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Table S1. Median, interquartile range (25%-75% percentiles) and maximum concentrations of 15-min 

averaged ClNO2, NO2, O3, aerosol surface area (Sa), and aerosol liquid water content (ALWC) concentrations 

during nighttime (jNO3 < 1×10-4 s-1) in the different measurement periods of the JULIAC campaign.  

  31 Jan – 8 Feb 4 – 31 Aug 9 – 30 Sep 1 – 25 Nov 1 – 31 Dec 

ClNO2 / pptv 

Median 150 22 45 46 80 

25% – 75% 76 – 300 7 – 99 7 – 156 15 – 110 38 – 160 

Maximum 950 1410 1600 450 630 

NO / ppbv 

Median 0.13 0.20 0.35 0.18 N.A. 

25% – 75% 0.01 – 1.2 0.04 – 0.68 0.03 – 0.93 0.02 – 1.4 N.A. 

Maximum 33 6.4 12 19 N.A. 

NO2 / ppbv 

Median 7.6 3.9 4.2 7.8 5.2 

25% – 75% 3.7 – 13 2.2 – 6.2 2.6 – 6.9 4.2 – 12.0 2.9 – 8.5 

Maximum 29 27 26 29 25 

O3 / ppbv 

Median 25 36 27 16 25 

25% – 75% 17 – 32 27 – 48 22 – 33 9 – 24 15 – 31 

Maximum 38 100 64 36 42 

T / ℃ 

Median 4.4 20.8 16.7 8.0 8.4 

25% – 75% 2.1 –7.4 18 – 24 15 – 19 6 – 11 5 – 11 

Maximum 12 34 29 19 19 

RH / % 

Median 71 49 72 88 86 

25% – 75% 59 – 79 27 – 65 55 – 88 81 – 93 76 – 92 

Maximum 86 82 100 100 100 

Sa /μm2/cm3 

Median 49 68 54 43 N.A. 

25% – 75% 20 – 75 51 – 122 37 – 85 21 – 59 N.A. 

Maximum 144 323 345 108 N.A. 

ALWC a 

/ μg/m3 

Median 0.11 1.43 0.81 1.93 N.A. 

25% – 75% 0.10 – 0.14 0.85 – 2.28 0.63 – 1.37 0.98 – 5.86 N.A. 

Maximum 0.23 6.59 4.23 25.6 N.A. 

a Aerosol liquid water content is calculated from ISORROPIA2 assuming the aerosol in metastable state using 

forward mode using as input the aerosol composition from AMS measurements (i.e. NH4
+, SO4

2-, NO3
-, Cl-), 

measured temperature and RH, as suggested by Song et al. (2018). Data with RH<40% are excluded in the 

calculation to justify the assumption of metastable state, which is the case for periods except August when 3% 

of the data has RH<40%.  



3 
 

Table S2.  Mean aerosol composition measured by AMS during the intensive measurement periods of the 

JULIAC campaign. 

Group PM1 
μg/m3 

NO3
- 

μg/m3 
SO4

2- 
μg/m3 

NH4
+ 

μg/m3 
Cl- 

μg/m3 
Organic 
μg/m3 

Feb 
Regional 0.97 0.24 0.10 0.09 0.01 0.53 

Long-Range 0.17 0.10 0.11 0.11 0.13 0.26 

Aug 
Regional 11.59 0.51 2.93 1.18 0.02 6.96 

Long-Range 3.83 0.20 1.03 0.41 0.01 2.17 

Nov 
Regional 4.63 1.09 0.76 0.50 0.05 2.23 

Long-Range 0.88 0.09 0.15 0.06 0.02 0.55 
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Figure S1. Schematic of the experimental setup of the JULIAC-SAPHIR system indicating the sampling 

points for the ClNO2 measurements. During the intensive measurement periods of the JULIAC campaign 

(February, August, November), the I-CIMS instrument sampled from the SAPHIR chamber (blue line). 

Between the intensive measurement periods of the JULIAC campaign (September, December), the I-CIMS 

instrument sampled directly from the JULIAC tower (red line). 

  



5 
 

 

 

Figure S2. I-CIMS sensitivity dependence on the water vapor content determined in October and November 

during the JULIAC campaign. In calibration experiments, the inlet was overflowed with air containing a 

constant concentration of ClNO2 (~5 ppbv) while varying the humidity. Upper panel: ClNO2 signal (208 amu) 

normalized to the (I·(H2O)-) signal (145 amu) versus the H2O mixing ratio by volume. Lower panel: Signals 

normalized to the maximum ClNO2 signal (s(ClNO2)/s(ClNO2)max). A linear fit is used to derive the humidity 

dependence giving a decrease in the instrument sensitivity of 19% per 1% H2O concentration. The decreasing 

trend of the ClNO2 signal with increasing humidity reflects the fact that the reaction of ClNO2 with higher-

order clusters of I-·(H2O)n is slower than that with I-·(H2O) alone (Kercher et al., 2009;Slusher et al., 2004). 
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Figure S3. Time series of photolysis frequency j(ClNO2), ClNO2, NO2, O3, and NO concentrations in 

February of the JULIAC campaign. Horizontal blue and red lines indicate air mass from long-range (blue) and 

regional transportation (red), respectively (Section 3.2). The color filled areas indicate periods when 

characterization experiments were performed: these measurements were excluded from the analysis. 



7 
 

 

Figure S4. Same as Figure S3 but for the measurements in August.  
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Figure S5. Same as Figure S3 but for the measurements in September. 
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Figure S6. Same as Figure S3 but for the measurements in November. 
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Figure S7. Same as Figure S3 but for the measurements in December. During this period NO measurements 

were not available. 
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Figure S8. Cumulative histogram of measured NO concentrations during nighttime for different periods. The 
horizontal lines denote the position of 90% percentile of data. 
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Figure S9. Same as Fig. 5 but for all nighttime data (left) and for data 1 hour (+/- 0.5h interval) before sunrise 
(right). 
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Figure S10. Comparison between observed and modelled ClNO2 for the regional (left) and long-range (right) 
transportation air masses. Model results are calculated as done in Fig. 6 in main text but measured O3 
concentrations and temperature data are used as input. 
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Figure S11. Same as Fig. 6 but the NO3 radical chemical loss rate constant is decreased from 0.004 s-1 to 0.002 s-1. 
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Figure S12. Same as Fig. 6 but the N2O5 heterogeneous uptake coefficient on aerosol is increased from 0.01 to 0.04. 
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Figure S13. Same as Fig. 6 but the yield of ClNO2 in the heterogeneous reaction of N2O5 on aerosol is increased 
from 0.5 to 1.0. 
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Figure S14. Scatter plot of calculated ClNO2 yield (φ(ClNO2)) versus the ratio between Chloride and 
aerosol liquid water content. Parametrized φ(ClNO2) is calculated following literatures recommendation 
(Bertram and Thornton, 2009;Mielke et al., 2013;McDuffie et al., 2018). Red and blue dots denote the 
average for the regional and long-range transported air masses, respectively. In September, the data for 
Long-range air masses case is missing due to the lack of simultaneous aerosol chemical composition 
measurement. 
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