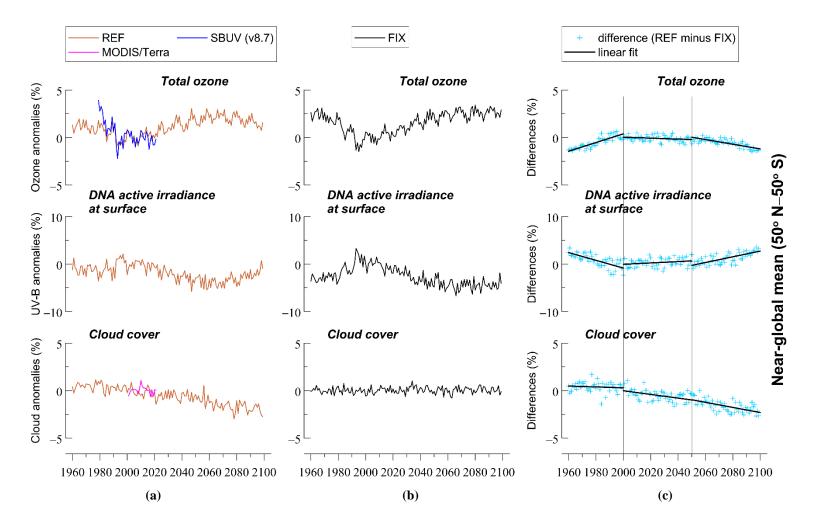
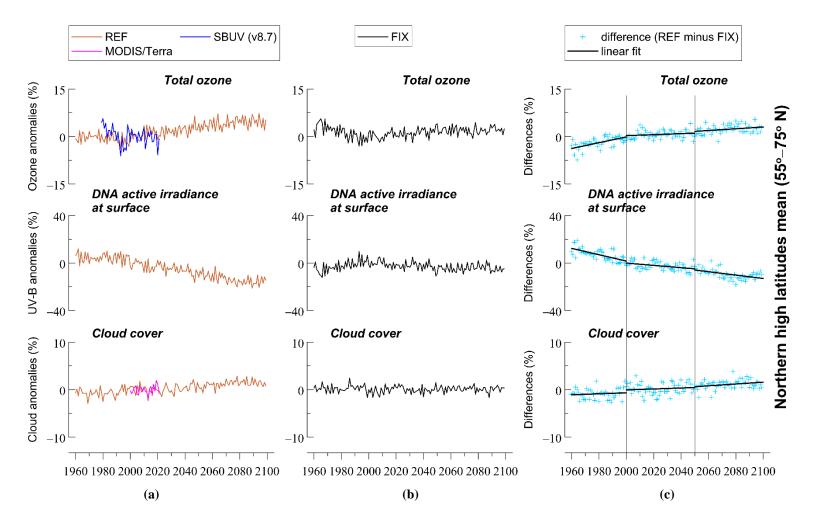

Supplement of

Ozone, DNA-active UV radiation, and cloud changes for the near-global mean and at high latitudes due to enhanced greenhouse gas concentrations


Kostas Eleftheratos et al.

Correspondence to: Kostas Eleftheratos (kelef@geol.uoa.gr)


The copyright of individual parts of the supplement might differ from the article licence.

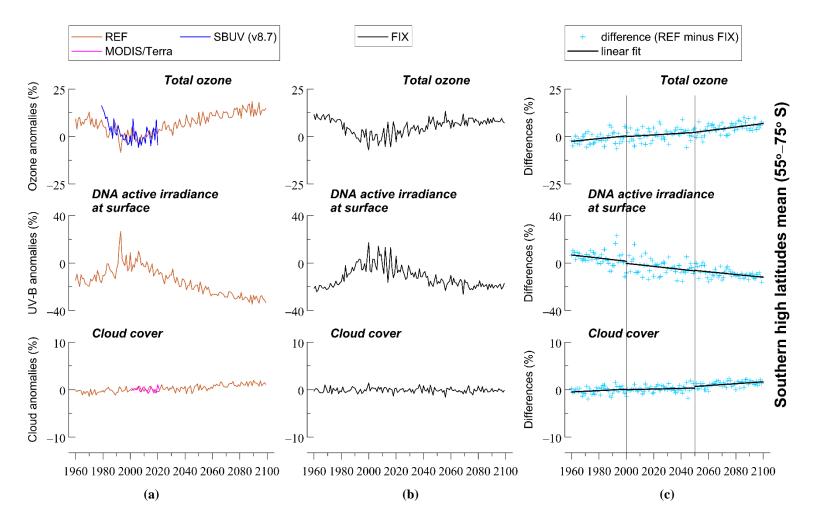

Figure S1. (a) Comparison of zonally averaged ozone column from model simulations and satellite measurements for the northern high latitudes $(55^{\circ}-75^{\circ} \text{ N})$ (upper panel), the near-global mean $(50^{\circ} \text{ N}-50^{\circ} \text{ S})$ (middle panel) and the southern high latitudes $(55^{\circ}-75^{\circ} \text{ S})$ (lower panel). (b) Same as (a) but for zonally averaged cloud cover. The y-axes show monthly de-seasonalized anomalies (in %) relative to the long-term monthly mean (2000–2018). Shown are monthly anomalies from March to September for the northern high latitudes, and from September to March for the southern high latitudes. For $50^{\circ} \text{ N}-50^{\circ} \text{ S}$, we present all months.

Figure S2. Changes in zonal mean total ozone, zonal mean DNA active irradiance and zonal mean cloud cover for the near global mean (50° N – 50° S), based on simulations with increasing and fixed GHGs mixing ratios. (a) REF is the simulation with increasing GHGs according to RCP-6.0. (b) FIX is the simulation with fixed GHGs emissions at 1960 levels. (c) Difference between the two model simulations, indicating the impact of increasing GHGs. The y-axes in (a) and (b) show yearly averaged data (in %) calculated from de-seasonalized monthly data. The monthly data were de-seasonalized relative to the long-term monthly mean (1990–2019) and were expressed in %. For 50° N– 50° S we used all months to calculate the annual average.

Figure S3. Same as Figure S2 but for northern high latitudes $(55^{\circ} - 75^{\circ} \text{ N})$. The y-axes in (a) and (b) show yearly averaged data (in %) calculated from de-seasonalized monthly data. For the northern high latitudes, the annual average refers to the average of monthly anomalies from March to September.

Figure S4. Same as Figure S2 but for southern high latitudes $(55^{\circ} - 75^{\circ} \text{ S})$. The y-axes in (a) and (b) show yearly averaged data (in %) calculated from de-seasonalized monthly data. For the southern high latitudes, the annual average refers to the average of monthly anomalies from September to March.

A note on the differences between the variability of DNA weighted irradiance from the model simulations and the corresponding measurements at some stations.

The main reason for these differences in the variability of the DNA weighted irradiances (see figures below) is that we compare averages for $3^{\circ} \times 3^{\circ}$ pixels (model simulations) with measurements performed at specific sites (representing narrow areas in the corresponding pixels). Thus, environmental features within the model pixel - that do not affect the station where measurements are performed – may lead to increased variability for the model with respect to the station. For example, the sites of Aosta, Lauder and Ushuaia are surrounded by very high mountains where surface albedo varies significantly in the year and affects strongly the levels of UV irradiance. The measurement sites however are at lower altitudes and changes in surface albedo do not affect strongly the levels of surface UV irradiance. In other sites (e.g., Villeneuve d'Ascq) environmental conditions are possibly less variable with respect to the average conditions in the pixel wherein they belong. Other sites (e.g., Summit, Thessaloniki, Boulder, Mauna Loa, or Alice Springs) are possibly more representative for the average conditions in the pixels wherein they belong. For Athens, the most possible explanation for the much higher measured UV relative to the UV simulated by the model in 2011 - 2014 is again that the model cannot accurately capture changes in air quality (e.g., aerosols, tropospheric ozone etc.) at the city since it represents a much wider area. We were not able to find aerosol optical properties in the UV for the same period for the site in order to verify our assumption but we intend to further investigate these differences in the future.

A note on the differences between cloud cover from Modis/Terra and the model simulations at some stations.

It would be nice if we obtained good model – satellite correlations from all datasets. We would have perfect model simulations and perfect satellite measurements at all locations. Frankly speaking, we cannot say which of the two datasets is responsible for the smaller agreement at some stations or if both are. But statistically speaking, we find that the majority of the stations (13 of 20 stations) show medium to good correlations (between 0.5 and 0.7), 5 stations show small to medium correlations (between 0.3 and 0.5), and only 2 stations show no correlation. The stations that show no correlation are Summit and South Pole. Both stations are high-altitude sites located at high latitudes with year-round snow cover and albedos of larger than 0.95. Multiple scattering between the surface and clouds greatly reduces cloud effects (Nichol et al., 2003). Mauna Loa (MLO) is also a high-altitude site. MLO is interesting, not only because it is also at high altitude, but because there are often clouds below the station, which enhance downwelling radiation similar to the effect of high albedo. Both in Antarctica and MLO, UV radiation is scattered up either by snow or a cloud layer, and then Rayleigh-scattered down to increase downwelling irradiance. However, we find that the correlation is 0.592 for the cloud case in MLO, suggesting that other contributing processes might account for somewhat successful cloud simulations in the EMAC model which would require further investigation. The stations with small to medium correlations (between 0.3 and 0.5) are Haute Provence, Athens, Lauder, Ushuaia and Palmer. We remind that all correlations were derived from de-seasonalized data, i.e. data after removing the mean seasonal cycle of the period 2000-2018. This was performed because we wanted to evaluate the long-term variability of cloud cover and not its seasonal cycle.

Reference

Nichol, S. E., Pfister, G., Bodeker, G. E., McKenzie, R. L., Wood, S. W., and Bernhard, G.: Moderation of cloud reduction of UV in the Antarctic due to high surface albedo, J. Applied Meteorology, 42, 1174–1183, DOI: https://doi.org/10.1175/1520-0450(2003)042<1174:MOCROU>2.0.CO;2, 2003.

Table S1. Statistics of correlations between simulated (EMAC CCM "specified dynamics" simulation SC1SD-base-02, referred as HIS-SD) and observed (ground-based) DNA active irradiance data after removing variability related to the seasonal cycle. Stations are listed from north to south.

Station	Latitude	Correlation	Intercept (%)	Slope	Error	t-value	p-value	RMSE	Ν
Summit, Greenland	72.58	0.70942	-0.63182	0.75691	0.08109	9.33455	< 0.0001	8.41455	88
Barrow, AK, United States	71.32	0.34199	0.23804	0.68041	0.18074	3.76456	2.72957E-4	21.2041	109
Sodankylä, Finland	67.37	0.57099	-1.43606	1.38698	0.17765	7.80726	< 0.0001	26.31277	128
Villeneuve d'Ascq, France	50.61	0.69524	-0.7477	0.87007	0.07089	12.27297	< 0.0001	15.40379	163
Groß-Enzersdorf, Austria	48.20	0.58206	-1.04209	0.64811	0.06711	9.65676	< 0.0001	15.37886	184
Zugspitze, Germany	47.42	0.2659	1.13542	0.2448	0.1281	1.91101	0.06198	14.8664	50
Hoher Sonnblick, Austria	47.05	0.67287	1.11524	0.94558	0.07542	12.53774	< 0.0001	13.93815	192
Aosta, Italy	45.74	0.67091	-1.23967	1.33004	0.14016	9.48924	< 0.0001	14.76364	112
Observatoire de Haute Provence, France	43.94	0.57419	-2.10876	0.72899	0.10447	6.97814	< 0.0001	15.51005	101
Thessaloniki, Greece	40.63	0.61157	-0.65425	0.76343	0.06984	10.93159	< 0.0001	11.43093	202
Boulder, CO, United States	39.99	0.74751	0.19874	0.67683	0.0474	14.2792	< 0.0001	7.36597	163
Athens, Greece	37.99	0.46825	-1.20784	0.31889	0.05141	6.20271	< 0.0001	7.87145	139
Mauna Loa, HI, United States	19.53	0.57692	0.35833	0.50906	0.04962	10.25995	< 0.0001	7.88426	213
Reunion Island, St. Denis, France	-20.90	0.29475	-0.01221	0.23706	0.09532	2.48686	0.01546	6.27246	67
Alice Springs, Australia	-23.80	0.59268	-0.13242	0.60587	0.0691	8.7686	< 0.0001	6.67145	144
Lauder, New Zealand	-45.04	0.52901	0.08797	0.84026	0.09301	9.03374	< 0.0001	13.34001	212
Ushuaia, Argentina	-54.82	0.44285	-0.63202	0.79185	0.21234	3.72909	4.44141E-4	21.80721	59
Palmer, Antarctica	-64.77	0.4665	-0.09991	0.71651	0.12103	5.92008	< 0.0001	30.58139	128
Arrival Heights, Antarctica	-77.83	0.93868	0.53114	0.99985	0.03298	30.31727	< 0.0001	10.4058	126
South Pole, Antarctica	-90	0.94832	-0.20478	1.04666	0.03238	32.32625	< 0.0001	9.1413	119

Table S2. (a) Correlation results between model simulations (HIS-SD) and satellite SBUV (v8.7) total ozone data for the northern high latitude zonal mean ($55^{\circ}-75^{\circ}$ N), the southern high latitude zonal mean ($55^{\circ}-75^{\circ}$ S), and the near global mean (50° N– 50° S). (b) Same as (a) but for the HIS-SD simulation and satellite MODIS/Terra cloud fraction data.

(a) Total ozone)									
	R	Slope	Error	t-value	p-value	Ν	RMSE			
55°-75° N	0.86224	0.77653	0.04016	19.33488	< 0.0001	131	1.05561			
55°-75° S	0.94715	0.88849	0.0267	33.27424	< 0.0001	129	1.6596			
$50^{\rm o}~N-50^{\rm o}~S$	0.84183	0.74437	0.0321	23.18663	< 0.0001	223	0.36078			
(b) Cloud cove	(b) Cloud cover									
	R	Slope	Error	t-value	p-value	Ν	RMSE			
55°-75° N	0.46665	0.30604	0.05107	5.9926	< 0.0001	131	1.20808			
55°-75° S	0.49435	0.59751	0.0936	6.38356	< 0.0001	128	1.04528			
$50^{\rm o}~N-50^{\rm o}~S$	0.40141	0.51432	0.07912	6.5005	< 0.0001	222	1.07126			

Table S3. Statistics of correlations between simulated (EMAC CCM "specified dynamics" simulation SC1SD-base-02, referred as HIS-SD) and
observed (satellite SBUV v8.7) total ozone data after removing variability related to the seasonal cycle. Stations are listed from north to south.

Station	Latitude	Correlation	Intercept	Slope	Error	t-value	p-value	RMSE	N
			(%)						
Summit, Greenland	72.58	0.92746	0.02356	0.79136	0.02809	28.17083	< 0.0001	1.49119	131
Barrow, AK, United States	71.32	0.91395	-0.07433	0.89544	0.03501	25.57902	< 0.0001	1.51872	131
Sodankylä, Finland	67.37	0.91871	0.04423	0.83244	0.03151	26.42107	< 0.0001	1.58014	131
Villeneuve d'Ascq, France	50.61	0.9327	0.00865	0.8832	0.02297	38.44502	< 0.0001	1.46157	223
Groß-Enzersdorf, Austria	48.20	0.90117	-2.71279E-4	0.83541	0.02703	30.90677	< 0.0001	1.49264	223
Zugspitze, Germany	47.42	0.90637	-0.00303	0.81468	0.02554	31.89276	< 0.0001	1.41823	223
Hoher Sonnblick, Austria	47.05	0.90234	-0.00193	0.80291	0.0258	31.12256	< 0.0001	1.41626	223
Aosta, Italy	45.74	0.90909	-0.00663	0.85712	0.02642	32.44056	< 0.0001	1.43109	223
Observatoire de Haute Provence, France	43.94	0.90651	-0.01346	0.86718	0.02717	31.9194	< 0.0001	1.38784	223
Thessaloniki, Greece	40.63	0.84905	-0.00866	0.79992	0.03348	23.89163	< 0.0001	1.42528	223
Boulder, CO, United States	39.99	0.85389	-0.00778	0.75677	0.03103	24.38992	< 0.0001	1.46848	223
Athens, Greece	37.99	0.84712	-0.01027	0.84485	0.03565	23.69841	< 0.0001	1.4082	223
Mauna Loa, HI, United States	19.53	0.85221	-0.05717	0.94063	0.03885	24.21468	< 0.0001	1.40913	223
Reunion Island, St. Denis, France	-20.90	0.76869	0.00266	0.80808	0.04523	17.8657	< 0.0001	1.34564	223
Alice Springs, Australia	-23.80	0.85137	0.00285	0.85687	0.03551	24.12727	< 0.0001	1.28936	223
Lauder, New Zealand	-45.04	0.92117	0.03962	0.87216	0.02479	35.18816	< 0.0001	1.16087	223
Ushuaia, Argentina	-54.82	0.96269	0.01129	0.86996	0.02179	39.93037	< 0.0001	1.27243	128
Palmer, Antarctica	-64.77	0.95377	-0.10395	0.89986	0.02526	35.6213	< 0.0001	2.48476	128
Arrival Heights, Antarctica	-77.83	0.89556	-0.13406	0.65541	0.02901	22.59306	< 0.0001	5.36836	128
South Pole, Antarctica	-90	no data	no data	no data	no data	no data	no data	no data	no data

Station	Latitude	Correlation	Intercept	Slope	Error	t-value	p-value	RMSE	Ν
			(%)						
Summit, Greenland	72.58	0.19614	0.01033	0.06936	0.03053	2.2719	0.02475	5.84144	131
Barrow, AK, United States	71.32	0.59746	0.01835	0.75521	0.08925	8.46216	< 0.0001	11.01167	131
Sodankylä, Finland	67.37	0.53468	-0.01445	0.26193	0.03645	7.18618	< 0.0001	4.15905	131
Villeneuve d'Ascq, France	50.61	0.5155	-0.0936	0.50165	0.05622	8.92306	< 0.0001	9.15062	222
Groß-Enzersdorf, Austria	48.20	0.65362	-0.15377	0.61759	0.04821	12.80986	< 0.0001	10.16946	222
Zugspitze, Germany	47.42	0.54779	-0.02613	0.57172	0.05887	9.71188	< 0.0001	11.86551	222
Hoher Sonnblick, Austria	47.05	0.55629	-0.04129	0.61867	0.06231	9.92925	< 0.0001	12.71143	222
Aosta, Italy	45.74	0.66827	-0.06953	0.68816	0.05165	13.3242	< 0.0001	10.39675	222
Observatoire de Haute Provence, France	43.94	0.44998	-0.07471	0.45353	0.06068	7.4736	< 0.0001	13.98316	222
Thessaloniki, Greece	40.63	0.64131	-0.8916	0.86816	0.07084	12.2556	< 0.0001	20.59386	217
Boulder, CO, United States	39.99	0.53923	-0.09291	0.48194	0.05075	9.49717	< 0.0001	11.54097	222
Athens, Greece	37.99	0.48522	-1.26658	0.68926	0.08592	8.02237	< 0.0001	26.07997	211
Mauna Loa, HI, United States	19.53	0.592	-1.20988	1.35496	0.1258	10.77071	< 0.0001	26.90733	217
Reunion Island, St. Denis, France	-20.90	0.52781	-1.53877	1.18482	0.12943	9.15397	< 0.0001	26.36888	219
Alice Springs, Australia	-23.80	0.62268	-0.25621	0.58451	0.05233	11.16931	< 0.0001	26.82549	199
Lauder, New Zealand	-45.04	0.3935	0.07335	0.45073	0.071	6.34872	< 0.0001	8.34939	222
Ushuaia, Argentina	-54.82	0.44364	-0.09417	0.60317	0.10855	5.55661	< 0.0001	5.2374	128
Palmer, Antarctica	-64.77	0.47323	0.00415	0.55019	0.09124	6.02995	< 0.0001	3.95994	128
Arrival Heights, Antarctica	-77.83	0.53671	0.28879	0.94892	0.1329	7.14	< 0.0001	15.21939	129
South Pole, Antarctica	-90	-0.17482	-0.14172	-0.04717	0.02467	-1.91231	0.0583	8.61534	118

Table S4. Statistics of correlations between simulated (EMAC CCM "specified dynamics" simulation SC1SD-base-02, referred as HIS-SD) and observed (satellite MODIS/Terra) cloudiness data after removing variability related to the seasonal cycle. Stations are listed from north to south.

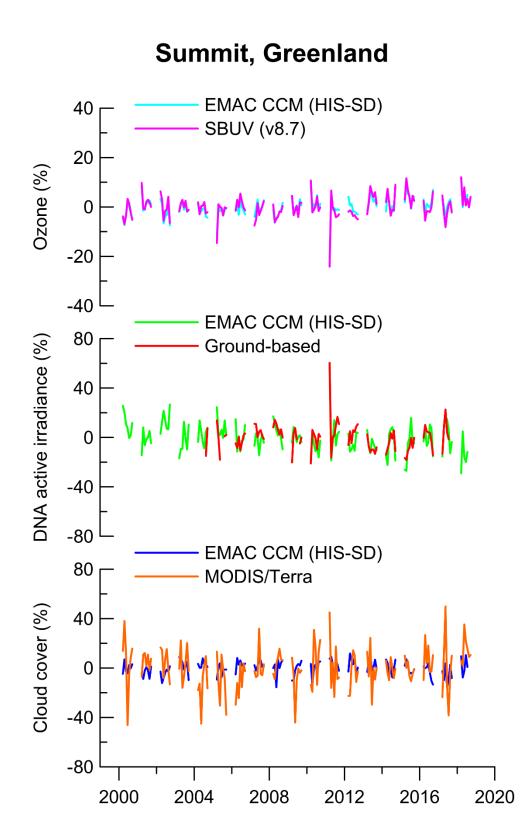


Figure S5. Time series of ozone, DNA active irradiance, and cloud cover at Summit, Greenland, after removing variability related to the seasonal cycle.

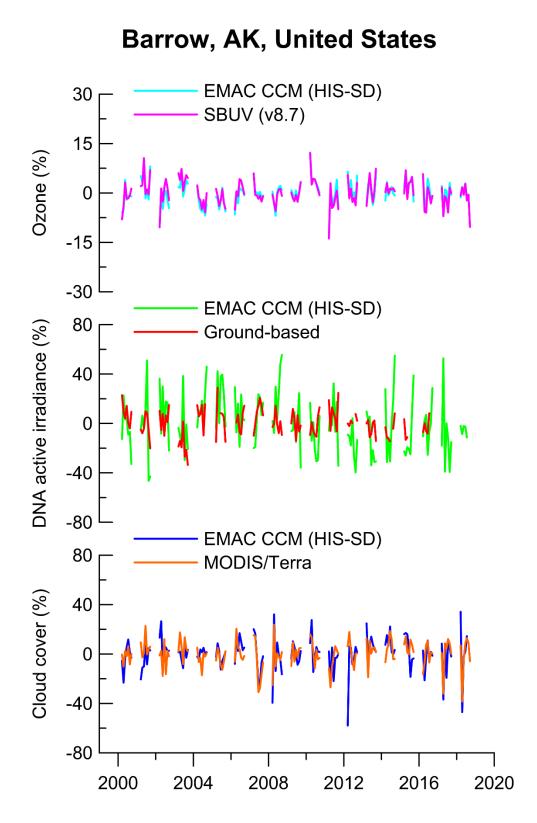


Figure S6. Same as Figure S5 but for Barrow, AK, United States.

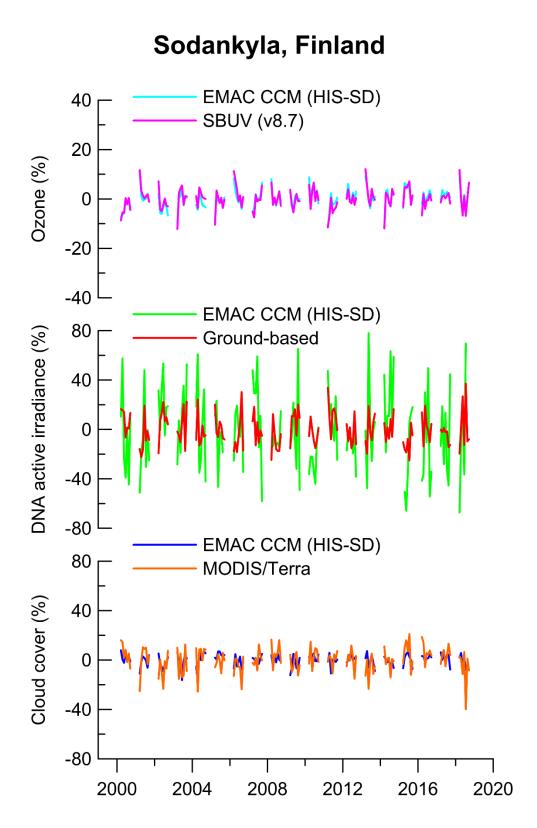


Figure S7. Same as Figure S5 but for Sodankylä, Finland.

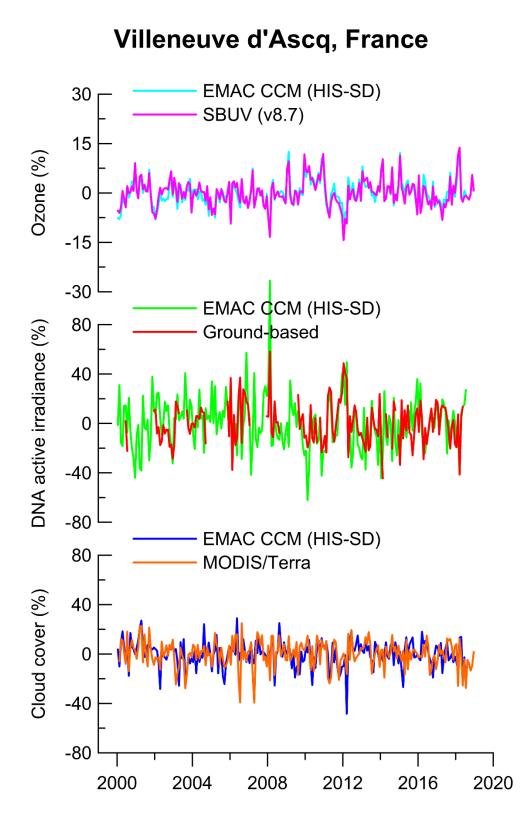


Figure S8. Same as Figure S5 but for Villeneuve d'Ascq, France.

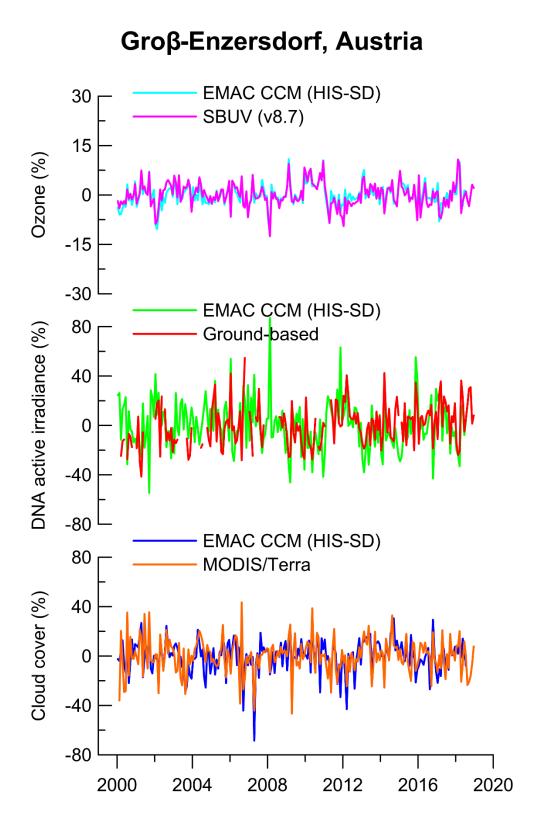


Figure S9. Same as Figure S5 but for Groß-Enzersdorf, Austria.

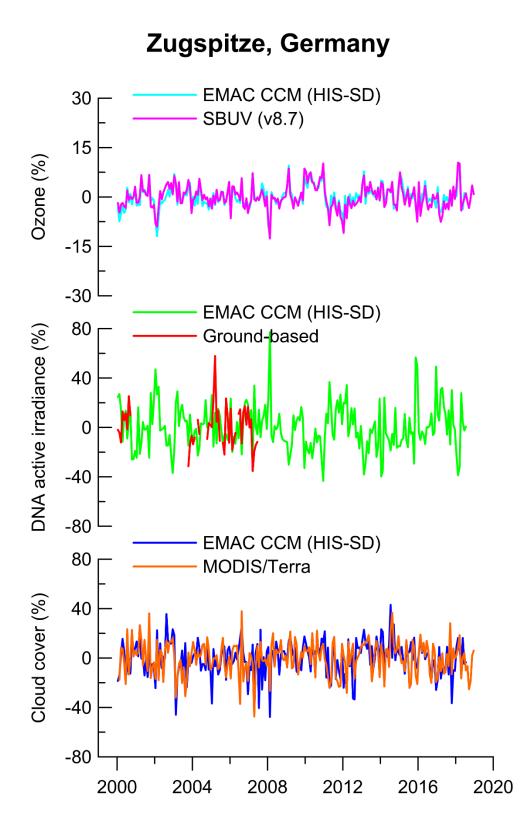


Figure S10. Same as Figure S5 but for Zugspitze, Germany.

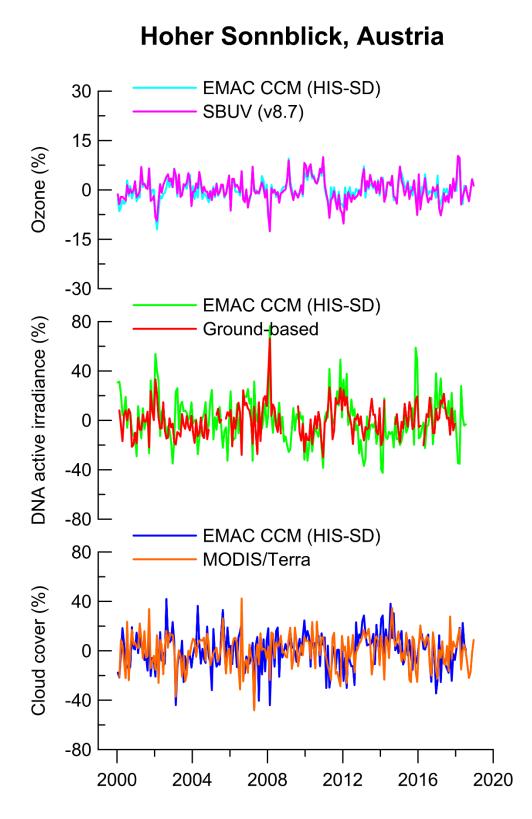


Figure S11. Same as Figure S5 but for Hoher Sonnblick, Austria.

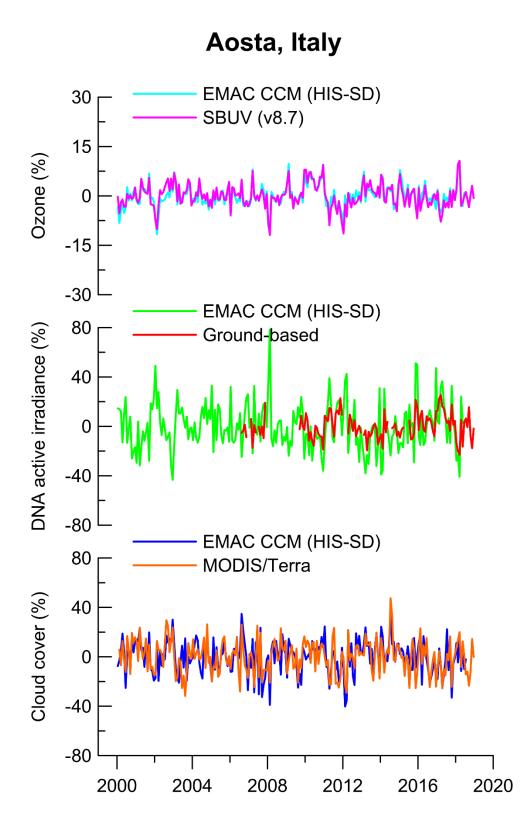
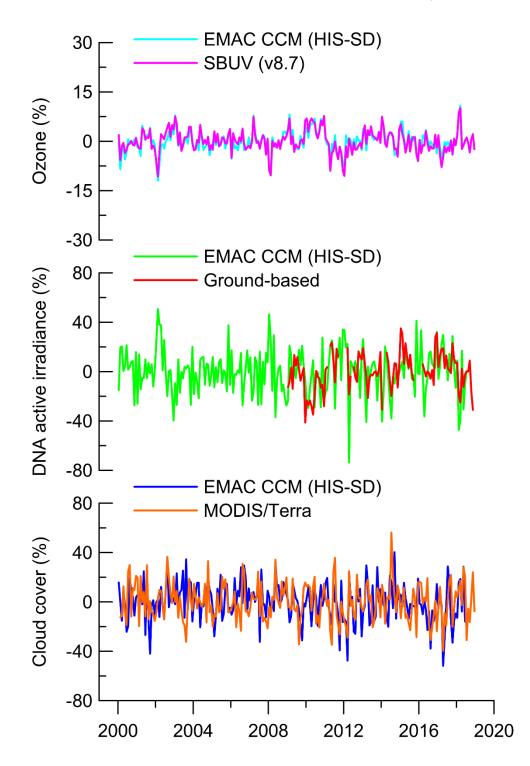



Figure S12. Same as Figure S5 but for Aosta, Italy.

Observatoire de Haute Provence, France

Figure S13. Same as Figure S5 but for Observatoire de Haute Provence, France.

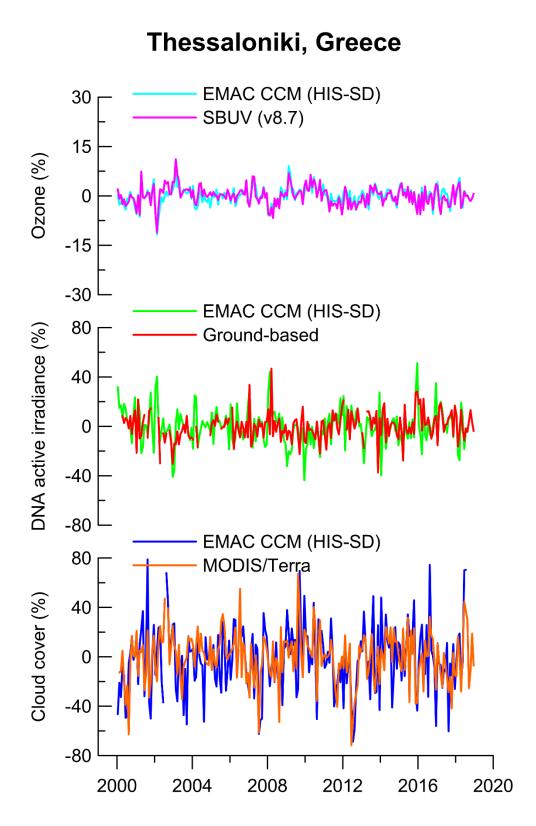


Figure S14. Same as Figure S5 but for Thessaloniki, Greece.

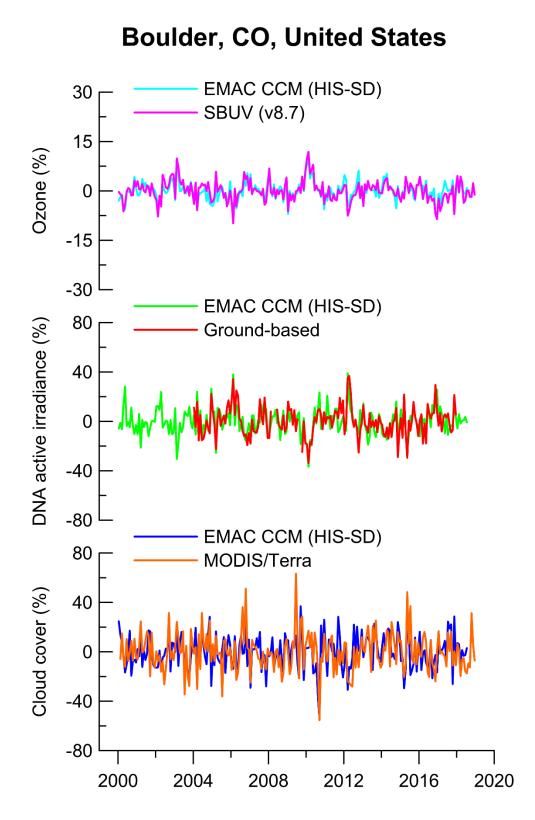


Figure S15. Same as Figure S5 but for Boulder, CO, United States.

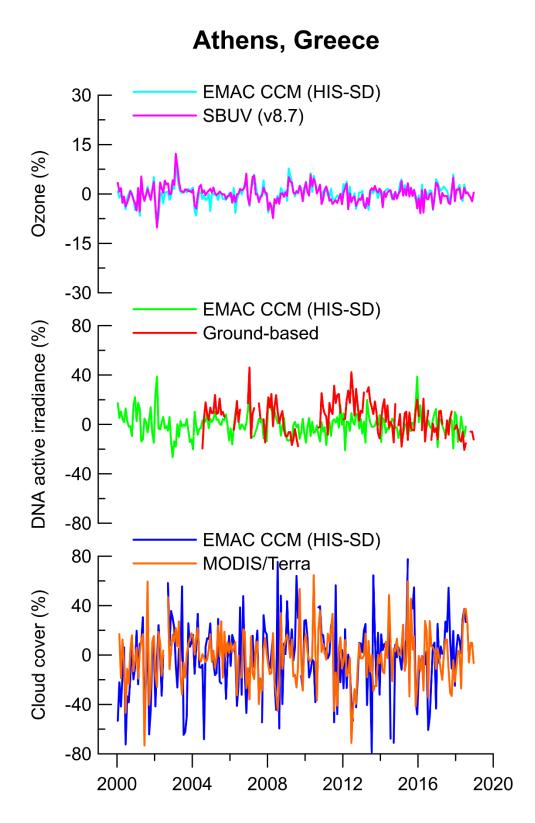


Figure S16. Same as Figure S5 but for Athens, Greece.

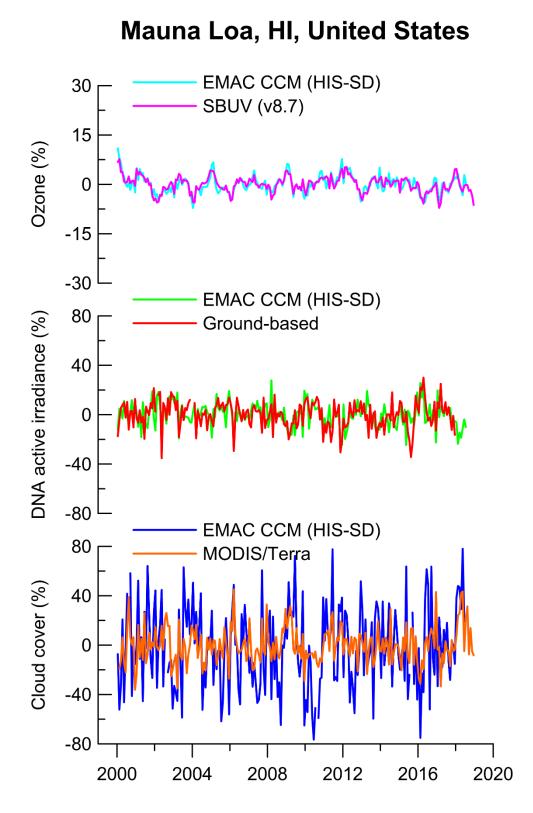


Figure S17. Same as Figure S5 but for Mauna Loa, HI, United States.

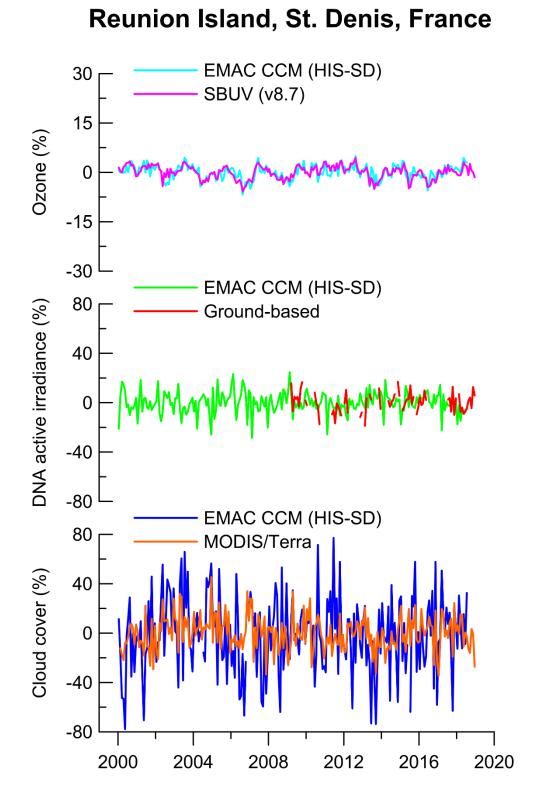


Figure S18. Same as Figure S5 but for Reunion Island, St. Denis, France.

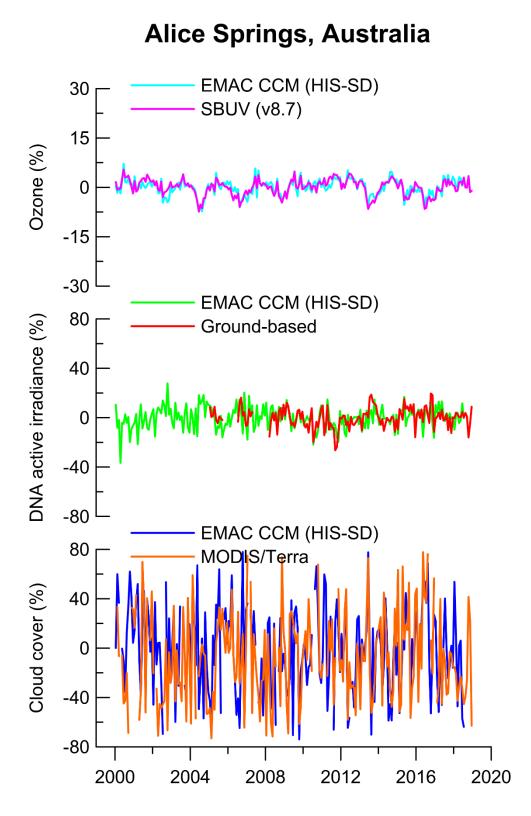


Figure S19. Same as Figure S5 but for Alice Springs, Australia.

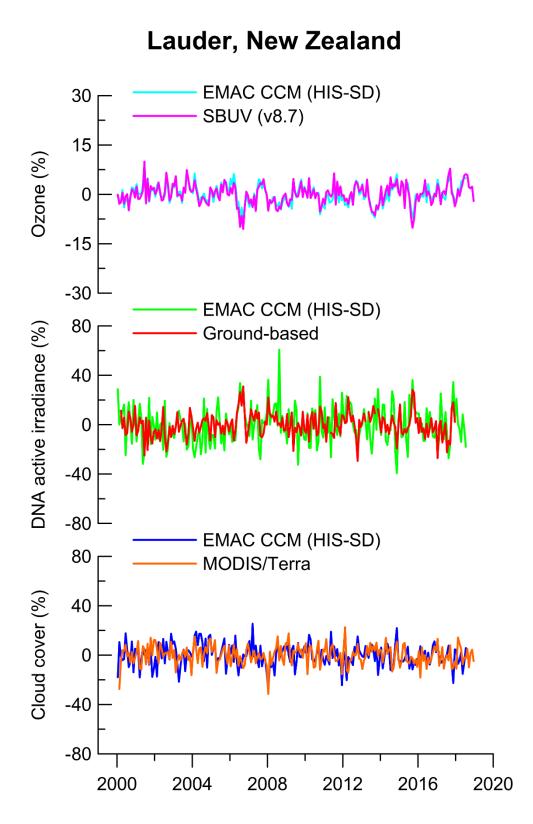


Figure S20. Same as Figure S5 but for Lauder, New Zealand.

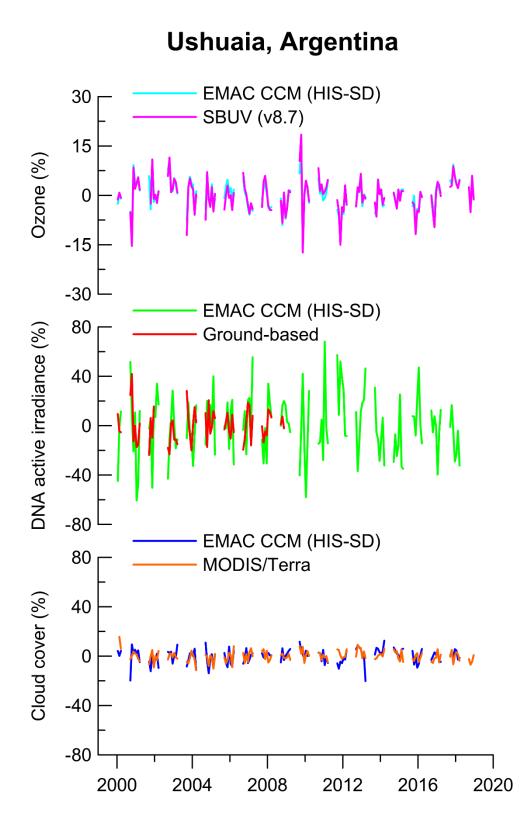


Figure S21. Same as Figure S5 but for Ushuaia, Argentina.

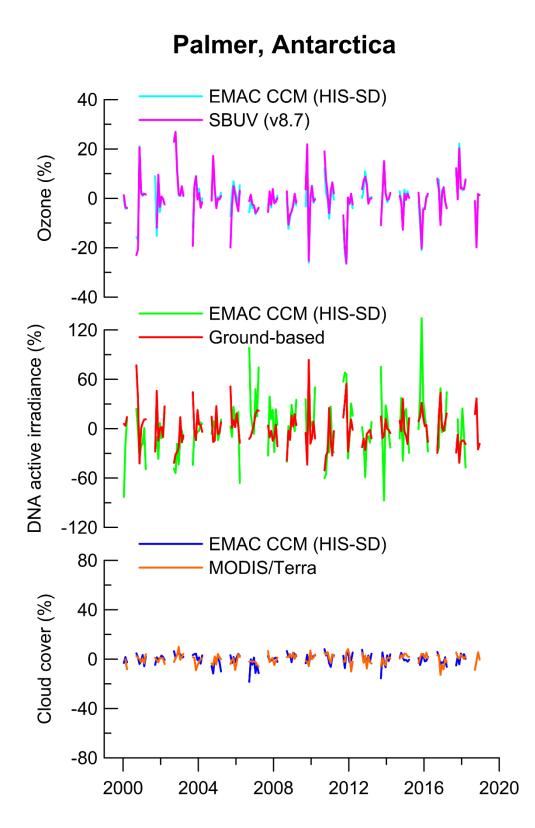


Figure S22. Same as Figure S5 but for Palmer, Antarctica.

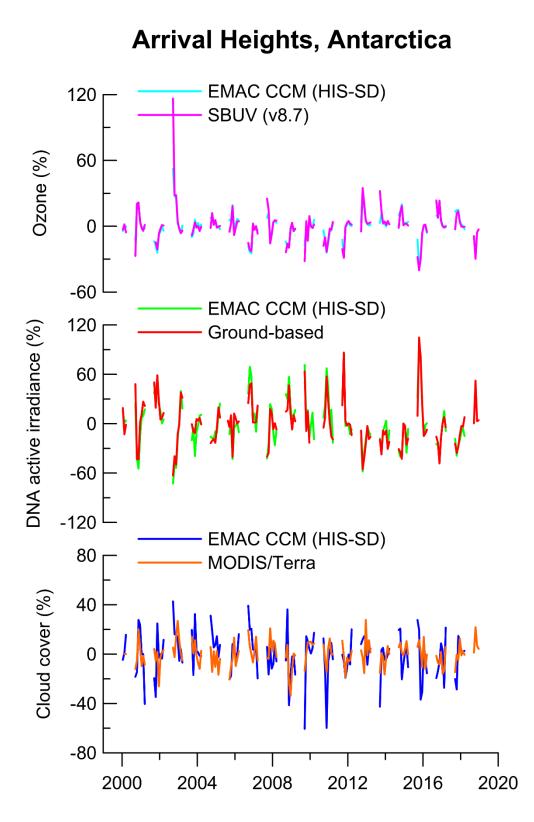


Figure S23. Same as Figure S5 but for Arrival Heights, Antarctica.

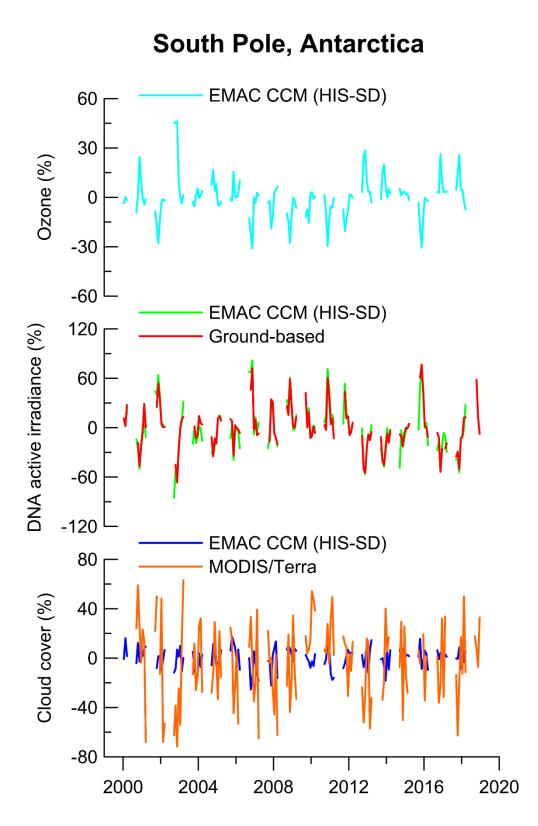


Figure S24. Same as Figure S5 but for South Pole, Antarctica.