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Abstract. Atmospheric new particle formation (NPF) is an important source of climate-relevant aerosol parti-
cles which has been observed at many locations globally. To study this phenomenon, the first step is to identify
whether an NPF event occurs or not on a given day. In practice, NPF event identification is performed visually
by classifying the NPF event or non-event days from the particle number size distribution surface plots. Un-
fortunately, this day-by-day visual classification is time-consuming and labor-intensive, and the identification
process renders subjective results. To detect NPF events automatically, we regard the visual signature (banana
shape) which has been observed all over the world in NPF surface plots as a special kind of object, and a deep
learning model called Mask R-CNN is applied to localize the spatial layouts of NPF events in their surface plots.
Utilizing only 358 human-annotated masks on data from the Station for Measuring Ecosystem–Atmosphere Re-
lations (SMEAR) II station (Hyytiälä, Finland), the Mask R-CNN model was successfully generalized for three
SMEAR stations in Finland and the San Pietro Capofiume (SPC) station in Italy. In addition to the detection of
NPF events (especially the strongest events), the presented method can determine the growth rates, start times,
and end times for NPF events automatically. The automatically determined growth rates agree with the manu-
ally determined growth rates. The statistical results validate the potential of applying the proposed method to
different sites, which will improve the automatic level for NPF event detection and analysis. Furthermore, the
proposed automatic NPF event analysis method can minimize subjectivity compared with human-made analysis,
especially when long-term data series are analyzed and statistical comparisons between different sites are needed
for event characteristics such as the start and end times, thereby saving time and effort for scientists studying
NPF events.
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1 Introduction

Atmospheric aerosols have profound impacts on air quality,
human health, ecosystems, weather, and climate (Asmi et al.,
2011a; Hirsikko et al., 2011; Joutsensaari et al., 2018; Chu
et al., 2019; Lee et al., 2019). New particle formation (NPF)
is an important source of atmospheric aerosols, which has
been observed in a variety of locations in the world such
as different types of forests, semi-polluted or heavily pol-
luted cities, high-altitude sites, coastal sites, and polar re-
gions (Kulmala et al., 2004; Kuang et al., 2010; Kulmala
et al., 2012; Nieminen et al., 2018; Dada et al., 2018; Lee
et al., 2019). In addition to the spatial scale, on the tempo-
ral scale, NPF events have also been observed in sites built
a long time ago (Dal Maso et al., 2005; Järvi et al., 2009;
Asmi et al., 2011b) and newly built sites (Kerminen et al.,
2018; Chu et al., 2019; Liu et al., 2020; Yan et al., 2021).

To analyze NPF events, the first step is to determine
whether an NPF event has occurred or not (Kulmala et al.,
2012). Previous studies on detecting NPF types can be
roughly divided into three categories: vision-based, rule-
based, and data-driven. Vision-based methods visually clas-
sify the NPF types day by day according to some criteria
based on surface plots of the size distribution time series
(Mäkelä et al., 2000; Dal Maso et al., 2005; Hirsikko et al.,
2011). The advantage of vision-based methods is that experts
can explicitly tell which region in a surface plot is thought
of as the evidence of an NPF event, and the drawbacks of
vision-based methods are that they are labor-intensive and
time-consuming and the classification process is subject to
human bias. Rule-based methods classify NPF types with
several explicit steps where some thresholds on the parti-
cle number concentrations are used as prior knowledge (Kul-
mala et al., 2012; Dada et al., 2018). Rule-based methods can
classify NPF types automatically, but the drawback of these
methods is that the particle number concentrations can vary
a lot between different environments, meaning that the prior
knowledge used in one site may fail in other sites or complex
situations. Data-driven methods utilize the measured particle
number size distributions and annotated NPF types (labels)
to establish a model which can identify NPF types. For in-
stance, neural networks (NNs) have been used to classify
NPF types no matter whether handcrafted features (Nanni
et al., 2017) are used (Zaidan et al., 2018) or not (Joutsensaari
et al., 2018). The advantages of data-driven or NN-based
methods are that they do not need any specific threshold on
particle number concentration and the classification process
is automatic. However, annotated NPF labels are required to
train the NNs, and since the label annotation process is sub-
jective, the trained NNs also “learn” the biases in the labels,
which impedes the application of NN-based methods to dif-
ferent sites. Considering the increasing number of global ob-
servation stations (Kulmala, 2018), an automatic NPF detec-

tion method that applies to NPF datasets collected in different
sites is necessary.

Although not all NPF events show signs of growth (Dal
Maso et al., 2005) or have the commonly known “banana”
shape, in this work, we only focus on the regional (banana-
type) NPF events which are the most common type of event
observed globally and whose formation signature is the con-
tinuous formation and subsequent growth of nucleation mode
(sub-25 nm) particles. We observe that there are some simi-
larities between recognizing NPF events in surface plots and
other objects in digital images. Taking cats as an example, no
unique mathematical criterion or definition for NPF events or
cats can be found. However, humans can easily distinguish
whether an NPF event occurs in a surface plot or whether a
cat occurs in a digital image in most cases. Inspired by this
observation, we regard the banana-type NPF events as a spe-
cial kind of object, and thus the object detection techniques
for detecting cats can be used to detect the banana-shaped
NPF events. For simplicity, we use NPF images to represent
surface plots without axes. Though surface plots have clear
physical meanings, we can apply different image transforma-
tions to NPF images without any restriction. In this study, we
use an instance segmentation method called Mask R-CNN
(He et al., 2017), a deep learning model, to localize the NPF
events by predicting a mask that can cover the spatial layout
(the banana shape) of each NPF event. In other words, we try
to answer the NPF classification problem by directly localiz-
ing the visual signature of NPF events. Since Mask R-CNN
only focuses on the banana shape that has been observed
globally, it can be used on datasets collected from different
sites automatically. For more information about object detec-
tion and instance segmentation, please refer to Appendix A.

To verify the generality of the presented method, we test
the Mask R-CNN model on three SMEAR stations (Sta-
tion for Measuring Ecosystem–Atmosphere Relations I, II,
and III) in Finland and one station located in San Pietro
Capofiume in the Po Valley basin in Italy (SPC station).
The datasets collected in the four stations sum up approxi-
mately 73 years of measurements. Besides the classification
problem, the accurate location of events makes it easier to
determine the growth rates, start times, and end times au-
tomatically. Our code at https://github.com/cvvsu/maskNPF
(last access: 20 January 2022) has been released to test it
on datasets collected in other sites and facilitate future re-
search. Our aims in this study are (1) to automatically local-
ize the globally observed visual signature (banana shape) for
regional NPF events, which can identify NPF types (events
occur or not, especially for the strongest events), and deter-
mine the growth rates, start times, and end times and (2) to
investigate the statistical characteristics of growth rates, start
times, and end times for the strongest NPF events for the
three SMEAR stations in Finland and the SPC station in Italy.
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2 Materials and methods

2.1 Measurement sites

We utilized aerosol size distribution data from three obser-
vation sites in Finland and one in Italy. All the sites oper-
ated similar instrumentation, and the observations followed
guidelines set by the Aerosols, Clouds, and Trace gases Re-
search InfraStructure Network (ACTRIS) for in situ aerosol
number size distribution measurements (Wiedensohler et al.,
2012). The observation sites and instruments are briefly de-
scribed below.

The SMEAR I station is located at the Värriö Subarctic
Research Station of the University of Helsinki (67◦46′ N,
29◦36′ E; 390 m a.s.l.) in northern Finland. The station is sur-
rounded by 70-year-old Scots pine (Pinus sylvestris) boreal
forest at Kotovaara hill, and some small lakes and mires exist
in valleys 60 m lower and more than 1 km away. The mea-
surements of particle number size distribution started in 1997
in SMEAR I. For more details about the site and measure-
ments, please refer to Vana et al. (2016), Kyrö et al. (2014),
and Hari et al. (1994). The analyzed particle number size
distribution dataset collected in Värriö covers 8189 d from
10 December 1997 until 14 January 2021 (8436 d in total,
and the days with no data were omitted from this study).

The SMEAR II station is located in the Hyytiälä Forestry
Field Station of the University of Helsinki in central Finland
(61◦51′ N, 24◦17′ E; 130 m a.s.l.), within pine-dominated bo-
real forest with some deciduous birch (Betula pubescens) and
aspen (Populus tremuloides) trees. Comprehensive measure-
ments including particle, radiation, gas, meteorological, and
complementary data have been made for more than 20 years
(Hari and Kulmala, 2005; Dada et al., 2017, 2018). The lo-
cation is considered a semi-clean boreal forest environment
according to the level of anthropogenic pollutants (Nieminen
et al., 2015; Dada et al., 2018; Zaidan et al., 2018). A de-
tailed overview of the site and measurements can be found in
Hari et al. (2013). The analyzed particle number size distribu-
tion dataset collected in Hyytiälä covers 8642 d from 31 Jan-
uary 1996 until 21 January 2020 (8756 d in total).

The SMEAR III station is located in the Kumpula campus
of the University of Helsinki in southern Finland (60◦12′ N,
24◦58′ E; 26 m a.s.l.). The station has accumulated approxi-
mately 17 years of measurements such as air pollution and
meteorological and turbulent exchange (Järvi et al., 2009).
The location is within an urban environment surrounded both
by campus buildings, busy streets, and open bedrock and
by parklands of deciduous forest, such as birch, aspen, and
maple (Acer pseudoplatanus). For more details about the site
and measurements, please refer to Järvi et al. (2009) and
Dada et al. (2020b). The analyzed particle number size dis-
tribution dataset collected in Kumpula covers 5775 d from
1 January 2005 until 14 January 2021 (5857 d in total).

The San Pietro Capofiume measurement station (SPC sta-
tion) is located in a rural area (44◦39′ N, 11◦37′ E; 11 m a.s.l.)

in Po Valley, which is the largest industrial, trading, and
agricultural area in Italy (Joutsensaari et al., 2018). The
particle number size distribution measurements started in
March 2002 and were carried out continuously, except
for occasional system malfunctions, until 2017. A detailed
overview of the site and measurements can be found in Jout-
sensaari et al. (2018). The analyzed particle number size
distribution dataset collected in SPC covers 4177 d from
24 March 2002 until 16 May 2017 (5534 d in total).

The aerosol particle number size distributions were mea-
sured by differential mobility particle sizer (DMPS) sys-
tems (Aalto et al., 2001) at all four stations (Fig. 1). The
particle number size distribution datasets collected from the
four stations are termed the Värriö dataset, Hyytiälä dataset,
Kumpula dataset, and SPC dataset. The DMPS systems in-
stalled in different stations have different detection ranges for
particle sizes, and particle sizes ranging from 3 to 1000 nm
are considered in this work. Note that the detected particle
size does not have to reach 1000 nm for all DMPS systems.

2.2 NPF types

According to the guidelines reported in previous studies, the
particle number size distributions can be classified into six
different types (Dal Maso et al., 2005; Kulmala et al., 2012;
Joutsensaari et al., 2018):

– Class Ia events. Ia-type events show clear and strong
formation of small particles (especially 3–6 nm), with
few or no pre-existing particles in the smallest size
ranges (Fig. 2a).

– Class Ib events. Ib-type events show the same behavior
as class Ia but with less clarity (Fig. 2b).

– Class II events. II-type events do not show clear ev-
idence for observing the growth. That is, the growth
rate cannot be determined without a large uncertainty
(Fig. 2c).

– Class Non-Event (NE). NE does not show any evidence
for new particle formation in the nucleation particle size
range (Fig. 2d).

– Class Undefined (Undef). Undef is a type that is difficult
to be classified as events or NEs since some but not all
features for events can be seen (Fig. 2e).

– Class Bad-Data (BD). The BD type is caused by instru-
ment malfunction. Generally, too high or too low par-
ticle concentrations or missing data can be observed in
the surface plots (Fig. 2f).

Figure 2 shows the example surface plots for different NPF
types. The banana shape can be seen clearly for Ia-type and
Ib-type NPF events because they are so consistent throughout
the day and are little influenced by local wind fields. Ia-type
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Figure 1. Värriö, Hyytiälä, Kumpula, and San Pietro Capofiume stations. Image credits: (a, b) Kansalaisen karttapaikka of the National
Land Survey of Finland (https://asiointi.maanmittauslaitos.fi/karttapaikka/, last access: 20 January 2022); (c, d) © Google Earth; (e) Matias
Uusinoka, 2021; (f) Petri Pellikka, 2019; (g) http://www.arimola.it/sito/2-non-categorizzato, last access: 20 January 2022, V. Martignani,
2020; (h) INAR.

and Ib-type NPF events are usually connected with phenom-
ena happening at large (regional) spatial scales. However, for
II-type NPF events, interruptions in surface plots are often
associated with more local sources of variability. The banana
shape is not very clear for II-type NPF events and can be
observed even in some Undef types.

2.3 Mask R-CNN

In order to fill the research gap mentioned in the Introduction,
we used an object instance segmentation technique called
Mask R-CNN, which can accurately localize an NPF event’s
spatial layout. Mask R-CNN extends the object detection
method Faster R-CNN (Ren et al., 2016) by adding a new
branch for generating segmentation masks of objects (He
et al., 2017), and Faster R-CNN is an advanced version of
Fast R-CNN (Girshick, 2015). The Mask R-CNN, Faster R-
CNN, and Fast R-CNN models are derived from the Regions
with CNN features (R-CNN) model (Girshick et al., 2014),
where CNN means convolutional neural network. The archi-
tecture of Mask R-CNN is shown in Fig. 3.

The Mask R-CNN model can be seen as a learnable func-
tion fθ that is parameterized by the learnable parameters θ .

That is,

Y= fθ (X), (1)

where X is an input NPF image and Y contains three outputs:
the class labels, bounding boxes, and masks. During train-
ing, the parameters are updated by reducing the losses be-
tween the output and annotated class labels, bounding boxes,
and masks, leading to the best-fitted function fθ∗ (Girshick,
2015; Ren et al., 2016; He et al., 2017). The learned function
fθ∗ is then applied to the test set to verify its generality.

Similarly to Joutsensaari et al. (2018), we fine-tuned the
Mask R-CNN model which had been pre-trained on the Mi-
crosoft COCO dataset (Lin et al., 2014) with only 358 an-
notated masks. These 358 masks were created through the
labeling tool “LabelMe” (Russell et al., 2008) and were
from 358 NPF images (78 Ia-type, 202 Ib-type, and 78 II-
type). The 358 NPF images were generated from the Hyytiälä
dataset, and the period was from 1996 to 2003. During
training, 300 NPF images with masks were randomly se-
lected as the training set, and the remaining 58 NPF im-
ages with masks were the validation set (Fig. 4). The learn-
ing rate was 5× 10−3, and decreased every 3 epochs with
a factor of 0.10. The stochastic gradient descent optimizer
was used. We used weight decay of 5× 10−4 and momen-
tum of 0.90. The Mask R-CNN model was fine-tuned for
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Figure 2. Example surface plots in the Hyytiälä dataset for different new particle formation types. Dates of measurements are used as titles
for subplots, and class names are in parentheses. Dates in figures throughout this paper are given in the format year-month-day.

10 epochs. All the NPF images and masks were resampled to
256× 256 pixels, and with an NVIDIA V100 GPU, the train-
ing process lasted around 5 min. Data collected after 2003
in Hyytiälä and datasets collected in Värriö, Kumpula, and
SPC are the test sets. Code and more results are available at
https://github.com/cvvsu/maskNPF.git (last access: 20 Jan-
uary 2022).

Given a specific day, if no mask can be detected by the
Mask R-CNN model, then this day will not be classified as an
event day. On the other hand, if at least one mask is detected
by the Mask R-CNN model, then this day will be recognized
as an event day by the Mask R-CNN model. Since Mask R-
CNN only focuses on the banana shape, some regions in NPF
images that are not events can also be localized, resulting in
more than one mask that can be detected for one NPF im-
age (Fig. 3). For each mask, there is an objectiveness score
in terms of [0, 1] showing the probability of an event occur-
rence. In addition to the objectiveness score, a bounding box
is also obtained.

Assuming the time resolution of DMPS systems are
10 min and there are 52 samples for particle sizes ranging
from 3 to 1000 nm, the recorded particle number size distri-
bution for 1 d is a data matrix with the shape of 52× 144 (3
to 1000 nm from the bottom row to the top row and 00:00 to
00:00 the next day (local time) from the first column to the
last column). We resampled the predicted masks to the size
of 52× 144, aligning to the shapes of collected data (Fig. 5).

The value of a pixel in a mask represents the probability
of the pixel belonging to an event. For each predicted mask,
it was binarized at a threshold of 0.50 (He et al., 2017). The
left and right edges of bounding boxes determine the start

and end times, respectively. The bottom and upper edges of
bounding boxes automatically provide a size window that
covers the related NPF event (Figs. 3 and 5).

2.4 Growth rate

The particle growth rate (GR) is the rate of change for a given
particle:

GR=
dDp

dt
=
1Dp

1t
=
Dp2−Dp1

t2− t1
, (2)

where Dp2 and Dp1 are the particle diameters at times t2 and
t1, respectively.

The maximum concentration method and log-normal dis-
tribution function (mode fitting) method are two widely used
methods to calculate the growth rate (GR) for an NPF event
(Kulmala et al., 2012; Dada et al., 2020a). The GRs de-
termined by these two methods have the same order and
seasonal variations (Dal Maso et al., 2005; Hirsikko et al.,
2005; Yli-Juuti et al., 2011). Since the localization of the
NPF events can be detected, we can accordingly calculate
the GR of an NPF event automatically using the maximum
concentration method. We used the random sample consen-
sus (RANSAC) algorithm (Choi et al., 2009) instead of or-
dinary least squares fitting to determine GRs. Compared to
ordinary least squares fitting, the RANSAC algorithm is ro-
bust to outliers. In addition to GRs, the predicted masks can
also be used to analyze the characters of start times and end
times of the strongest NPF events.
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Figure 3. The architecture of Mask R-CNN. ResNet-50 is ResNet (He et al., 2016a, b) with 50 layers. FPN is the feature pyramid network
(Lin et al., 2017). RPN is the region proposal network (Ren et al., 2016). RoIAlign (region of interest align) is the RoIAlign layer that
properly aligning the features (He et al., 2017).

3 Results and discussion

3.1 Classification results

According to the classification results on the Hyytiälä dataset
(Table 1), changing the threshold of the objectiveness score
does not affect the Ia and Ib types. However, on the SPC
dataset, different thresholds have a big effect on the clas-
sification accuracy of Ia and Ib types (Table 2). Since the
Mask R-CNN model was trained on the masks derived from
the Hyytiälä dataset, it did not contain any information about
the SPC dataset, resulting in unstable classification accuracy
when changing the threshold.

According to the classification results shown in Tables 1
and 2, there is a trade-off between the classification accu-
racy of NPF events and the number of “misclassified” days
(NE, Undef, or BD days are classified as event days by Mask
R-CNN), which is controlled by the threshold. Re-training
the Mask R-CNN model on masks derived from the SPC
dataset may improve the classification accuracy on the SPC
dataset and make the classification results stable indepen-
dent of the chosen threshold. We did not re-train the Mask
R-CNN model to demonstrate the generality of our method
(Table 2). Once a small threshold such as 0.20 for the ob-
jectiveness score is selected, on the SPC dataset and without
annotated masks or class labels, the classification accuracy
is 94.80 % for Ia-type NPF events, 87.94 % for Ib-type NPF
events, 90.57 % for a combination of Ia-type and Ib-type NPF
events (Table 2), which are higher accuracies than the results
reported in Joutsensaari et al. (2018), where an NN-based
method was applied. The classification results on the SPC
dataset demonstrate the idea that regarding the banana shape

in NPF images as a special object is reasonable. In Table 1,
some Undef, NE, and BD days are classified as event days
by the Mask R-CNN model. We visualize these misclassified
days in Appendix B to help readers have a better understand-
ing of the detection results.

According to the classification results of the four datasets,
for scientists who are only concerned about identifying Ia
and Ib event types, this method will save them plenty of time
and effort. Since the II-type events usually do not present a
clear banana shape in the NPF images and Undef days are
difficult to be classified as events or NEs, the Mask R-CNN
model fails to distinguish some of these days (Tables 1 and
2). However, detection results of Mask R-CNN can be used
as auxiliary information to help determine the II and Undef
types for scientists.

3.2 Growth rate

In this study, we show that combined with the detected
masks, the maximum concentration method can be used to
calculate the GRs automatically (Figs. 5 and 6). If not speci-
fied, we only focus on determining the GRs, start times, and
end times for the strongest NPF events.

Daytime hours between 06:00 and 18:00 (local time) were
used for the traditional maximum concentration method to
calculate the GRs. However, when the prior is not satisfied
or particle burst is present in the surface plots, scientists need
to select the start and end times manually. With the detected
masks, the proposed method can automatically determine the
time window (left and right edges of the bounding boxes,
Figs. 3 and 5), and there is no need to manually adjust the
start and end times. Usually, different size windows were ap-
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Figure 4. The flowchart of new particle formation event detection via Mask R-CNN.

Table 1. Classification results on the Hyytiälä dataset (8642 d). Numbers in parentheses are days for each class annotated by experts. An
objectiveness score ≥ 0.00 means that no threshold is applied and all the detected days are seen as event days.

Objectiveness score Ia (137) Ib (722) II (1031) NE (1991) Undef (3456) BD (305) Total (8642)

≥ 0.90 137 688 690 18 419 20 1972
≥ 0.80 137 703 759 42 594 24 2259
≥ 0.60 137 706 829 65 815 31 2583
≥ 0.40 137 711 880 110 1023 38 2899
≥ 0.20 137 715 922 216 1312 57 3359
≥ 0.00 137 717 967 461 1770 81 4133

plied to calculate GRs, and we selected the 3–25 nm as the
size range for GR calculation (Fig. 6). However, other size
ranges are also possible, and for more information, please
refer to our code at https://github.com/cvvsu/maskNPF (last
access: 20 January 2022). To avoid confusion, the maximum

concentration and mode fitting methods are termed tradi-
tional methods in this work.

As shown in Fig. 7, an obvious downtrend of GRs for the
SPC station can be seen, and the medians of GRs for the
SPC station are the highest compared to those for the other
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Figure 5. Example surface plot with the aligned mask. (a) An NPF image (size 256× 256 pixels). (b) Related surface plot of (a). (c) Detected
mask of (a) (size 256× 256 pixels). (d) Surface plot with the aligned mask.

Table 2. Classification results on the SPC dataset (4177 d) without annotations. Numbers in parentheses are days for each class annotated by
experts.

Objectiveness score Ia (269) Ib (431) II (619) NE (1416) Undef (841) BD (601) Total (4177)

≥ 0.90 179 208 111 1 9 19 527
≥ 0.80 210 275 159 2 25 28 699
≥ 0.60 241 329 228 5 46 40 889
≥ 0.40 249 357 280 12 64 56 1018
≥ 0.20 255 379 347 101 141 107 1330
≥ 0.00 262 402 448 275 290 180 1857

stations in most of the years, which is the same with the GRs
determined by the traditional methods. The traditionally de-
termined GRs of the SPC dataset utilized two different meth-
ods: from 24 March 2002 to 18 June 2011, the maximum
concentration method was used, and from 19 June 2011 to
14 August 2017, the mode fitting method was applied. The
median of GRs for the Kumpula station is greater than that
for the Värriö and Hyytiälä stations but smaller than that for
the SPC station in most of the years, which is consistent
with the observation that the GRs are highly related to the
local pollution levels (Kulmala et al., 2005; Hamed et al.,
2007). The Pearson correlation coefficients between tradi-
tionally and automatically determined GRs are 0.59 and 0.53

for the Hyytiälä and SPC stations, respectively. The tradition-
ally determined GRs of the Hyytiälä station were calculated
by the mode fitting method, which further verified that the
GRs determined by the maximum concentration and mode
fitting methods should have the same order and variations
(Yli-Juuti et al., 2011). The statistical results of GRs indi-
cate the potential to utilize the automatic method to calculate
GRs. Additionally, determining the GRs automatically leads
to consistent results and eliminates human-made errors.

3.3 Start time and end time

In addition to the GR, with the detected mask, the start time
and end time of an event can also be determined automat-

Atmos. Chem. Phys., 22, 1293–1309, 2022 https://doi.org/10.5194/acp-22-1293-2022
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Figure 6. Examples of the automatically determined growth rates by the proposed method. From the top row to the bottom row, each row
shows the examples (white curves) for the Värriö, Hyytiälä, Kumpula, and SPC datasets, respectively. The date is shown as the title for each
example.

ically. Start and end times of events are reported in very
few publications (Kerminen et al., 2018; Dada et al., 2018).
Figure 8 shows the start and end times for the NPF events
for different datasets. For the SPC dataset, the automatic
method summarized the start times for events that occurred
from 2002 to 2017, and the human-annotated results sum-
marized the start times for events that occurred from 2011
to 2017. However, the histograms of the start times and end
times determined by different methods show similar shapes
(Fig. 8). Considering the end time of an event is difficult to
determine in some cases, the end time of the NPF event can-
not be identified as clearly as the start time.

Generally, the histograms of the start times for four
datasets are bell-shaped, which may be controlled by nor-
mal distributions (Fig. 8). The histograms of end times for
the SPC station also show the bell shape, but there is more
than one peak in the histograms of end times for the Värriö
and Hyytiälä stations (Fig. 8). For NPF events that last for
more than 1 d, interactions between particles in the 2 d lead
to the end times being much more difficult to determine.

The event durations for the NPF events on the SPC station
are generally shorter than those for the Värriö, Hyytiälä, and
Kumpula stations (Fig. 8 and Table 3). The possible reason
for this is that the atmospheric environment for the SPC sta-
tion is much more polluted compared to the three SMEAR
stations in Finland, making the events last for shorter times.
The events in the Värriö and Hyytiälä stations have similar
median durations, followed by the Kumpula and SPC sta-
tions, possibly indicating that the atmospheric environment
is less polluted in the Värriö and Hyytiälä stations than in
the Kumpula station and most polluted in the SPC station.
Another possible reason for this is that spring has the most
frequent events and all stations other than SPC are higher in
latitude and thus have longer sunlight hours during spring.

The median start times are almost the same for the
Hyytiälä and Kumpula stations (Table 3, in boldface), which
is consistent with these two stations being located close to-
gether and further verifies that the intensity of solar radiation
reaching the Earth’s surface seems to be the most important
factor affecting whether an NPF event occurs or not (Kermi-
nen et al., 2018).
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Figure 7. Comparison of growth rates calculated by different methods. GR-T means that growth rates are determined by the traditional
methods (manually selecting the start and end times when necessary), and GR-P means that growth rates are determined by the proposed
automatic method. r is the Pearson correlation coefficient between GRs calculated by different methods. The density scatterplots in the
bottom row show the ranges that the growth rates are usually located in.

3.4 Advantages, limitations, and future studies

There are four major advantages of using the Mask R-CNN
model (or other instance segmentation models) to detect NPF
events. First, the process is simple, automatic, and straight-
forward. Second, the Mask R-CNN model can explicitly out-
put masks for banana-shaped events, making the calculation
of growth rates convenient together with the determination
of start and end times. Third, the Mask R-CNN model can

be used for datasets collected in different sites. For instance,
the model trained on the masks from the Hyytiälä dataset
works well on the SPC dataset. Fourth, the Mask R-CNN
model is insensitive to the sizes and aspect ratios of the input
NPF images since the model has already “seen” the related
image transformations during training. For practical usage,
we can plot the NPF images with the size of 256× 256 or
128× 128 pixels for NPF event detection.
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Figure 8. Start and end times for the NPF events for different stations. The times mentioned in the plots are local times.

For short-term (1- or 2-year) datasets, it is better to set
the threshold as 0.00 for the objectiveness score to detect as
many NPF events as possible, while for long-term datasets,
a small threshold such as 0.20 or 0.40 will accelerate the de-
tection and the statistical properties may not change if only a
few event days are not included.

As mentioned above, the Undef days are difficult to be
classified with 100 % certainty. Some manually classified
Undef days are recognized as event days by the Mask R-
CNN model (Tables 1 and 2). These misclassified Undef days
can be used as auxiliary information for scientists, in terms of
classifying days as the Undef type or not. On the other hand,
for scientists focusing on the comparison between event and
non-event types, manual work is still required to select the
Undef days out. In this case, the Mask R-CNN model can
only be used as an auxiliary tool.

The key to determining the correct start time and end time
and the GR for an event is that the detected mask can accu-
rately depict the spatial layout of an NPF event. Since the
Mask R-CNN model used in this study was only trained
on 358 annotated masks, its generality may fail on some
special observation stations. Thus, scientists need to re-train
the Mask R-CNN model on their special datasets. However,
there is no need to manually annotate masks again since some
detected masks by our pre-trained model can be used as the
annotated masks for the re-training.

4 Conclusions

With an increasing number of global observation stations,
automatic NPF detection methods are required to speed up
the NPF analysis process and minimize subjectivity caused
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Table 3. Summary of start times, end times, and duration times
for the NPF events for the Värriö, Hyytiälä, Kumpula, and SPC
datasets. A 2 d unit was used for analysis. Hours more than 24 mean
the related times the next day. Similar median start times for the
Hyytiälä and Kumpula stations are in boldface.

Värriö Hyytiälä Kumpula SPC

Start time

Min 00:29 06:29 04:49 04:56
Max 20:00 20:49 20:29 18:10
Mean 12:11 11:09 11:22 09:20
Median 11:55 10:58 11:04 09:16

End time

Min 10:30 11:39 09:30 12:25
Max 47:40 47:28 40:28 43:28
Mean 28:57 28:01 24:15 19:38
Median 30:00 28:58 24:10 18:47

Duration

Min 02:30 03:50 02:20 02:50
Max 37:30 37:10 29:18 33:10
Mean 16:46 16:52 12:53 10:18
Median 17:20 17:30 12:40 09:45

by human-made analysis. To improve the automatic level of
NPF detection, we presented a method called Mask R-CNN
for identifying the regional (banana-type) NPF events (espe-
cially the strongest events), and the method can also be ap-
plied to determine the growth rates, start times, and end times
for events automatically. The method generalized well on dif-
ferent stations, and we tested the method on the SMEAR I,
II, and III (Värriö, Hyytiälä, and Kumpula, respectively) sta-
tions in Finland as well as the SPC station in Italy. All to-
gether approximately 73 years of measurements for datasets
collected in the four stations was processed.

The proposed automatic method achieved the best classi-
fication results for Ia-type and Ib-type events for the SPC
station without any annotated information, showing the po-
tential to apply the new method to other stations. The growth
rates automatically determined by the new method are con-
sistent with the manually calculated growth rates. The start
times and end times determined by the new method illus-
trated that the start times may be controlled by normal dis-
tributions but the end times presented more than one peak in
their histograms for the Värriö and Hyytiälä stations.

In the future, the proposed method can be applied to
datasets collected in different stations and over different time
periods to produce comparable results, which will aid sci-
entists in understanding the underlying mechanisms of NPF
and assessing the impact of atmospheric aerosol particles on
the climate.

Appendix A: Object detection and instance
segmentation

Object detection is one of the fundamental and challenging
tasks in computer vision. Generally, some object detection
techniques focus on detecting different kinds of objects such
as cats and cars, while others focus on specific scenarios such
as face detection (Zou et al., 2019). With the development
of deep learning, object detection achieves unprecedented
improvements. The techniques can be roughly divided into
one-stage detection such as single-shot multi-box detectors
(Liu et al., 2016) and two-stage detection such as Faster R-
CNN (Ren et al., 2016). Usually, one-stage detection is much
faster, while two-stage detection can achieve better detection
accuracy. Instance segmentation, however, tries to delineate
each distinct object of interest in a more precise manner. In
other words, instance segmentation segments an object ac-
cording to its spatial layout. Compared with a bounding box,
which needs four corner positions to cover an object, an in-
stance segmentation model needs to find all the pixels that
belong in the object.

Appendix B: Misclassified days in the Hyytiälä
dataset

Example surface plots for the NE, Undef, and BD days mis-
classified by the Mask R-CNN model are shown (Figs. B1,
B2, and B3). Misclassified means that these days were clas-
sified as NE, Undef, and BD days by scientists, while the
Mask R-CNN model classified these days as event days. If
the threshold for the objectiveness score is 0.90, then there
are 18, 419, and 20 misclassified days for the NE, Undef, and
BD types, respectively. All the NE and BD days are shown in
Figs. B1 and B3, but only the first 20 Undef days are shown
in Fig. B2. These misclassified days can help readers under-
stand the detection capability of the Mask R-CNN model.
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Figure B1. Misclassified NE days detected by Mask R-CNN in the Hyytiälä dataset (the threshold for the objectiveness score is 0.90).

Figure B2. Misclassified Undef days detected by Mask R-CNN in the Hyytiälä dataset (the threshold for the objectiveness score is 0.90).
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Figure B3. Misclassified BD days detected by Mask R-CNN in the Hyytiälä dataset (the threshold for the objectiveness score is 0.90).

Code and data availability. Code is available at https://github.
com/cvvsu/maskNPF.git (Su et al., 2022). Datasets collected in
the three SMEAR stations are available at https://smear.avaa.csc.fi/
(Junninen et al., 2009). The dataset collected in the San Pietro
Capofiume station is available from Jorma Joutsensaari on request
(Joutsensaari et al., 2018).
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