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Abstract. Wildfires and their resulting smoke are an increasing problem in many regions of the world. However,
identifying the contribution of smoke to pollutant loadings in urban regions can be challenging at low concen-
trations due to the presence of the usual array of anthropogenic pollutants. Here we propose a method using the
difference in PM2.5 to CO emission ratios between smoke and typical urban pollution. For temperate wildfires,
the mean emission ratio of PM2.5 to CO is in the range of 0.14–0.18 g PM2.5 g CO−1, whereas typical urban
emissions have a PM2.5 to CO emissions ratio that is lower by a factor of 2–20. This gives rise to the possibility
of using this ratio as an indicator of wildfire smoke. We use observations at a regulatory surface monitoring site in
Sparks, NV, for the period of May–September 2018–2021. There were many smoke-influenced periods from nu-
merous California wildfires that burned during this period. Using a PM2.5 /CO threshold of 30.0 µgm−3 ppm−1,
we can split the observations into smoke-influenced and no-smoke periods. We then develop a Monte Carlo
simulation, tuned to local conditions, to derive a set of PM2.5 /CO values that can be used to identify smoke
influence in urban areas. From the simulation, we find that a smoke enhancement ratio of 140 µgm−3 ppm−1

best fits the observations, which is significantly lower than the ratio observed in fresh smoke plumes (e.g., 200–
300 µgm−3 ppm−1). The most likely explanation for this difference is loss of PM2.5 during dilution and transport
to warmer surface layers. We find that the PM2.5 /CO ratio in urban areas is an excellent indicator of smoke and
should prove to be useful to identify biomass burning influence on the policy-relevant concentrations of both
PM2.5 and O3. Using the results of our Monte Carlo simulation, this ratio can also quantify the influence of
smoke on urban PM2.5.

1 Introduction

In the US, smoke has become an increasingly challenging
problem due to a significant increase in the area burned by
wildfires (Zhuang et al., 2021; Kalashnikov et al., 2022; Mc-
Clure and Jaffe, 2018). Data from the National Interagency
Fire Center (http://www.nifc.gov, last access: 10 Septem-
ber 2022) showed that between the early 1980s and 2021,
the decadal average annual area burned by wildfires in the
US increased by almost a factor of 3, from 1.1 to 3.0 million
hectares per year. Multiple factors were responsible for this
increase, including climate change, increasing human igni-
tions and past forest management (Jaffe et al., 2020).

Primary emissions from fires include fine particulate mat-
ter with a diameter of less than 2.5 µm (PM2.5), carbon
monoxide (CO), nitrogen oxides (NOx =NO+NO2) and
hundreds of volatile organic compounds (VOCs), which in-
clude many toxic and hazardous air pollutants (Akagi et al.,
2011; Permar et al., 2021). Furthermore, atmospheric chem-
istry leads to O3 and other secondary products. The cumula-
tive impact of these emissions has substantial health implica-
tions (e.g., Ebi et al., 2021; O’Dell et al., 2020, 2021; Gan et
al., 2020; Doubleday, 2020; Sorenson et al., 2021).

Smoke at the surface can originate from nearby or dis-
tant fires (e.g., DeBell et al., 2004; Jaffe et al., 2004; Teak-
les et al., 2017; Rogers et al., 2020). Satellites can provide

Published by Copernicus Publications on behalf of the European Geosciences Union.

http://www.nifc.gov


12696 D. A. Jaffe et al.: Use of PM2.5 to CO ratio as an indicator of wildfire smoke in urban areas

an exceptional geospatial view of fires and the occurrence
and transport of smoke (e.g., Duncan et al., 2014; Jaffe et
al., 2020; Kahn, 2020; O’Neill et al., 2021; Holloway et al.,
2021). However, with very few exceptions, satellite data pro-
vide little to no vertical information directly. Modeling of
smoke transport and exposure is challenging for a number of
reasons, including uncertainties in emissions, plume injec-
tion heights and model resolution (Lu et al., 2016; O’Neill et
al., 2021; Ye et al., 2021). It is possible to measure unique
smoke tracers, such as acetonitrile (CH3CN) (Singh et al.,
2012; Chandra et al., 2020), but these measurements are not
routinely performed at surface sites and also have some an-
thropogenic sources (Huangfu et al., 2021).

Wildfire emissions are chemically distinct from industrial
and vehicle emissions in having very high PM2.5 emissions
per unit of fuel burned. Table 1 shows emissions ratios (ERs)
of PM2.5 /CO, expressed on a gram per gram basis along
with observed and calculated normalized enhancement ratios
(NERs, 1PM2.5 /1CO), for smoke and non-smoke sources.
The PM2.5 /CO ERs from temperate wildfires are at least
a factor of 1.9 greater than the same ER for anthropogenic
emissions. Comparing the PM2.5 /CO ERs from wildfires
with vehicle emissions, we see that wildfires emit 15–19
times the amount of PM2.5 per unit of CO emitted. Using
these ERs we can estimate NERs (1PM2.5 /1CO), assum-
ing no chemical or physical loss of either species (also shown
in Table 1). Observed NERs will reflect not only the emis-
sions but also chemical and physical processing (plus any
background contribution). The observed NERs in urban areas
with no smoke (21–66, mean of 37 µgm−3 ppm−1) are much
closer to the estimated NERs for vehicle emissions, which is
reasonable given these are usually the largest source of both
PM2.5 and CO in urban areas.

The observed smoke NERs appear to fall into two groups.
At the surface, mean smoke NERs are in the range of
103–128 µgm−3 ppm−1, whereas in fresh plumes aloft, the
mean values are 201–339 µgm−3 ppm−1. The values aloft are
much closer to the mean NER (220 µgm−3 ppm−1) calcu-
lated from the most recent compilation of ERs for temperate
forests (Andreae, 2019). Selimovic et al. (2019, 2020) noted
that the PM2.5 /CO NER in ground-level smoke is about half
of that observed from aircraft or free tropospheric observa-
tions. This was most likely caused by a reduction in aerosol
mass from evaporation of organic aerosols due to higher sur-
face temperatures and greater downstream dilution. These
past observations present a fairly consistent picture show-
ing that PM2.5 /CO NER for surface smoke is about 3–4
times greater than the NER for typical urban observations
in the absence of smoke, based on the values given in Laing
et al. (2017).

The very different PM2.5 to CO NERs for typical urban air
and smoke events suggest that the observed ratios can be used
to derive the smoke contribution to surface PM2.5 concentra-
tions (Laing et al., 2017; Xiu et al., 2022). To examine this
hypothesis, we used data from a monitoring site in Sparks,

NV, near Reno, a region that has been heavily influenced
by smoke in the past several years due to the large num-
ber and extent of California wildfires. Data from this region
were used to examine the role of high PM2.5 exposure from
smoke on COVID-19 incidence (Kiser et al., 2021). From the
Sparks, NV, observations, we developed a quantitative model
using a Monte Carlo simulation (Baez and Tweed, 2013) that
provides a range of probabilistic results that can be compared
to observations. We found that this method appears to reason-
ably quantify the smoke contribution in an urban area.

2 Methods and data sources

For this analysis, we use daily mean PM2.5 and CO con-
centrations for May–September 2018–2021 from the Sparks,
NV, air quality monitoring site (EPA AQS identification
no. 320311005) near Reno, NV, that is operated by the
Washoe (NV) County Health District, Air Quality Man-
agement Division. The site uses instruments and standards
that are consistent with the national EPA requirements (40
CFR Part 58) and report data into the EPA’s national Air
Quality System (AQS). The Sparks site has near-continuous
measurements of PM2.5, CO and O3. We used data for
May–September 2018–2021 to avoid complications with
sources from residential wood combustion. Data were ob-
tained from the EPA AirData site (https://www.epa.gov/
outdoor-air-quality-data, last access: 10 September 2022),
except for 2021 data, which were obtained from AirNow-
Tech, a web-based data resource operated for the U.S.
EPA (https://www.airnowtech.org/, last access: 10 Septem-
ber 2022). Instrumentation at the Sparks site included a
MetOne model 1020 beta attenuation monitor (BAM) for
PM2.5, a Teledyne API model 300 EU non-dispersive IR
monitor for CO and a Teledyne API model T400 UV O3 anal-
yser. These instruments have stated detection limits (DLs)
of 1 µgm−3, 20 ppb and 0.4 ppb, respectively. Because there
were some zero and very low values, PM2.5 concentrations
less than the DL were set to 1 µgm−3. This impacted less
than 2 % of the dataset. No below-DL values were reported
for the CO or O3 data. As an indication of overhead smoke,
we used the daily smoke polygon product from the NOAA
Hazard Mapping System-Fire and Smoke Product (hereafter
simply HMS). The smoke polygon product is created by ex-
pert image analysts that digitize smoke plume extent a few
times per day based on analysis of GOES-16 and GOES-
17 ABI True Color Imagery available during daylight hours.
More details on HMS can be found in Rolph et al. (2009),
Kaulfus et al. (2017) and Brey et al. (2018). We note that
HMS can sometimes miss thin smoke plumes, especially
in the presence of clouds (Buysse et al., 2019). Buysse et
al. (2019) found that there is enhanced surface PM2.5 on
30 %–70 % of the days with overhead HMS smoke, depend-
ing on the location.
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Table 1. Emission ratios (ERs) and observed NERs for non-smoke and smoke conditions. ERs are converted into NERs using a pressure of
one atmosphere and temperature of 273 K (STP). This calculation assumes no loss of either PM2.5 or CO. For observed ERs and NERs, the
study mean is given, with the range (if reported) shown in parentheses.

PM2.5 /CO ER PM2.5 /CO NER
(g g−1) (µgm−3 ppm−1)

Non-smoke emissions and observed NERs

US industrial and mobile emissions (excludes wildfires and residential wood combustion)a 0.076 95
US mobile sources onlya 0.009 11
Observed NERs in urban areas with no smokeb 37 (21–66)

Smoke emissions and observed NERs

Temperate wildfire ERsc 0.142 177
Temperate wildfire ERsd 0.176 (0.07–0.57) 220 (87–712)
Observed smoke NERs in urban areasb 128 (57–228)
Observed smoke NERs, surface sitese 103 (120–156)
Fresh plumes, high-elevation sitef 258 (66–377)
Fresh plumes, high-elevation site and aircraft datag 299 (170–630)
Fresh plumes, aircraft datah 201 (80–400)
Fresh plumes, aircraft datai 339 (21–492)

a Data from the EPA’s 2017 National Emission Inventory (U.S. EPA, 2022). b Data from Laing et al. (2017). c Data from Akagi et al. (2011). d Data from Andreae (2019).
e Data from Selimovic et al. (2020). f Data from Briggs et al. (2016). Scattering values are reported at STP and converted to PM2.5 using a dry mass scattering coefficient of
3.5 m2 g−2. g Data from Collier et al. (2016). This value includes refractory PM1. Values are adjusted to STP. h Data from Garofalo et al. (2019). This value includes only the
organic, non-refractory PM1 fraction; however, this is likely more than 90 % of total PM2.5 mass. Values are adjusted to STP. i Data from Kleinman et al. (2020). This value
includes only the non-refractory PM1 mass. Values are adjusted to STP.

3 Results

Figure 1 shows one example of the HMS smoke product for
the Loyalton fire on 16 August 2020, which was about 35–
45 km from the Sparks monitoring site. This fire started on
14 August 2020 and burned for approximately 1 month. In to-
tal, this fire burned approximately 20 000 ha in the Tahoe and
Humboldt-Toiyabe National Forests. On 16 August 2020, the
daily mean PM2.5 and CO concentrations were 38 µgm−3

and 0.43 ppm at the Sparks, NV, monitoring site. Washoe
County is located due east of the California–Nevada border,
so smoke from many fires in California is often transported
to the Sparks monitor. Table 2 shows data for the number
of days that exceeded the U.S. National Ambient Air Qual-
ity Standards (NAAQS) for PM2.5 (2006 24 h standard, daily
mean of 35 µgm−3) and O3 (2015 8 h O3 standard, maximum
daily 8 h mean of 0.070 ppm) for the Sparks monitoring site,
along with the annual area burned in California. While 2020
was the highest year on record for the area burned in CA for
the past 2 decades, 2021 was the second highest year and had
a greater number of days in Reno that exceeded the NAAQS.
Note that 2019 was a particularly low fire year in CA, and
there were no exceedances of either the daily PM2.5 or O3
NAAQS at the Sparks monitoring site. Overall, for this time
period (May–September 2018–2021), 200 out of 612 d had
overhead HMS smoke at the Sparks monitoring location. The
PM2.5 /CO smoke criteria are discussed later in this section.

Figure 2 shows the daily PM2.5 vs. CO concentrations for
May–September 2018–2021, segregated for smoke vs. non-
smoke conditions. The data are segregated using (1) the HMS
smoke product and (2) a PM2.5 /CO ratio ≥ 30.0. The value
of 30.0 was chosen based, in part, on the work of Laing et
al. (2017) and on evaluation of likely smoke influence. We
found the slopes and correlations were not strongly influ-
enced by the choice of PM2.5 /CO ratio. For example, using
a ratio of < 20, < 30, < 40 and < 50 we get slopes of 16.5,
18.0, 23.4 and 33.9 µgm−3 per part per million, an increas-
ing pattern (as would be expected). We found that smoke
influence can be observed on some days at a PM2.5 /CO
ratio as low as 32. An example of this is 5 August 2018,
when extensive and heavy smoke blanketed most of Califor-
nia, Nevada and other western states. PM2.5 and CO con-
centrations at Sparks were 22 µgm−3 and 0.68 ppm, respec-
tively, for a PM2.5 /CO ratio of 32. The relatively low ratio
implies significant mixing of this smoke event with air con-
taining a lower ratio, but the high PM2.5 concentrations and
widespread smoke are consistent with a significant smoke in-
fluence on that day. Using the PM2.5 /CO ratio to segregate
the data, we found an improved correlation of PM2.5 and CO
in the lower range of ratios compared with using the HMS as
an indicator (Fig. 2).

Table 3 summarizes the results. There are 612 d in the anal-
ysis, where 200 d have a positive HMS smoke identification
and 220 d have PM2.5 /CO ratios ≥ 30. There are 73 d with
PM2.5 /CO ratios ≥ 30 but without a positive HMS smoke
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Table 2. California area burned, overhead HMS smoke days, and days over the U.S. National Ambient Air Quality Standard at Sparks,
NV, for PM2.5 (daily mean of 35 µgm−3) and O3 (70 ppb, 8 h average). The smoke criteria (indicated by *) uses a PM2.5 /CO ratio of
30.0 µgm−3 ppm−1, as discussed later in text.

2018 2019 2020 2021

California area burned (Ha) 7.4× 105 1.0× 105 1.7× 106 1.1× 106

Sparks overhead HMS smoke (days) 51 11 52 86
Sparks smoke days* 42 30 81 67
Identified smoke days with no HMS identification 13 25 20 15
PM2.5 exceedance days 6 0 19 22
PM2.5 exceedance days with smoke* 6 0 19 22
O3 exceedance days 10 0 5 13
O3 exceedance days with smoke* 8 0 5 11

Figure 1. NOAA HMS smoke and fire location for 16 August 2020.
The Loyalton fire is burning in California near the Nevada bor-
der at this time. The blue star shows the location of the Sparks,
NV, monitoring site, which is approximately 35–45 km from the
fire. This map was created from the AirNowTech site (https://www.
airnowtech.org/, last access: 10 September 2022).

identification and 53 d that have a positive HMS smoke iden-
tification but a low PM2.5 /CO ratio (< 30). The first cate-
gory (high PM2.5 /CO ratio but no HMS smoke) can be con-
sidered a false negative (smoke is present but not detected by
HMS), whereas the second category (HMS smoke present
but low PM2.5 /CO ratios) can be considered a false pos-

Figure 2. Observed PM2.5 vs. CO for May–September data
(1 May 2018–31 August 2021). Each point is the daily mean of
observed values segregated by (a) overhead HMS smoke product or
(b) PM2.5 /CO threshold of 30.0 µgm−3 ppm−1.
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itive. While there is relatively little difference between the
mean and SD of the smoke-influenced and non-smoke data,
the improved correlation suggests that the PM2.5 /CO ratio
is a better way to segregate the dataset. The exact choice of
PM2.5 /CO ratio depends on the certainty required. This is
discussed in more detail using a Monte Carlo simulation, as
described below.

We used the PM2.5 and CO data to develop a Monte Carlo
simulation of the PM2.5 /CO ratio for Reno using the follow-
ing relationships:

PM2.5 (µgm−3)= Urban PM2.5+ Smoke PM2.5

+ background PM2.5

= 10α + 10β + 2µgm−3, (1)

CO (ppm)= Urban PM2.5/Rurban

+Smoke PM2.5/Rsmoke,+0.2ppm (2)

where Rurban and Rsmoke are the NERs (1PM2.5/1CO)
to represent urban emissions and smoke, respectively. The
smoke terms in Eqs. (1) and (2) were non-zero on one-
third of the days, corresponding to the fractional incidence
of HMS smoke. We explored a range of values for Rurban
and Rsmoke as shown in Table 4. The parameters α and
β were used to represent the log-normal distributions for
urban PM2.5 with and without smoke PM2.5, respectively.
Equations (1) and (2) include a background contribution to
represent natural, biogenic and intercontinental sources of
PM2.5 and CO. The background concentrations were set to
2 µgm−3 for PM2.5 and 0.2 ppm for CO. These background
values were estimated based on observations from 2019, a
low fire year, from a rural continental site (West Yellowstone,
MT, AQS no. 300310017) and a marine background site
(Cheeka Peak, WA, AQS no. 530090013). During the May–
September 2019 period the West Yellowstone mean values
for PM2.5 and CO were 2.5 µgm−3 and 0.24 ppm, whereas
at the Cheeka Peak site the mean values were 2.1 µgm−3

and 0.08 ppm. Median values were very similar at both sites.
We note that PM2.5 concentrations were similar at both sites,
whereas CO was higher at the continental site. Given that
Sparks, NV, is a continental and inland location, the West
Yellowstone, MT, concentrations are likely more representa-
tive of its background concentrations. We also examined a
range of background values for CO (0.1–0.2 ppm) and PM2.5
(1–3 µgm−3) and found little influence on the conclusions.

The Monte Carlo simulations estimate a range of ob-
served PM2.5 and CO concentrations using Eqs. (1) and (2).
The simulation computes 10 000 concentrations, where α, β,
Rurban and Rsmoke are allowed to vary independently with
values as defined in Table 4. These values were chosen to be
consistent with the mean and SD of the non-smoke (α) and
smoke (β) datasets, respectively, excluding the contribution
from background concentrations. Note that the Monte Carlo
simulations are intended to reflect the bulk distributions, so

Figure 3. PM2.5 /CO ratio (µgm−3 ppm−1) vs. PM2.5. The black
dots show the observations, and the blue diamonds, red circles
and green squares show the influence of the Rsmoke parame-
ter for the urban+ smoke simulations. The simulation results are
binned in 10 µgm−3 intervals centered on the indicated values.
For these Monte Carlo simulations, Rurban is fixed at 40. Error
bars show 1σ in the middle simulation. One observation is not
shown (PM2.5 /CO ratio of 122 and a PM2.5 concentration of
159 µgm−3).

Figure 4. PM2.5 /CO ratio (µgm−3 ppm−1) vs. PM2.5. The black
dots show the observations, and the blue diamonds, red circles
and green squares show the influence of the Rurban parameter on
the Monte Carlo simulations. The simulation results are binned in
10 µgm−3 intervals centered on the indicated values. For these sim-
ulations, Rsmoke is fixed at 140. Error bars show 1σ in the middle
simulation. One observation is not shown (PM2.5 /CO ratio of 122
and a PM2.5 concentration of 159 µgm−3).

there is no correspondence between an individual day in the
simulation and any particular day in the observations.

Figure 3 shows results of the simulation with varying
mean values for the Rsmoke parameter. Even at very high
PM2.5 concentrations, the observed PM2.5 /CO ratio never
exceeded 125 µgm−3 ppm−1. The simulation suggests an op-
timum Rsmoke value of 140 µgm−3 ppm−1. Thus, consis-
tent with the work of Laing et al. (2017) and Selimovic et
al. (2019, 2020), we found that the best-fit NER values at
the surface were much lower than NERs reported for fresh or
free tropospheric smoke plumes (200–300 µgm−3 ppm−1).
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Table 3. Sparks daily PM2.5 and CO data for May–September 2018–2021, segregated by the PM2.5 /CO ratio and by overhead HMS smoke.

PM2.5 /CO < 30.0 PM2.5 /CO ≥ 30.0
(no smoke) (smoke influenced)

Count 392 220
Mean PM2.5 (µgm−3) 4.7 25.4
SD (µgm−3) 1.9 28.6
Count of days with HMS = 1 53 147

HMS = 0 HMS = 1
(no smoke) (smoke influenced)

Count 412 200
Mean PM2.5 (µgm−3) 5.0 26.9
SD (µgm−3) 2.0 29.6
Count of days with PM2.5 /CO ≥ 30.0 73 147

Table 4. Parameter values used in the Monte Carlo simulations.
For the Rurban and Rsmoke parameters, multiple mean values are
considered.

α β Rurban Rsmoke
(unitless) (unitless) (µgm−3 ppm−1) (µgm−3 ppm−1)

Mean 0.4 1.3 20, 40, 80 100, 140, 200
SD 0.2 0.4 10 20

Figure 4 shows the results of the simulations with vary-
ing values for the Rurban parameter. The best value of Rurban
was more difficult to discern. At high PM2.5 concentrations
and PM2.5 /CO ratios, Rurban has very little influence on
the simulated values. At the low range of PM2.5 concen-
trations, a value of 20 µgm−3 ppm−1 is clearly too low, but
there is little difference between the other values so it is
not clear which value is optimal. This parameter should re-
flect the primary PM2.5 and CO emissions in the area, plus
contributions from secondary organic aerosol (e.g., Nault et
al., 2021). For Washoe County, NV (the county containing
Reno and Sparks), the EPA’s 2017 National Emissions Inven-
tory gives primary emissions of PM2.5 and CO of 1630 and
61 082 t per year, excluding wildfires and residential wood
combustion. This corresponds to a PM2.5 /CO emission ra-
tio of 0.034 g PM2.5 g CO−1 or an enhancement ratio of
39 µgm−3 ppm−1. Important constraints on using the Monte
Carlo approach to discern the urban, non-smoke PM2.5 /CO
NER are limitations on the instrumentation and the impact of
background concentrations at low PM2.5 and CO concentra-
tions. Nonetheless, we found that using an Rurban parameter
of either 40 or 80 has little influence on our results at higher
PM2.5 concentrations. For the rest of this analysis, we used
an Rsmoke value of 140 and an Rurban value of 40.

Figure 5 shows the fractional smoke contribution to PM2.5
vs. the PM2.5 /CO NER from the Monte Carlo simulations.
As specified in the model setup, two-thirds of the points have
no smoke contribution. These have a mean PM2.5 /CO value

Figure 5. Fraction of PM2.5 due to smoke vs. the PM2.5 /CO ratio
(µgm−3 ppm−1) as calculated from the Monte Carlo simulations.
We note that the Monte Carlo simulations give a probabilistic re-
lationship. So, for example, at a PM2.5 /CO ratio of between 30
and 40 µgm−3 ppm−1, 83 % of the points have more than half of
the PM2.5 due to smoke. The open red circles show the probabil-
ity that more than 50 % of the PM2.5 is due to smoke within each
PM2.5 /CO bin.

of 17, with a range of 6–34. As the Monte Carlo simulations
represent a probabilistic approach, we can also look at the
likelihood that a given set of points has a specific degree of
smoke influence. Figure 5 shows the probability that a given
set of PM2.5 /CO ratios (binned in units of 10) has more
than 50 % of the PM2.5 due to smoke. Thus, starting with
the PM2.5 /CO bin of 30–40, we have a very high probabil-
ity (0.83) that more than 50 % of the PM2.5 mass is due to
smoke and at a bin of 40–50 we have near certainty (0.993)
that more than 50 % of the PM2.5 mass is due to smoke.

We can use the information in Fig. 5 to evaluate the like-
lihood that smoke contributed to the days with high PM2.5
or O3, as shown in Table 2. The years 2018, 2020 and 2021
all had a significant number of exceedances days (over the
NAAQS), whereas the low fire year of 2019 had none. Using
a PM2.5 /CO value of 30.0 which, based on the Monte Carlo
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simulation, implies that smoke contributes more than half of
the total PM2.5 on 85 % of days. Even using a smoke crite-
ria of PM2.5 /CO of 45, we found no change in the number
of smoke-influenced days. Not surprisingly, the PM2.5 /CO
criteria identified all of the PM2.5 exceedance days as smoke
influenced, using either smoke criteria (35 or 45). For O3,
the results show that 24 out of the 28 exceedance days were
smoke influenced using either criteria. While the PM2.5 /CO
ratio can quantitatively estimate the fraction of PM2.5 due
to smoke (e.g., Fig. 5), we note that this approach cannot
provide a quantitative estimate of the smoke contribution to
the O3 levels. Other tools would be needed to quantify the
smoke contribution to the MDA8 O3 values (e.g., Ninneman
and Jaffe, 2021; Jaffe, 2021; Gong et al., 2017). Nonetheless,
the results shown in Table 2 demonstrate that the PM2.5 /CO
ratio can identify days with a strong smoke signature.

4 Summary

The large difference in PM2.5 /CO emission ratios between
typical urban pollution and wildfire smoke gives rise to very
different observed NERs in urban areas for non-smoke and
smoke-influenced conditions. We used PM2.5 and CO data
for May through September, when residential wood com-
bustion is minimal, to develop a Monte Carlo simulation of
the resulting ratios. We find that the Monte Carlo simulation
that includes both smoke and non-smoke NERs can accu-
rately reproduce the observed NERs and provide a measure
of smoke influence in an urban area. The model supports
earlier work that found the PM2.5 /CO NER in biomass-
burning-influenced plumes at surface sites is approximately
half of that observed in fresh emissions and in cooler envi-
ronments. This is likely caused by loss of PM2.5 mass during
transport due to dilution and warmer temperatures at surface
sites. For the Sparks, NV, monitoring site we found that at a
PM2.5 /CO ratio of 35 µgm−3 ppm−1 biomass burning con-
tributed more than half of the total PM2.5 on 85 % of days.
To apply the Monte Carlo simulation at other sites requires
that the parameters in Table 4 be adjusted to fit the local data.
The Rurban parameter would need to be adjusted based on lo-
cal emissions and observations, and the α and β parameters
would need to be fit based on the observed non-smoke and
smoke concentrations, respectively.

This analysis demonstrates that it is possible to identify
wildfire smoke at the surface based on commonly measured
air pollutants with high confidence. While satellite data can
also identify smoke influence, these have both high false pos-
itive and negative rates, meaning that many days identified by
satellite products as having overhead smoke show little or no
influence at the surface and many days that have smoke at the
surface are missed by the HMS product. We conclude that the
observed PM2.5 /CO ratio provides a more robust signal of
surface smoke in urban areas with no false positives.
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