highway
length correctly revealed the temporal trends of the records of
highway length from the China traffic yearbooks, with corre-
lation coefficients of 0.99. Since the road type classifications
of the OSM and China traffic yearbooks are inconsistent, we
did not compare the lengths of other types of roads. We ob-
served a consistent increasing trend in road length for all road
types across China (Fig. 2). The predicted road maps also
displayed the construction of some local landmarks, e.g., the
6th Ring Road in Beijing.

Compared to the statistical yearbook records, our ensem-
ble population data showed R2 and RMSE values of 0.74
and 0.19 million, respectively, outperforming other gridded
population data (Fig. S5). The changes in population density
distribution were inconsistent across China due to the sub-
stantial internal migration during the past decades (Fig. 2).
For example, we observed that the high-speed economic de-
velopment in Shenzhen city and the whole Pearl River Delta
(PRD) attracted a large migration population, but the popula-
tions in small cities in Northeast and Central China were con-
sistent or decreasing. The artificial impervious area also in-
creased significantly across China, especially in regions with
fast economic development. The consistent increase in NDVI
over most parts of China, especially in the southeast, showed

the achievement of environmental protection in China. We
found considerable missingness in MAIAC retrievals over
China, especially in the southeast and northeast regions with
large populations. Thus, gap-filling is necessary to provide
valuable PM2.5 predictions across China.

3.2 Optimization of the high-resolution PM2.5 prediction
model

Three model structures – modelTwoStage, modelResi, and
modelBase – were examined in this study. The evaluation re-
sults showed that these candidate models performed com-
parably in R2 in all the evaluations (Fig. 3). However, the
modelBase that directly predicts the measurements showed
significantly larger prediction error than the other two mod-
els during haze events. For some years – e.g., 2017 and 2018
– the average prediction error of the modelBase was more than
double the prediction errors of modelTwoStage and modelResi.
This result was consistent with our previous findings that the
prediction of residuals enlarges the response of the depen-
dent variable to the predictors, thus benefiting the prediction
of extreme events (Xiao et al., 2021c). We did not observe
significant differences between modelTwoStage and modelResi.
Thus, considering the prediction performance and the model-
fitting time expense, the modelResi was selected.

We then examined the contribution of meteorological
fields to the high-resolution PM2.5 prediction (Table S5).
Compared to the full model, the OOB R2 of the model with-
out meteorological fields decreased from 0.85 to 0.80; how-
ever, the R2 with test data decreased by only 0.02, from 0.85
to 0.83. This evaluation showed that the contribution of me-
teorological fields to high-resolution PM2.5 predictions was
limited. Potential reasons include the coarse resolution of
the meteorological data limiting the characterization of high-
resolution variations in meteorological fields or in PM2.5 dis-
tributions. Additionally, the meteorological effects on PM2.5
have been considered in the 0.1◦ PM2.5 data that served as
a predictor in the model. Comprehensively considering the
model performance and the meteorological data update fre-
quency, we removed meteorological fields.

Table 1 summarizes the OOB performance of our final
annual models and hindcast model. The model R2 ranged
between 0.80 and 0.84 for annual models. The small in-
terannual variations indicated that our model was robust
and provided predictions with constant quality during the
study period. The very small model mean prediction error
(bias) together with the slopes close to 1 showed the inexis-
tence of systemic bias in the prediction models. Our model
performance was comparable with previous studies (Huang
et al., 2021; Wei et al., 2019, 2020, 2021). The high-cast
model performed comparably in the OOB evaluation, the test
data evaluation, and the by-year cross-validation evaluation
(Fig. 4), showing great accuracy and high robustness. No
considerable overfitting was observed, and no system bias
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Figure 2. Estimated annual distributions of key predictors – including highway length (a–c), population (d–f), artificial impervious area (g–
i), MAIAC AOD coverage (j–l), and normalized difference vegetation index (NDVI) (m–o) – in 2000, 2010, and 2021 across China.

was detected in the spatial prediction (test data) and tempo-
ral prediction (by-year cross-validation) examinations.

3.3 The spatiotemporal characteristics of the
high-resolution PM2.5 map

The high-resolution PM2.5 maps revealed critical local pat-
terns of annual (Figs. 5–6) and daily (Figs. 7–8) pollution
distributions that could not be identified by the 0.1◦ resolu-
tion maps. Comparing the daily population weighted average

https://doi.org/10.5194/acp-22-13229-2022 Atmos. Chem. Phys., 22, 13229–13242, 2022



13236 Q. Xiao et al.: Spatiotemporal continuous daily 1 km PM2.5 estimation in China

Figure 3. The performance of modelTwoStage, modelResi, and
modelBase in the out-of-bag evaluation (OOB), the evaluation with
test data from local stations (Test), and the evaluation with test data
higher than 75 µgm−3 (Test_haze). (a) The evaluation R2; (b) the
average prediction error.

Table 1. Out-of-bag performance of the annual model trained with
all data of each year and the hindcast model trained with all data
during 2013–2019.

Model R2 Slope RMSE Bias
(µgm−3) (µgm−3)

Annual-2015 0.82 0.99 20.20 −0.06
Annual-2016 0.83 1.01 18.24 −0.05
Annual-2017 0.84 1.00 16.67 −0.02
Annual-2018 0.82 0.95 15.94 −0.01
Annual-2019 0.81 0.95 16.35 −0.04
Annual-2020 0.80 0.95 14.96 −0.02
Hindcast 0.80 0.98 19.6 −0.03

PM2.5 concentrations from 2000 to 2021, the number of
days with PM2.5 higher than 75 µgm−3 were significantly
reduced after 2013 across China (Fig. 5). Beijing–Tianjin–
Hebei (BTH) showed high pollution levels with the haze days
that occurred across the year. In recent years, benefiting from
the pollution control policies, high pollution days in BTH
outside of winter were basically removed. The annual maps
of PM2.5 distribution in 2000 showed that the most polluted
regions were located in Beijing, Hebei, and north of Henan;
in 2007 and 2013, the highly polluted regions extended and
covered BTH, Shandong, Shanxi, Hunan, the Sichuan Basin,
and the Yangtze River Delta (YRD). After 2013, with the
strict pollution control policies, the air quality across China
was significantly improved, and the polluted regions shrank
in 2021.

Figure 6 highlighted the variations in spatial distribu-
tion of PM2.5 at the local scale. We compared the annual
PM2.5 anomaly, which is the gridded PM2.5 minus the re-
gional average PM2.5, in 2013 and 2021 in YRD. The
pollution hotspots transferred from the city centers with mon-

itors to rural regions with limited monitoring. We found
that, after 2013, although the percent of days and counties
with population-weighted PM2.5 that violates the primary
(35 µgm−3) and secondary air quality standard is continu-
ously decreasing, the percent of days and counties with rural-
county pollution higher than urban-county pollution signifi-
cantly increased. In 2013, more than half of the days and
counties showed higher pollution in urban counties than in
rural counties when the PM2.5 was greater than 35 µgm−3;
however, in 2021, more than 96 % of these pollution days
and counties showed lower pollution in urban counties than
in rural counties. In 2017 and 2020, all the days with PM2.5
greater than 75 µgm−3 showed higher rural-county pollution
than urban-county pollution. One reason for the transporta-
tion of pollution hotspots is that the PM2.5 reduction during
2013–2021 was much greater in city centers than in rural re-
gions. In 2021, most regional high pollution hotspots were
transferred to around the junction of cities or towns.

The daily maps showed more short-term local pollution
variations. Figure 7 shows one haze event during 18–25
November 2013. Since 18 November, the upper cyclone
moved towards the northwest, and the North China Plain
was covered by a high-pressure ridge with a continuously
strengthening downdraft, leading to a stable atmosphere that
was unfavorable for pollution control. From 18–23 Novem-
ber, the pollution kept increasing and trigged the haze event.
Then, since 24 November, with the upper-level ridge hav-
ing moved eastward to the ocean, the North China Plain was
affected by the trough with increased vertical upward move-
ment and raised boundary layer height. Both the horizontal
and vertical diffusion were improved, and the pollutant con-
centrations decreased sharply, leading to the end of this haze
event.

The 1 km resolution pollution map was able to reveal re-
gional characteristics. For example, the impact of local trans-
portation emissions was observed on some days in the pop-
ulous key regions (Fig. 8). These maps also indicated the
importance of including time-varying land use data for air
pollution predictions, especially in high-resolution predic-
tions, since the land use characteristics led to noticeable spa-
tial variations in the pollution distribution, as expected. To
examine the impact of using temporally mismatched land
use data on the retrieved spatial patterns of PM2.5, we used
historical land use data (GAIA, NDVI, population and road
maps of 2000) to predict the daily PM2.5 distribution over
these key regions of the same day. The historical land use
data in 2000 led to incorrect spatial characterizations of the
PM2.5 distribution in 2015.

4 Discussion

In this study, we fused the daily 10 km PM2.5 predictions
with satellite retrievals and land use data by a random for-
est model in the TAP framework and produced the open
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Figure 4. Model performance of the hindcast model trained with all the data from 2013 to 2019. (a) Evaluation with out-of-bag predictions;
(b) evaluation with test data; (c) evaluation with by-year cross-validation predictions.

Figure 5. Temporal variations of the daily population-weighted PM2.5 cover over (a) China, (b) Beijing–Tianjin–Hebei (BTH), (c) Yangtze
River Delta (YRD), and (d) Pearl River Delta (PRD) as well as the annual average PM2.5 distribution in (e) 2000, (f) 2007, (g) 2013, (h) 2021.

access, daily average PM2.5 distribution at a 1 km resolu-
tion with complete coverage from 2000 to the present. To
improve the accuracy of the temporal variations in road dis-
tributions and other land use data, we processed the annual
road map by fusing the OSM data with survey data and pro-
cessed the annual population distribution by fusing the GPW
and the WorldPop data. Our predictions showed an accu-
racy comparable with previous high-resolution PM2.5 predic-
tions, and our data were advantaged with complete coverage,
time-varying land use predictors, and long temporal cover-
age. Compared to previous TAP products at approximately
10 km resolution, this 1 km resolution PM2.5 data product re-

vealed more local-scale spatial characteristics of the PM2.5
distribution in China.

We conducted various evaluation analyses to optimize the
model structure and select the appropriate predictors. When
constructing the model structure and selecting the predictors,
we not only considered the prediction accuracy but also con-
sidered the computation time, data updating frequency, and
long-term data availability. For example, we did not include
the POI data as predictors, since we have no access to histor-
ical POI data in China, and there is no appropriate model
to correctly predict POI distributions in previous publica-
tions. Including more land use variables will certainly im-
prove the model accuracy; however, since historical data are
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Figure 6. The spatial distribution of annual average PM2.5 anomalies, which is the gridded annual average PM2.5 minus the annual regional
average PM2.5, in (a) 2013 and (b) 2021 in YRD; (c) the changes in annual average PM2.5 between 2013 and 2021; and (d) the temporal
trends in percent of days and counties with rural-county pollution higher than urban-county pollution in this region.

unavailable, doing so will increase the uncertainty in histori-
cal predictions. Similarly, regarding the selected spatial pre-
dictors, we constructed temporally continuous data records
with various geostatistical methods and improved the data
quality by fusing data from various sources to reveal the tem-
poral changes in land use. Including temporally mismatched
predictors for PM2.5 prediction leads to misleading spatial
patterns, especially in China, with considerable social eco-
nomic development in the past decades (Fig. 8). Additionally,
we did not include any spatial and temporal trends estimated
from measurements in the hindcast model that could signifi-
cantly improve the model performance statistics in the eval-
uations. The measurement-based spatiotemporal trends did

not necessarily reflect the pollution distribution in regions
without monitors (Bai et al., 2022a). Since the major aim
of data fusing methods is to estimate the PM2.5 variations
in regions without monitors, including measurement-based
smoothing trends in space and time will hinder the achieve-
ment of this goal. Since the predictor processing and model-
ing of 1 km resolution data is computationally expensive, the
predictor selection and model structure selection not only im-
proved model robustness but also allowed us to run a more
efficient model daily and support near real-time data updat-
ing.

Our model still has several limitations. First, although
we improved the model prediction accuracy during high
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Figure 7. Daily PM2.5 and meteorological field distributions during 18–25 November 2013; 500 hPa: the vertical height at which the pressure
is 500 hPa; MSL: mean sea level; W10m: wind speed and direction at 10 m; BLH: boundary layer height.
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Figure 8. The daily PM2.5 distribution in YRD for year 2015, day 25 (a–c) and in PRD for year 2015, day 26 (d–f), with the TAP 1 km
PM2.5 predictions (a, d), the prediction with the historical land use predictors of year 2000 (b, e), and the TAP 0.1◦ PM2.5 predictions (c, f).

pollution events, we still noticed an underestimation of
PM2.5 levels. There could be several reasons for this under-
estimation. The AOD retrievals tended to misclassify high
aerosol loading as cloud cover, leading to missing AOD dur-
ing haze events. The CTM also hardly predicts high pollution
events. The missing satellite retrievals together with the un-
derestimated CTM simulations resulted in the underestima-
tion of pollution levels. We noticed that all the predictors in
the model are associated with some uncertainties, and these
uncertainties together with the modeling error contributed to
the uncertainties of the final PM2.5 predictions. Thus, the
quantification of the model uncertainties and their sources
could be difficult. Here we conducted various model perfor-
mance evaluations to illustrate the prediction uncertainties
from different angles. We suggested the usage of the out-of-
bag evaluation results as an approximate of the uncertainty
of PM2.5 prediction after 2013 (Table 1), when the ground
PM2.5 monitoring is available, and the usage of the temporal
cross-validation results as an approximate of the uncertainty
before 2013 (Fig. 4). Second, although we included some re-
gional monitors to increase the density of monitors for model
training, the number of monitors in western China is still in-
sufficient. Thus, the uncertainty of PM2.5 predictions in these
regions lacking data could be larger than in the regions with
dense data. However, the distribution of monitors in China
basically followed the population distribution in which pop-
ulous regions hold more monitors; thus, the key regions of

air pollution control have more training data and high-quality
predictions, benefiting air quality management and environ-
mental health studies in the future.

5 Conclusions

In this study, we constructed a high-resolution PM2.5 pre-
diction model fused with MAIAC satellite aerosol optical
depth retrievals, 10 km TAP PM2.5 data, and land use vari-
ables including road maps, population distribution, artificial
impervious area, and vegetation index. To describe the sig-
nificant temporal variations in land use characteristics result-
ing from the economic development in China, we constructed
spatiotemporally continuous land use predictors through sta-
tistical and spatial modeling. Optimization of model struc-
ture and predictors was conducted with various performance
evaluation methods to balance the model performance and
computing cost. We revealed changes in local-scale spatial
patterns of PM2.5 associated with pollution control measures.
For example, pollution hotspots transferred from city cen-
ters to rural regions with limited air quality monitoring. We
showed that the land use data affected the predicted spatial
distribution of PM2.5 and that the usage of updated spatial
data is beneficial. The gridded 1 km resolution PM2.5 pre-
dictions can be openly accessed through the TAP website
(http://tapdata.org.cn/, last access: 3 October 2022).
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