
Atmos. Chem. Phys., 22, 13103–13113, 2022
https://doi.org/10.5194/acp-22-13103-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.

R
esearch

article

Observation of secondary ice production in clouds
at low temperatures

Alexei Korolev1, Paul J. DeMott2, Ivan Heckman1, Mengistu Wolde3, Earle Williams4,
David J. Smalley5, and Michael F. Donovan5

1Meteorological Research Division, Environment and Climate Change Canada, Toronto, ON, Canada
2Department of Atmospheric Science, Colorado State University, Fort Collins, CO, USA
3Aerospace Research Centre, National Research Council Canada, Ottawa, ON, Canada

4Department of Civil and Environmental Engineering, Massachusetts Institute of Technology,
Cambridge, MA, USA

5Lincoln Laboratory, Massachusetts Institute of Technology, Lexington, MA, USA

Correspondence: Alexei Korolev (alexei.korolev@ec.gc.ca)

Received: 14 June 2022 – Discussion started: 27 June 2022
Revised: 19 September 2022 – Accepted: 22 September 2022 – Published: 12 October 2022

Abstract. Ice particles play an important role in precipitation formation and radiation balance. Therefore, an
accurate description of ice initiation in the atmosphere is of great importance for weather prediction models and
climate simulations. Despite the abundance of ice crystals in the atmosphere, the mechanisms for their formation
remain not well understood. There are two major sets of mechanisms of ice initiation in the atmosphere: primary
nucleation and secondary ice production. Secondary ice production occurs in the presence of preexisting ice,
which results in an enhancement of the concentration of ice particles. Until recently, secondary ice production
was mainly attributed to the rime-splintering mechanism, known as the Hallett–Mossop process, which is active
in a relatively narrow temperature range from −3 to −8 ◦C. The existence of the Hallett–Mossop process was
well supported by in situ observations. The present study provides an explicit in situ observation of secondary
ice production at temperatures as low as −27 ◦C, which is well outside the range of the Hallett–Mossop pro-
cess. This observation expands our knowledge of the temperature range of initiation of secondary ice in clouds.
The obtained results are intended to stimulate laboratory and theoretical studies to develop physically based
parameterizations for weather prediction and climate models.

1 Introduction

Ice particles in Earth’s atmosphere play a crucial role in the
modulation of precipitation and radiation transfer and even-
tually affect the hydrological cycle and climate on a global
scale (e.g., Hong et al., 2016; Matus and L’Ecuyer, 2017;
Bacer et al., 2021). Despite their important role, a descrip-
tion of cloud processes involving ice particles is a subject of
numerous challenges and uncertainties (e.g., Seinfeld et al.,
2016). Understanding the mechanisms of ice initiation in the
atmosphere is of a great importance for developing physi-
cally based parameterizations in weather prediction models
and climate simulations (e.g., Muench and Lohmann, 2020).

There are two major mechanisms of ice formation in the
atmosphere that are usually referred to as “primary” and
“secondary”. Primary ice production begins with the nucle-
ation of ice particles either homogeneously in droplets su-
percooled below −38 ◦C or heterogeneously on the surface
of ice-nucleating particles (INPs) through freezing of asso-
ciated water or potentially directly from the vapour phase
via deposition nucleation (e.g., Kanji et al., 2017). In con-
trast, secondary ice production (SIP) occurs in the presence
of preexisting ice particles (e.g., Cantrell and Heymsfield,
2005; Field et al., 2017). Numerous observations have shown
that the concentration of INPs in the atmosphere is generally
lower than the concentration of cloud ice particles, and the
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difference between them may reach several orders of magni-
tude (e.g., Hobbs, 1969; Mossop, 1985; Ladino et al., 2017).
While the co-occurrence of both types of observations is still
rare, the accumulated observations lead to the understand-
ing that, in many cases, primary ice production cannot ex-
plain the concentrations of ice particles observed in clouds
(Mossop, 1985; Cantrell and Heymsfield, 2005; Field et al.,
2017). The excess of the ice particle concentration over that
of INPs was attributed to initiation of ice due to secondary
ice production processes. At present, secondary ice produc-
tion is recognized as one of the major sources of ice particles
in the atmosphere at temperatures above the temperature of
homogeneous freezing but with poor understanding as to the
ways this comes about. It is worth noting that simulations of
simple cloud situations do support closure of INPs and ice
concentrations (Heymsfield et al., 1977; Eidhammer et al.,
2010; Field et al., 2012).

There are six mechanisms identified as potential sources of
SIP: (1) fragmentation during droplet freezing, (2) the rime-
splintering (Hallett–Mossop) process, (3) fragmentation due
to ice–ice collision, (4) ice particle fragmentation due to ther-
mal shock, (5) fragmentation of sublimating ice, and (6) the
activation of ice-nucleating particles in transient supersatu-
ration around freezing drops. A detailed review of these six
SIP mechanisms is provided in Korolev and Leisner (2020).

For many years, the rime splintering (Hallett–Mossop –
HM) mechanism (Hallett and Mossop, 1974; Mossop and
Hallett, 1974) was considered to be the main source of sec-
ondary ice in clouds. This perception of secondary ice ini-
tiation had been adopted by the cloud-modelling commu-
nity, and most of numerical cloud simulations described sec-
ondary ice production with the help of the HM process only
(e.g., Morrison, 2005; Bacer et al., 2021, and many others).
Since the HM mechanism is active at relatively high temper-
atures ranging from−3 to−8 ◦C (Hallett and Mossop, 1974;
Mossop and Hallett, 1974), secondary ice particles were ac-
tivated in the numerical cloud simulations in this tempera-
ture range only, whereas outside the HM process temperature
range ice initiation was assigned to primary ice nucleation
only. Such an approach may lead to underrepresentation of
the role of secondary ice and result in biases in simulations
(e.g., Qu et al., 2022; Huang et al., 2021).

Recent laboratory studies (Lauber et al., 2018; Keinert
et al., 2020) showed that droplet breakup during freezing
may contribute to formation of secondary ice at temperatures
colder than the HM process. Observations of glaciation of
convective clouds also suggest that SIP may take place at
temperatures colder than −8 ◦C (e.g., Lawson et al., 2015,
2017).

The other four SIP mechanisms mentioned above may
also contribute to ice formation outside the HM mechanism
temperature range. In this regard, it is worth noting recent
attempts to numerically explore the effects of various SIP
mechanisms across a wide temperature range (e.g., Phillips
et al., 2017; Sullivan et al., 2018; Qu et al., 2019). However,

parameterizations of SIP in cloud models are of debatable
accuracy because the efficiencies of SIP mechanisms and the
environmental conditions required for initiation of SIP are
not understood at a fundamental level.

In situ observation of SIP is a challenging task. The most
common way of identifying SIP is based on comparisons of
the observed concentration of ice particles and the concen-
tration of INPs. Since in situ airborne measurements of INPs
are not always possible, the INP concentration may be as-
sessed from statistical dependence of INP concentration ver-
sus temperature (e.g., Kanji et al., 2017). Despite the fact that
the INP concentration, at a specific temperature, may vary
within 4 orders of magnitude (e.g., Kanji et al., 2017), the
observed concentration of ice particles frequently exceeds
the maximum possible INP concentration. Direct airborne in
situ observation of the SIP process is hindered by high air-
craft speeds (typically > 100 m s−1), low sampling statistics
of cloud particles, poor spatial coverage, and a limited capa-
bility to perform Lagrangian measurements. In many cases,
SIP particles may travel a long distance from the location of
their origin to the location of their observation via sedimen-
tation, turbulent diffusion, or convective updrafts. Depending
on their age, the secondary particles experience metamor-
phoses of shape and size due to varying ambient supersat-
uration S and temperature T and riming. The concentration
of SIP particles may also change due to the turbulent mixing,
sedimentation, and aggregation. Therefore, in situ observa-
tion of secondary ice particles at the moment of their origin
is in many ways a matter of luck, i.e., whether an aircraft in-
tersects the SIP cloud region at the right time and the right
location.

There is a large number of past and recent in situ observa-
tions of SIP within the HM temperature range (e.g., Hallett et
al., 1978; Crawford et al., 2012; Keppas et al., 2017; Lasher-
Trapp et al., 2016; Lauber et al., 2021; Li et al., 2021; Luke
et al., 2021; Ramelli et al., 2021, to name a few). However,
there are fewer observations of SIP outside the HM tempera-
ture range (e.g., Hobbs, 1969; Costa et al., 2017; Lawson et
al., 2017, 2022; Mignani et al., 2019; Korolev et al., 2020;
Pasquier et al., 2022). Most of these studies reported obser-
vations of enhanced concentration of ice particles which ex-
ceeded expected concentration of INPs at the temperature
of observation. These enabled conclusions about their sec-
ondary production nature. However, location and environ-
mental conditions associated with their origin and the age
of the secondary ice particles mostly remained unknown.

This study presents an explicit observation of SIP in a
strongly constrained cloud region at temperatures as low as
−27 ◦C. This expands our knowledge of the temperature
range of clouds where SIP may occur. The results of this
study are important for the understanding of one of the fun-
damental mechanisms of ice initiation in clouds. It is also
expected that these observational results will stimulate fur-
ther laboratory studies aimed at the exploration of SIP at low
temperatures.

Atmos. Chem. Phys., 22, 13103–13113, 2022 https://doi.org/10.5194/acp-22-13103-2022



A. Korolev et al.: Observation of secondary ice production 13105

2 Results

The measurements were collected from the National Re-
search Council Canada (NRC) Convair 580 research aircraft
during the Buffalo Area Icing and Radar Study (BAIRS II)
field campaign. The NRC Convair 580 was heavily instru-
mented for cloud microphysical measurements. The follow-
ing instrumentation has been used in the frame of this study.
Measurements of the ice particle number concentration, ice
water content (IWC), medium mass diameter (MMD), and
maximum size of particles (Dmax) were extracted from com-
posite particle size distributions measured by imaging opti-
cal array probes (OAPs). These included a SPEC Inc. (Boul-
der, CO) two-dimensional stereo probe (2DS; Lawson et al.,
2006) and a SPEC High Volume Precipitation Spectrometer
(HVPS; Lawson et al., 1998). Cloud droplet size distribu-
tions were measured by both a Particle Measuring Systems
(PMS) forward-scattering spectrometer probe (FSSP; Knol-
lenberg, 1981) and a Droplet Measurement Technologies
(DMT) cloud droplet probe (CDP; Lance et al., 2010). High-
resolution particle images were measured with the SPEC
Cloud Particle Imager (CPI; Lawson et al., 2001). A Rose-
mount icing detector was used for detection of liquid water
at T < 4 ◦C (Mazin et al., 2001). Vertical velocity was mea-
sured by the Rosemount (RSM) 858 (Williams and Marcotte,
2000) and Aventech AIMMS-20 (Aircraft-Integrated Meteo-
rological Measurement System; Beswick et al., 2008). Mea-
surements of the air temperature were made with the Rose-
mount total-air temperature probes (model 102DJ1CG; Law-
son and Cooper, 1990; Friehe and Khelif, 1992). Dew and
frost point temperatures were extracted from water vapour
humidity measured by the LI-COR LI-7000 probe (LI-COR,
2007). The Convair 580 was also equipped with an NRC air-
borne W-band (NAW) radar with Doppler capability (Wolde
and Pazmany, 2005). The collected cloud microphysical data
were processed and analyzed with the help of the ECCC (En-
vironment and Climate Change Canada) D2G software.

Figure 1 shows the time series of selected cloud micro-
physical and state parameters associated with the studied
cloud segment. The data were collected during “porpois-
ing” along the cloud top of the precipitating cirrocumulus–
nimbostratus (Cc–Ns) cloud system (Fig. 1j). The Cc–Ns
was overlaid by another thin cirrostratus (Cs) layer with the
cloud top at approximately 8 km, which was separated from
the lower Cc–Ns by a few hundred metres of a cloud-free
layer. The morphology of the cloud top can be seen from the
GOES-16 (Geostationary Operational Environmental Satel-
lite) satellite visible and infrared images in Fig. S1 in the
Supplement.

The aircraft altitude during the porpoising changed be-
tween 6200 and 6800 m (Fig. 1j), and the temperature varied
from −22 to −27 ◦C (Fig. 1g). From a microphysical stand-
point, the environment in the studied cloud was highly inho-
mogeneous, consisting of intermittent mixed-phase and ice
cloud segments. The presence of supercooled liquid water is

verified by the changing frequency of a vibrating icing cylin-
der (Fig. 1f), when passing through the liquid-containing
cloud regions (Fig. 1c and d). The horizontal extension of
mixed-phase cloud regions varied from a few hundred metres
to a few kilometres (Fig. 1c and d), with liquid water content
(LWC) peaking up to 0.2 g m−3. The concentration of liquid
droplets of the mixed-phase clouds was from 46 cm−3, peak-
ing up to 120 cm−3 (Fig. 1c), and the mean volume diameter
(MVD) changed between 8 and 15 µm. The probability den-
sity function and size distributions of cloud droplet concen-
tration and LWC are shown in Fig. S2.

The high variability in the cloud microstructure was likely
induced by an intense turbulence. The vertical velocity var-
ied from −2 to +2 m s−1 with σ = 0.6 m s−1 (Fig. 1h). Ver-
tical velocity Uz > 0.1 to 0.5 m s−1 is sufficient to activate
liquid water in preexisting ice clouds (Korolev and Mazin,
2003) and maintain a mixed-phase environment (Hill et al.,
2014; Field et al., 2014). The interaction between ice par-
ticles and newly formed liquid droplets will occur through
riming and Wegener–Bergeron–Findeisen (WBF) processes
(Wegener, 1911; Bergeron, 1935; Findeisen, 1938), which
may result in a complete depletion of liquid water by ice par-
ticles and glaciation of the mixed-phase cloud. Intense turbu-
lence may also stimulate entrainment of the dry air through
the cloud top. This will result in the evaporation of cloud
droplets and ice particles, which contributes to a further in-
crease in cloud inhomogeneity and expedites glaciation.

Figure 1b shows the time series of cloud particles con-
centration with a maximum dimensionDmax > 40 µm, which
was calculated from a composite particle size distribution
measured by the 2DS and HVPS. The 2DS binary imagery
does not allow for segregation of the phase state of small
ice particles (Dmax < 80 µm) because of poor pixel resolu-
tion (Korolev et al., 2017). However, analysis of the high-
resolution CPI imagery (2.3 µm) suggests that no droplets
with Dmax > 40 µm were present in these cloud regions, and
therefore, particles with Dmax > 40 µm can be considered to
be ice with a high level of confidence.

The most striking observation in the studied cloud is three
cloud segments indicated by numbers 1–3 in Fig. 1a with
the concentration of ice particles varying in the range of
200<Nice < 1200 L−1 (Fig. 1a and b). However, elsewhere
around these cloud segments, the background concentration
of ice particles varied from 0.4 to 30 L−1 at the 5th and
95th percentiles, respectively, with the mean value of 7.5 L−1

(Fig. S3). There is nearly 2–3 orders of magnitude of differ-
ence between the background and enhanced ice concentra-
tions, and simultaneous measurements of high ice concentra-
tions by two independent instruments (Fig. 1a and b) exclude
explanation of this observation by statistical fluctuations of
particle counts.

Figure 2 shows a sequence of the high-resolution CPI im-
ages measured during a traverse through the cloud region
with segments 1 and 2 (Fig. 1a, 11:28:22–11:30:34 UTC). As
shown in Fig. 2, the particles inside the regions of enhanced
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Figure 1. Time series of selected measurements: (a) concentration of small pristine ice crystals with sizes smaller than 100 and 200 µm
assessed from CPI data; (b) concentration of ice particles > 50 µm measured by 2DS, with H and V referring to the horizontal and vertical
channels; (c) concentration of cloud droplets with 2 µm<D < 50 µm measured by FSSP and CDP; (d) IWC and LWC calculated from
2DS+HVPS and FSSP measurements, respectively; (e) maximum ice particle size and median mass diameter of ice particles extracted from
2DS+HVPS data; (f) Rosemount icing detector frequency; (g) air, dew point, and frost point temperatures measured by a LI-COR LI-7000;
(h) vertical wind velocity measured by RSM-858 and AIMMS-20; and (j) reflectivity measured by W-band radar.
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ice concentration are mostly small facetted hexagonal plates
and columns, whereas outside regions 1–3, the ice particles
have irregular shape and many of them are covered by fresh
or aged rime.

Figure 3 presents average composite size and mass distri-
butions measured by 2DS and HVPS probes in seven cloud
segments shown in Fig. 1a. Three of these segments are asso-
ciated with the cloud regions with enhanced concentrations
(1–3, Fig. 1a), and the other four are associated with the
neighbouring regions 4–7, indicated by grey strips in Fig. 1a.
In Fig. 3, the distributions in the cloud segments with high
concentration (1–3, red) are grouped close to each other, and
they are quite different from the distributions (4–7, blue) in
the neighbouring cloud regions. The maximum particle size
Dmax in cloud segments 1–3 is limited to a range of 400–
600 mm, whereas in the background cloud segments 4–7 the
Dmax values reach 1.5 to 2 mm. The time series of Dmax and
mean mass diameter (MMD) are also shown in Fig. 1e.

The obtained observations suggest that the formation of a
high concentration of small ice particles in cloud regions 1–
3 can be attributed to a physical process rather than to
the statistics of sampling. A valid question arises: what is
the mechanism responsible for the formation of the high-
concentration regions?

Based on INP in situ measurements, the maximum con-
centration of primary ice particles at T =−27 ◦C may vary
from approximately 10−1 to 1000 L−1 (e.g., Kanji et al.,
2017; Petters and Wright, 2015). Therefore, the observed
concentration Nice = 1200 L−1 might be explained by pri-
mary ice nucleation. On the other hand, the background con-
centration of ice particles in the neighbouring cloud regions
is systematically lower by 1–2 orders of magnitude than Nice
in cloud segments 1–3 (Fig. 1b). It would be reasonable to as-
sume that the primary ice particles were initiated by the same
population of INPs, giving a concentration of ice varying be-
tween 0.4 and 30 L−1. The rapid increase in the concentration
of INPs by 1–2 orders of magnitude in a spatially limited area
is an unlikely explanation. Such spatial inhomogeneities of
the INP concentration would be rapidly mixed with the sur-
rounding environment due to turbulent diffusion. Assessment
of the turbulent energy dissipation rate (ε) from Fig. 1h and
the maximal horizontal extension (L) of cloud segments 1–
3 from Fig. 1a yields ε ≈ 10−2 m2 s−3 and L≈ 103 m, re-
spectively. Therefore, the mixing time could be assessed as

τm =
(
L2/ε

) 1
3 ∼ 5×102 s. Such a mixing time is shorter than

the age of the existing Cc–Ns cloud layer from the GOES-16
satellite imagery by at least 1 h. At timescales τ > τm the
spatial variations of the INPs will be homogenized due to
mixing with the ambient environment. Therefore, the expla-
nation of the enhanced concentration of ice particles due to
spatial inhomogeneity of the INP concentration can be ruled
out.

Another possibility explaining the enhanced ice concentra-
tion may be related to the droplet freezing. The rate of droplet

freezing has been assessed here with the help of Bigg’s equa-
tion (Bigg, 1953; Khain et al., 2021). For the droplet size dis-
tribution averaged over the cloud span (Fig. S2a) it was found
that at −27 ◦C the rate of droplet freezing is approximately
dNice/dt ≈ 0.3 L−1 s−1 (see the Supplement). Therefore, in
order to reach an enhanced ice concentration of the order
of 103 L−1 the residence time of the cloud parcel should
be Nice/dN ice/dt ≈ 0.92 h. This is an unrealistically long res-
idence time for a cloud parcel in a stratiform cloud layer at
a depth of a few hundred metres. During this time the tur-
bulent diffusion will smear the entire cloud parcel as well as
ice particles mitigating formation of sharp gradients of ice
concentration as in Fig. 1a and b. All these aspects make the
“droplet freezing” hypothesis insufficient to explain the ob-
served enhanced concentration of ice. The enhanced concen-
tration of ice can possibly be explained by seeding from the
cirrus cloud overlaying the Cc–Ns layer (Fig. 1j). However,
the W-band radar measurements indicated that the two cloud
layers were separated by approximately 500 m with no radar
return (Fig. 1j; 11:29–11:32 UTC). On the other hand, mea-
surements of humidity during occasional climbing above the
cloud top of the Cc–Ns layer (not in Fig. 1) showed that the
two cloud layers were separated by dry air. The dry layer will
hinder seeding due to sublimation of ice particles. A few ran-
dom ice particles, which may survive sublimation in the dry
layer and can reach the Cc–Ns layer, are unlikely to explain
the high concentration of ice in segments 1–3. Therefore,
seeding from the overlaid cirrus cloud also does not seem
to be a feasible explanation of high ice concentration.

Secondary ice production appears to be the most plausi-
ble reason of the enhanced concentration of ice in cloud seg-
ments 1–3. This explanation is supported by the numerous
small pristine ice particles in these cloud regions (Fig. 2).
Very similar small pristine ice crystals were observed in the
studies of Korolev et al. (2020) and Lauber et al. (2021) at
subfreezing temperatures.

The size of individual facetted ice crystals in cloud seg-
ments 1–3 with enhanced ice concentration varied from 26
to approximately 170 µm (segment 1, Fig. 2), from 31 to
approximately 142 µm (segment 2, Fig. 2), and from 61 to
approximately 250 µm (segment 3, not shown). Ice particles
with larger sizes are either polycrystalline, aggregates, or
rimed. The size span between the smallest and largest crys-
tals indicates that the SIP occurred not instantly but rather
was extended over some time. Assuming the initial size of
secondary ice particle is 5 µm (Korolev et al., 2020) and the
humidity is saturated over liquid water, the time required to
grow ice particles to the maximum size indicated above can
be estimated as approximately 160 s (segment 1), 115 s (seg-
ment 2), and 360 s (segment 3).

In reality, the in-cloud humidity is continuously changing
because of mixing with the neighbouring environment, and
on average it has a tendency to decrease due to depletion of
water vapour by ice particles. Therefore, the above assess-
ment yields a lower estimate of the ice crystals growth time.
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Figure 2. Images of cloud particles sampled by CPI during a traverse of a cloud shown in Fig. 1. First image at 11:28:22 UTC; last image
at 11:30:34 UTC. The numbers on the left bottom corner of each image indicate the maximum image size in micrometres. The images
associated with the high ice concentration cloud regions 1 and 2 in Fig. 1a appear on a blue background.

The actual growth time will be longer given the lower RH
compared to its saturated-over-water value.

Figure 1g shows a time series of the frost point (Tf),
dew point (Td), and air temperature (Ta). These tempera-
tures enable assessment of relative humidity over ice RHice.
As seen from Fig. 1g in cloud regions with high ice con-
centrations, the cloud environment was always supersat-
urated with respect to ice (i.e., Tf > Ta), and RHice var-
ied in the ranges of 112 %< RHice < 130 % (segment 1),
113 %< RHice < 119 % (segment 2), and 107 %< RHice <

111 % (segment 3). Saturation over water was reached in seg-
ment 1 (i.e., when Td ≈ Ta), whereas segments 2 and 3 were
undersaturated with respect to water.

Supercooled liquid droplets might have been initially
present in segments 1–3 before the SIP process had begun.
However, the initiation of a large amount of secondary ice

would intensify the WBF process and expedite glaciation of
the mixed-phase environment. Assuming an initial LWC=
0.1 g m−3 and a concentration of ice particles Nice = 500–
1000 L−1, the assessment of the glaciation time (Korolev and
Mazin, 2003) yields τgl = 60–90 s.

This obtained assessment of the glaciation time and
growth time of ice crystals allows for an estimate of the age
of SIP in cloud segments 1–3, which is approximately 2–
5 min. The following growth of ice particles will result in
their sedimentation and formation of virgae, which are quite
noticeable in the W-band radar returns in Fig. 1j. Luke et
al. (2021) observed similar virgae in Arctic stratiform clouds
in regions associated with SIP.

At that stage it does not seem feasible to identify which
SIP mechanism is responsible for the observed enhancement
of ice concentration. Observation of heavily rimed particles

Atmos. Chem. Phys., 22, 13103–13113, 2022 https://doi.org/10.5194/acp-22-13103-2022
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Figure 3. Size (a) and mass (b) distributions of cloud ice particles
measured by 2DS and HVPS in cloud regions in Fig. 1 indicated
by numbers 1–7. Size and mass distributions 1–3 (red) correspond
to the cloud regions with high concentration of small ice particles;
4–7 (blue) correspond to the cloud regions with aged ice.

suggests that the rime-splintering mechanisms might be ac-
tive. Unfortunately, early experimental studies of rime splin-
tering were mainly focused on relatively high temperatures
(e.g., Aufdermaur and Johnson, 1972; Hallett and Mossop,
1974; Mossop, 1976; Heymsfield and Mossop, 1984; Saun-
ders and Hosseini, 2001), and there were no published re-
sults on efficiency of rime splintering at temperatures lower
than −18 ◦C (Latham and Mason, 1961). Droplet breakup
during freezing is another plausible SIP mechanism to ex-
plain the observations (Lauber et al., 2018; Keinert et al.,
2020; Staroselsky et al., 2021). It is worth mentioning that the
droplet breakup during freezing and rime splintering is sup-
ported by the presence of liquid phase in this layer. Absence
of supercooled liquid in segments 2 and 3 may be explained
by glaciation of the mixed-phase environment. Developed
shapes of rimed ice particles (Fig. 2) with a large number of
seemingly fragile branches suggests the ice–ice collisional
breakup mechanism is another plausible candidate for ex-
plaining the enhanced concentration of ice (Vardiman, 1978;
Takahashi et al., 1995). Shattering of fragile ice branches
resulting from a thermal shock during freezing (e.g., King
and Fletcher, 1976) and ice nucleation in high-supersaturated
wakes behind riming ice particles (e.g., Gagin, 1972; Prab-
hakaran et al., 2020) also cannot be ruled out. However, frag-
mentation during ice sublimation (Oraltay and Hallet, 1989;

Figure 4. Images of clouds with ice virga. Optically dense cores of
the clouds sourcing the virga indicate presence of liquid droplets.
Figures courtesy of (a) Kaufung/Alamy Stock Photo/CRDP4A and
(b) Martin Gudd (Institute for Professional Weather Education,
https://www.weather-education.de, last access: 7 October 2022).

Bacon et al., 1998) appears to be the least plausible mecha-
nism, since no undersaturated environment was observed in
the studied cloud layer (Fig. 1g).

As follows from the above, no clear preferences could be
granted to any of the six potential SIP mechanisms. However,
in absence of credible experimental data on efficiency and
environmental conditions required for each SIP mechanism,
the above discussion on the feasibility of an SIP mechanism
bears a speculative character. It is worth mentioning that an
unknown mechanism responsible for the observed enhanced
concentration of ice also cannot be ruled out.

It is interesting to note that, in the stratiform layers, SIP
occurred in spatially localized cells where the necessary and
sufficient conditions for SIP initiation were met. The hori-
zontal extension of the SIP regions in Fig. 1a is estimated to
vary from approximately 500 m to 1 km.

The obtained results can be illustrated by pictures of al-
tocumulus and altostratus clouds with virgae in Fig. 4. The
optical density of the main bodies of the clouds indicates that
these clouds are dominated by liquid droplets. Ice clouds usu-
ally have lower optical density, and they are more transpar-
ent given the lower concentration of ice particles compared
to that of liquid droplets. The streaky structure of the virgae
with relatively small vertical extension of the clouds in Fig. 4
indicates that the particles precipitating out of the clouds are
ice. Usually, formation of liquid precipitation requires deep
liquid layers compared to those in Fig. 4. A specific point of
the photos in Fig. 4 is that virgae of ice particles did not ex-
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tend across the entire cloud but rather formed in very local
regions. Such a formation of is unlikely to be explained by
primary nucleation due to spatial fluctuations of INPs, which
formed a region with an enhanced concentration of INPs. The
most plausible explanation is that the virgae in Fig. 4 are a re-
sult of SIP at the locations where the relevant SIP conditions
were satisfied.

3 Conclusions

This is a first explicit in situ observation of SIP at tempera-
tures down to−27 ◦C. This expands our understanding of the
temperature range where SIP may occur in natural clouds.
Even though laboratory studies suggest that SIP may take
place at temperatures colder than that relevant to the HM
process, there were no unambiguous observations of SIP in
natural clouds at temperatures as low as −27 ◦C. The ob-
tained results are important to stimulate laboratory and the-
oretical studies to identify SIP mechanisms at low temper-
atures. One of the key objectives along this way is finding
necessary and sufficient conditions for SIP. This would facil-
itate development of physically based parameterizations for
numerical weather predictions (NWPs) and climate models.
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