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Abstract. Weaknesses in process representation in chemistry–climate models lead to biases in simulating sur-
face ozone and to uncertainty in projections of future ozone change. We here develop a deep learning model
to demonstrate the feasibility of ozone bias correction in a global chemistry–climate model. We apply this
approach to identify the key factors causing ozone biases and to correct projections of future surface ozone.
Temperature and the related geographic variables latitude and month show the strongest relationship with ozone
biases. This indicates that ozone biases are sensitive to temperature and suggests weaknesses in representation
of temperature-sensitive physical or chemical processes. Photolysis rates are also an important factor, highlight-
ing the sensitivity of biases to simulated cloud cover and insolation. Atmospheric chemical species such as the
hydroxyl radical, nitric acid and peroxyacyl nitrate show strong positive relationships with ozone biases on a
regional scale. These relationships reveal the conditions under which ozone biases occur, although they reflect
association rather than direct causation. We correct model projections of future ozone under different climate
and emission scenarios following the shared socio-economic pathways. We find that changes in seasonal ozone
mixing ratios from the present day to the future are generally smaller than those simulated without bias cor-
rection, especially in high-emission regions. This suggests that the ozone sensitivity to changing emissions and
climate may be overestimated with chemistry–climate models. Given the uncertainty in simulating future ozone,
we show that deep learning approaches can provide improved assessment of the impacts of climate and emission
changes on future air quality, along with valuable information to guide future model development.

1 Introduction

Atmospheric chemical transport models have been developed
over several decades with the principal purpose of simulat-
ing the composition of the atmosphere (Zhang, 2008), and
chemistry schemes have been incorporated in chemistry–
climate and earth system models to investigate the interac-
tions between atmospheric composition and climate change
(Flato, 2011). However, current chemistry–climate models
are imperfect in simulating the concentration of atmospheric
chemical species, even though they represent our latest un-
derstanding of the governing physical and chemical pro-

cesses. Biases obtained through comparison with observa-
tions indicate that not all relevant processes can be ade-
quately represented in models, and there are uncertainties
associated with emissions, chemistry, transport, deposition,
clouds and aerosols, in addition to structural errors associated
with model resolution (Knutti and Sedláček, 2013; Archibald
et al., 2020a). Representation of these processes may be bi-
ased due to poor understanding and simplified parameterisa-
tion, and the errors may propagate in complex earth system
models.
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While some models reproduce observed concentrations
relatively well, this does not confirm that they represent the
governing processes well, because biases arising from differ-
ent processes may offset each other. Different models apply
differing parameterisations of key processes, and even where
these reflect current understanding, there may be large differ-
ences in model responses to changing conditions (Wild et al.,
2020). This may lead to unreliable projections of changes in
atmospheric composition under future emission and climate
scenarios. However, it is difficult to identify the origin of bi-
ases in models, and this severely hinders model improvement
and prevents a full understanding of the interactions between
chemistry and climate through the earth system.

Tropospheric ozone (O3) is an important greenhouse gas
affecting climate and is a photochemical air pollutant at
the earth’s surface, damaging human health and ecosystems
(Archibald et al., 2020a). Many studies show that the magni-
tude of the tropospheric O3 burden and surface O3 concentra-
tions in remote areas can be simulated relatively well (Young
et al., 2018; Griffiths et al., 2021). However, large differences
still exist in simulated surface O3 concentrations in high-
emission areas (Turnock et al., 2020), and there are large
uncertainties in temporal trends (Tarasick et al., 2019) that
cannot be captured well by global chemistry–climate mod-
els (Parrish et al., 2021). In addition, structural biases in O3
caused by coarse model resolution are hard to eliminate and
typically lead to higher surface O3 concentrations in polluted
areas (Wild and Prather, 2006; Stock et al., 2014). Given the
difficulty in resolving O3 biases in a complex chemistry–
climate model, the aim of this study is to correct simulations
of present-day surface O3 concentrations across the globe
and to generate more reliable O3 projections under future
scenarios.

Machine learning provides a valuable approach to correct
O3 biases. Appropriate algorithms can be applied to iden-
tify the relationships between model responses and the driv-
ing variables based on extensive training. Deep learning ap-
proaches apply algorithms with more complex architectures
and larger parameter spaces based on artificial neural net-
works (Goodfellow et al., 2016). In atmospheric science, ma-
chine learning has been successfully applied in some fields
such as prediction of precipitation (Sønderby et al., 2020;
Ravuri et al., 2021) and air pollution (Kleinert et al., 2021).
Numerical approaches used in solving ordinary and partial
differential equations in chemical and dynamic systems (Han
et al., 2018; Keller and Evans, 2019), and in parameterising
subgrid processes for clouds in climate models (Rasp et al.,
2018), can also be replaced by machine learning to reduce
computational costs. However, reliance on machine learning
approaches to make predictions may lead to loss of inter-
pretability of the results. We therefore choose an approach
based on physical model variables that allows us to extract
the importance of these variables and thus derive some phys-
ical insight into the performance of the chemistry–climate
model.

In this study, we explore the application of deep learning
to correct surface O3 biases in a global chemistry–climate
model, and we apply it for the first time to improve projec-
tions of changes in O3 under future scenarios. We identify the
dominant factors leading to O3 biases with the aim of guid-
ing future model development. We introduce the chemistry–
climate model, present-day and future scenarios, and the
deep learning model in Sect. 2. We demonstrate the perfor-
mance of the deep learning model in Sect. 3. We show the
importance of different variables to O3 biases in Sect. 4, and
how these vary by region in Sect. 5. We quantify surface
O3 biases in the present day and the future in Sect. 6, and
show the importance for assessment of future O3 changes in
Sect. 7. We present our conclusions in Sect. 8.

2 Approach

2.1 Chemistry–climate model and experiments

We use version 1 of the United Kingdom Earth System
Model, UKESM1 (Sellar et al., 2019), to simulate present-
day (2004–2014) and future (2045–2055) surface O3 mix-
ing ratios under different emission and climate pathways.
UKESM1 consists of a physical climate model, the Hadley
Centre Global Environment Model version 3 (HadGEM3),
with the Global Atmosphere 7.1 and Global Land 7.0
(GA7.1/GL7.0) configurations (Walters et al., 2019) for
atmosphere-only simulations with prescribed sea surface
temperatures, sea ice and greenhouse gas concentrations gen-
erated from the fully coupled UKESM1 (Meinshausen et al.,
2017, 2020). Atmospheric composition is modelled with a
state-of-the-art chemistry and aerosol module, the United
Kingdom Chemistry and Aerosol model (UKCA; O’Connor
et al., 2014), including a stratosphere–troposphere gas-phase
chemistry scheme (StratTrop; Archibald et al., 2020b) and
an aerosol scheme (GLOMAP-mode; Mulcahy et al., 2020).
An extended chemistry scheme incorporating more reactive
volatile organic compounds (VOCs) is used in this study to
provide an improved representation of O3 production envi-
ronments (Liu et al., 2021). The model resolution is N96L85
in the atmosphere, with 1.875◦ in longitude by 1.25◦ in lat-
itude, 85 terrain-following hybrid height layers and a model
top at 85 km.

For present-day simulations, we use the Coupled-Model
Intercomparison Project Phase 6 (CMIP6; Eyring et al.,
2016) historical anthropogenic and biomass emissions from
Hoesly et al. (2018) and Van Marle et al. (2017), respec-
tively. Biogenic VOC emissions are calculated interactively
in the Joint UK Land Environmental Simulator (JULES)
land-surface scheme (Pacifico et al., 2011), which is coupled
to UKCA. For future simulations, we use the shared socio-
economic pathways (SSPs; O’Neill et al., 2014), which rep-
resent different pathways of emission and climate policies in
the future accounting for social, economic and environmental
development (Rao et al., 2017). We choose the SSP3-7.0 and
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SSP3-7.0-lowNTCF pathways to demonstrate the impacts of
weak and strong air pollutant emission controls in the future,
respectively. Both pathways lead to a warmer and more hu-
mid climate, but SSP3-7.0-lowNTCF has large reductions in
anthropogenic emissions of near-term climate forcer (NTCF)
species that include O3 precursors and aerosols. Details of
the present-day and future emissions under SSP3-7.0 and
SSP3-7.0-lowNTCF can be found in Liu et al. (2022). Other
emissions used here are the same as described in Turnock
et al. (2020).

2.2 Deep artificial neural network

We here develop a deep learning model using a multilayer
perceptron, as it is a fundamental approach to build artifi-
cial neural networks and easy to apply. More complex ap-
proaches such as convolutional or attention-based neural net-
works could be applied (LeCun et al., 2015; Vaswani et al.,
2017), but multilayer perceptron neural networks are com-
petitive and show good performance compared with other
approaches (Tolstikhin et al., 2021). We hence choose a clas-
sical artificial neural network as an initial step to explore the
possibility of O3 bias correction; more complex approaches
could be explored in future.

The multilayer perceptron neural network consists of an
input layer, several hidden layers and an output layer, as
shown in Fig. 1. In the hidden layers, we use three in-
dependent modules – a densely connected layer, a batch-
normalisation layer (Ioffe and Szegedy, 2015) and a recti-
fied linear unit (Relu; Glorot et al., 2011). Each layer has
neurons that store data and associated weights. Neurons in
densely connected layers connect to each neuron in the fol-
lowing layer. The batch-normalisation layers make the model
training faster and more stable. The rectified linear unit is
a non-linear activation function applied to the output of the
previous layer. The deep learning model developed here is
applied to correct surface O3 mixing ratios solely simulated
by UKESM1.

2.3 Deep learning model input

Earth system models have numerous variables influencing
surface O3 mixing ratios, but including all variables as in-
puts for the deep learning model is impractical due to the
heavy computational burden. It may also lead to overfitting,
a common issue in machine learning associated with includ-
ing more variables than can be justified by the limited vol-
ume of training data. Limiting the number of variables used
as inputs also makes the results easier to interpret. In this
exploratory study, we investigated more than 30 key input
variables that represent the major large-scale influences on
O3 chemistry and transport, and settled on 20 variables that
show the strongest relationships.

We consider major geographical and temporal variables
including latitude, longitude, elevation, land cover and

month. We define latitude from the Equator to the pole, and
month from midwinter to midsummer in each hemisphere.
Meteorological variables such as temperature, pressure, hu-
midity, zonal and meridional wind are considered as they
strongly influence O3 chemical formation and transport. The
sensitivity of O3 to temperature is of particular interest, and
has been shown to be a substantial source of uncertainty in
current studies (Archibald et al., 2020c). Temperature and
humidity have also been shown to influence O3 variability
on both regional and synoptic scales (Han et al., 2020; Shi
et al., 2020). Two fundamental photolysis rates governing O3
production and destruction, j (NO2) and jO(1D), are con-
sidered. Photolysis rates are strongly dependent on clouds,
but there are large uncertainties in simulated cloud cover in
current models (Wu et al., 2007; Voulgarakis et al., 2009;
Hall et al., 2018). O3 deposition rates and boundary layer
height (BLH) are considered as they influence O3 concentra-
tions near the surface (O’Connor et al., 2014; Clifton et al.,
2020). Concentrations of O3 precursors such as nitric oxide
(NO), VOCs (primary VOC species) and biogenic isoprene
are considered, as these govern O3 chemical production. The
concentrations of hydroxyl radical (OH) and oxidative nitro-
gen species such as nitric acid (HNO3) and peroxyacyl ni-
trates (PAN) are also considered because they reflect the gen-
eral oxidation capacity of the atmosphere. HNO3 and PAN
are important nitrogen sinks that may transport nitrogen and
affect O3 formation over a wide area. Between them, the
20 variables selected represent some of the key drivers of
uncertainty in simulating surface O3, although we note that
they are not independent of each other and that other factors
may also be important under some conditions. We use O3
mixing ratios from the lowest model layer of UKESM1, and
normalise values of each input variable from zero to one.

2.4 Deep learning model application

Previous studies have shown that there are systematic sea-
sonal biases in surface O3 mixing ratios simulated with
many chemistry–climate models (Young et al., 2018), in-
cluding UKESM1 (Turnock et al., 2020). Ozone observa-
tions, such as those compiled for the Tropospheric Ozone
Assessment Report (TOAR; Schultz et al., 2017), are typi-
cally used to evaluate model performance, but observation
sites are sparsely distributed and there are few outside North
America, Europe and parts of East Asia. In addition, many
observations are representative of much smaller spatial scales
than can be resolved by coarse-resolution models, and this
presents an additional source of uncertainty.

We therefore also consider surface O3 reanalysis data
from the European Centre for Medium-Range Weather Fore-
casts (ECMWF) Atmospheric Composition Reanalysis 4
(EAC4) under the Copernicus Atmosphere Monitoring Ser-
vice (CAMS; Inness et al., 2019). These data are at a similar
spatial scale to UKESM1 output and provide global data cov-
erage, which is valuable in training the deep learning model
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Figure 1. The structure of the deep artificial neural network built in this study. Each box represents one layer with neurons and weights to
be passed to the next layer. In the densely connected layer (“Dense”), all neurons connect with neurons in the next layer, and the number
of neurons is shown in brackets. In the batch-normalisation layer (“BN”), the data are normalised and passed to the next layer. The rectified
linear unit (“Relu”) acts as a non-linear activation function. The arrows show the computation path from input to output.

to ensure more robust results. We compare surface O3 in
UKESM1 with TOAR observations and CAMS reanalysis in
Fig. 2. There are substantial biases in UKESM1, with surface
O3 underestimated compared to observations in wintertime
and overestimated in summertime. In contrast, the CAMS
reanalysis is in much better agreement with TOAR, with
mean seasonal biases of about 3 ppb. Comparing UKESM1
and CAMS data over the globe, we find that mean surface
O3 mixing ratios over the 2004–2014 period simulated by
UKESM1 are underestimated in the Northern Hemisphere
in winter (December, January, February) and overestimated
across most continental areas in summer (June, July, Au-
gust), and this occurs over broad regions, not just where ob-
servations are available.

In the absence of a global observation-based ozone clima-
tology, we apply the CAMS reanalysis product in our anal-
ysis. We note that recent studies have explored the fusion of
observations and model output to generate surface O3 prod-
ucts at a global scale (Chang et al., 2019; Betancourt et al.,
2022), but these approaches only work well in regions where
measurement sites are available. The CAMS reanalysis pro-
vides surface concentrations at a scale comparable with our
model, and thus avoids uncertainties associated with the spa-
tial representativeness of observations when using measured
concentrations. While biases in the reanalysis will influence
our results, the CAMS data provide a good foundation with
which to demonstrate the feasibility of O3 bias correction.

2.5 Model training

The deep learning model is trained to reproduce the O3 bias
in each UKESM1 grid cell based on the corresponding val-
ues of the input variables. We train the deep learning model
using the biases of monthly mean surface O3 mixing ra-
tios from each model grid cell over 2004–2014 (192 longi-
tudes× 144 latitudes× 12 months× 11 years= 3.6 million
data samples). We randomly split the data into training data
(80 %), validation data (10 %) and testing data (10 %). Train-
ing data are only used to train the model. The validation data
provide an evaluation of model performance for each itera-

tion of training and the testing data are used to provide an
independent evaluation once model training is complete.

The performance of the deep learning model is dependent
on the volume of data and the settings used, and we experi-
ment with a range of different settings to keep a balance be-
tween training speed and accuracy. We choose an Adam op-
timiser for the training algorithm (Kingma and Ba, 2014) and
use mean absolute error for the loss function in this study. We
use 0.01 as the model learning rate and 1024 grid boxes as the
training batch size for stochastic gradient descent. Among
these settings, we find that the batch size is the most impor-
tant factor influencing model performance. 1024 randomly
sampled data points account for about 4 % of the data from
all grid cells in 1 month in each training iteration, and we find
that this is adequate to represent different situations of O3 bi-
ases and is found to be sufficient to train the model well.

3 Deep learning model performance

We determine the deep learning model performance in pre-
dicting surface O3 biases using the testing data to give an
independent evaluation (Fig. 3). The model reproduces the
surface O3 biases well, with a high correlation coefficient of
0.99 and a mean bias error of 0.1 ppb and root-mean-square
error of 1.9 ppb. The frequency distribution of surface O3 bi-
ases predicted by the deep learning model is very similar to
that calculated using the O3 reanalysis data. The tails of the
distribution also match well, indicating that large biases can
be reproduced well. The evaluation demonstrates that the in-
put variables selected are sufficient to predict surface O3 bi-
ases well.

To investigate the spatial and temporal behaviour of the
model performance, we focus on surface O3 biases in the
present-day high-emission regions of North America, Eu-
rope, East Asia and South Asia (Fig. 4). North America, Eu-
rope and East Asia all show systematic negative surface O3
biases in winter and positive biases in summer (Fig. 4a–c).
South Asia shows different behaviour, with consistent posi-
tive biases for all months (Fig. 4d). O3 biases in South Asia
show more fluctuations over the annual cycle than those in
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Figure 2. Comparison of seasonal mean (December–January–February (DJF) and June–July–August (JJA)) and annual mean surface O3
mixing ratios between (a–c) UKESM1 and TOAR, (d–f) CAMS and TOAR, and (g–i) UKEMS1 and TOAR, all averaged over 2004–2014.
Global area-weighted average surface mean mixing ratios (ppb) are shown in the top right of each panel.

Figure 3. Evaluation of the deep learning model in simulating monthly mean surface O3 biases at each UKESM1 grid point based on testing
data. (a) O3 biases (UKESM1 minus CAMS) and biases predicted by the deep learning model. (b) Probability density function of O3 biases
(labelled here as Reference) and predicted O3 biases. Statistics are shown in the top right corner.

other regions, but these fluctuations are also captured well
by the deep learning model. We note that the magnitudes of
O3 biases are simulated well, and that the differences from
year to year are also captured accurately. These four regions
demonstrate that the deep learning model is able to predict
regional differences and their respective magnitudes well.

4 Feature importance

While all input variables contribute to the prediction of O3
biases, their relative contributions are different and can be
estimated to determine which ones are dominant. An ad-
vanced unified framework for interpreting predictions of
machine learning models, Shapley additive explanations
(SHAP; Lundberg and Lee, 2017), is used to calculate the
contribution of different variables to the predicted biases.
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Figure 4. Monthly mean surface O3 biases (UKESM1 minus CAMS; Reference) and O3 biases predicted by the deep learning model in (a)
North America, (b) Europe, (c) East Asia and (d) South Asia from January 2004 to December 2014.

The feature importance is represented by the SHAP value,
which provides a quantitative measure of the variable con-
tribution, as shown in Fig. 5. We calculate SHAP values for
each variable using 100 sets of 100 data points randomly se-
lected from the full distribution, and show their mean values
and one standard deviation. The colours indicate the underly-
ing relationships between the O3 biases and the selected vari-
ables based on the correlation between the calculated SHAP
values and variable values. Red represents a strong positive
relationship (r > 0.7), blue represents a strong negative rela-
tionship (r <−0.7) and grey shows weaker relationships.

We find that latitude and month are important to O3 biases
and show negative and positive relationships with surface
O3 biases, respectively. This reflects more positive biases in
tropical regions than at the poles, and more positive biases in
summer than winter. Temperature also shows a strong posi-
tive relationship, and this may partly reinforce the influence
of latitude and month. Photolysis rates are also important for
O3 biases, with jO(1D) associated with O3 destruction and
j (NO2) with O3 production. The concentrations of PAN, OH
and HNO3 all show positive relationships with O3 biases.
This may indicate that there are large uncertainties in O3
production in high-oxidation and high-NOx environments.
However, we find that VOCs and short-lived NO concentra-
tions are less important to O3 biases. This highlights the sys-
tematic regional and global-scale nature of the O3 biases in
UKESM1, and indicates that the biases are not strongly as-
sociated with precursor abundance on a regional level. Sim-
ilarly, isoprene concentrations show little contribution to O3
biases. We note that while O3 deposition rates and BLH are
both important to O3 biases, this may partly reflect their sim-

ilar seasonality. Previous studies investigating model O3 bi-
ases have found a broadly similar importance for some vari-
ables, e.g. for time of year and precursors such as PAN, but
the different focus of these studies makes direct comparison
of the results difficult (Ivatt and Evans, 2020; Keller et al.,
2021).

To highlight the sensitivity of our results to the physical
and chemical environment, we show the feature importance
over land and ocean regions separately in Fig. 5b. Ozone pre-
cursors such as NO, isoprene and VOCs are much more im-
portant over land, along with some physical variables such
as temperature. In contrast, O3 biases over the ocean are
more sensitive to OH, deposition and boundary layer mix-
ing. These differences reflect the differing importance of O3
formation and removal processes in the different regions, al-
though we find that the dominant variables such as tempera-
ture and photolysis rates remain important for both regions.

We also calculate feature importance at the TOAR mea-
surement locations only and compare use of surface O3 from
TOAR and CAMS separately, to explore the sensitivity of
our results to the choice of reference data. We find that the
feature importance at these locations differs markedly from
that over the globe for some variables, particularly for OH
and for geographical variables such as latitude and longitude.
These differences reflect the limited spatial coverage of mea-
surement sites and the narrower range of chemical environ-
ments sampled. However, the feature importance is very sim-
ilar whether using TOAR measurements or CAMS reanalysis
O3 at these same locations, demonstrating that these datasets
provide very similar information, and this lends confidence
in our choice of CAMS reanalysis data for our analysis.
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Figure 5. Importance of different variables to surface O3 biases calculated by the Shapley additive explanations framework (SHAP) for
the deep learning model. (a) Feature importance over the globe derived from CAMS reanalysis data. Strong positive (r > 0.7) and negative
(r <−0.7) relationships between O3 biases and variable values are shown in red and blue, respectively, while weaker relationships are shown
in grey. (b) Feature importance over land and ocean regions derived from CAMS reanalysis data. (c) Comparison of feature importance
inferred from CAMS and TOAR separately at the TOAR measurement locations only. Error bars show one standard deviation of feature
importance in % for each variable.

The relationships between variables with the highest fea-
ture importance and the O3 biases are generally directly inter-
pretable, demonstrating that the deep learning model may be
capturing the internal relationships between inputs and out-
puts in a physically realistic way. This provides some insight
into the sources of O3 biases in UKESM1. We emphasise that
the high importance of a variable does not indicate that the
variable itself is not simulated well by the chemistry–climate
model, or that it is the direct cause of the bias. Since temper-
ature is generally represented well in UKESM1 (Sellar et al.,
2019), the importance of temperature thus indicates that O3
biases may be caused by the representation of physical and
chemical processes that are sensitive to temperature change,
such as chemical reaction rates (Coates et al., 2016; New-
some and Evans, 2017), or to other processes for which tem-
perature is a proxy, and this explains the seasonality of the
reversal in O3 biases from winter to summer in the Northern
Hemisphere.

Specifically for UKESM1, Archibald et al. (2020c) found
that the O3 responses to the same temperature changes in two
chemical mechanisms (including StratTrop of UKESM1) are
distinct, suggesting that temperature may be a main source of
biases. In addition, more comprehensive chemistry schemes
based on StratTrop further enlarge the O3 biases in summer,
as reported by Archer-Nicholls et al. (2021) and Liu et al.
(2022), indicating that the chemistry scheme itself may not
be the main cause of biases but the external variables driv-
ing the scheme, e.g. temperature and photolysis rates may
be more important. We note that the relationships derived
between the variables and O3 biases reflect association, not

causation, and that specific processes cannot be identified di-
rectly as the sources of biases. However, the association re-
vealed provides some hints for the underlying processes as-
sociated with relevant variables.

5 Spatial O3 bias sensitivity

The sensitivity of surface O3 biases to specific variables dif-
fers across regions, and we show the spatial sensitivity to
variables with high feature importance and strong correla-
tion to O3 biases in Fig. 6. Since each variable is considered
independent in the deep learning model, we use the change
in annual mean O3 bias caused by changes in each variable
in each UKESM1 grid cell independently to represent the
spatial sensitivity. We perform an experiment for each vari-
able where we increase the value of that variable by a small
amount (0.5 standard deviations of its temporal variability
over 2004–2014) and calculate the corresponding change in
surface O3.

Surface O3 biases are most sensitive to temperature, par-
ticularly in continental areas in the Northern Hemisphere
where higher temperatures are associated with higher O3
(Fig. 6a). There is a strong relationship with photolysis rates
across a large area, particularly in continental areas at mid
and high latitudes (Fig. 6b, c), and there is a larger influ-
ence from jO(1D) than from j (NO2). The chemical envi-
ronment is important for O3 biases on a regional scale. OH
concentrations show a strong association with O3 biases in
North America, Europe and East Asia, indicating that high
biases in these high-emission regions may be associated with
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Figure 6. Sensitivity of annual mean surface O3 bias to increases in (a) temperature, (b) jO(1D), (c) j (NO2), (d) OH, (e) PAN and (f) BLH.
Variable values are increased by 0.5 standard deviations of their temporal variability for each UKESM1 grid cell independently.

high atmospheric oxidation capacity (Fig. 6d). There is also
a strong sensitivity to the concentrations of PAN in South
Africa, South Asia and South East Asia (Fig. 6e). This may
indicate uncertainty in the NOx emission inventory in these
regions or the large impacts of nitrogen reservoirs on O3 pro-
duction. Given the long lifetime of PAN, it is also associated
with O3 biases in remote areas such as the Arctic, indicating
that the transport of air pollutants may be important to sur-
face O3 in these areas. BLH is associated with O3 biases in
tropical oceanic areas (Fig. 6f), and this may reveal the im-
portance of greater O3 mixing and downward transport when
the boundary layer is relatively deep.

The spatial sensitivity of surface O3 biases to different
variables is helpful for guiding future improvement of the
UKESM1 model. There are substantial changes in annual
mean surface O3 biases associated with adjusting variables’
values. Increasing temperature, jO(1D), j (NO2), OH and
PAN concentrations by 0.5 standard deviations changes an-
nual mean surface O3 biases from 4.0 to 4.8 ppb (20 %),
3.0 ppb (−25 %), 4.3 ppb (8 %), 4.5 ppb (13 %) and 4.7 ppb
(18 %), respectively. However, we note that UKESM1 gener-
ally reproduces temperature and photolysis rates well com-
pared with observations (Telford et al., 2013; Sellar et al.,
2019), although there are large differences in simulated con-
centrations of OH and PAN (O’Connor et al., 2014; Nicely
et al., 2020). Our results suggest that chemical processes as-
sociated with temperature and oxidation capacity, and cloud
and aerosols influencing photolysis rates, may be important
sources of O3 biases in UKESM1, and that improved rep-
resentation of these processes may reduce current biases in
surface O3.

6 Assessing biases in modelled future surface O3

We can apply the relationships between variables and surface
O3 biases derived from present-day simulations to assess the
biases in future O3 projections with UKESM1 and to cor-
rect our estimates of future O3 concentrations. We demon-
strate how surface O3 biases change for two future emission
and climate scenarios, SSP3-7.0 and SSP3-7.0-lowNTCF.
These pathways are associated with a warmer and more hu-
mid climate than in the present day. While increased tem-
perature might be expected to increase surface O3 biases,
we find that annual mean O3 biases decrease from 4.0 to
3.6 ppb (11 %) under SSP3-7.0 and to 1.3 ppb (67 %) un-
der SSP3-7.0-lowNTCF. This is principally due to changes
in the chemical environment reflected by decreases in the
concentrations of OH (−15 % and −13 %) and PAN (−30 %
and −38 %) under SSP3-7.0 and SSP3-7.0-lowNTCF, re-
spectively. In continental areas where surface O3 concentra-
tions are overestimated, the UKESM1 model performance
is likely to improve under these less polluted future condi-
tions. Since SSP3-7.0-lowNTCF represents a more stringent
emission-control pathway than SSP3-7.0, there are larger de-
creases in O3 biases under this scenario.

We investigate the spatial distribution of annual mean
changes in surface O3 biases in future scenarios. We find that
O3 biases decrease in most oceanic areas under both future
scenarios, see Fig. 7. However, O3 biases increase in some
continental areas, especially in the Middle East, South Asia
and East Asia, under SSP3-7.0. This is due to less stringent
emission controls in these regions and hence higher concen-
trations of O3 precursors and their oxidation products under
SSP3-7.0 (Turnock et al., 2020). Under SSP3-7.0-lowNTCF,
there are widespread decreases in O3 biases except over East
Asia, where anthropogenic VOC emissions increase substan-
tially and there is a corresponding increase in PAN concen-
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trations and an increase in O3 biases. In high-emission re-
gions, the performance of UKESM1 in future O3 simulations
largely depends on changes in O3 precursor emissions, given
that changes in temperature and photolysis rates are small un-
der future scenarios. The performance of UKESM1 in high-
emission regions is expected to improve under scenarios with
clean air quality policies, but is likely to become worse under
scenarios with increasing future pollutant emissions.

7 Bias correction in future O3 projections

We can provide more reliable projections of future O3 by
subtracting the calculated surface O3 biases from surface O3
mixing ratios simulated with UKESM1 under future scenar-
ios (Fig. 8). The simulated surface O3 mixing ratios vary
in the different scenarios due to different emissions and cli-
mate (Fig. 8a–c), but the spatial distributions are generally
similar, with the highest O3 levels in the Middle East and
South Asia. The spatial patterns of surface O3 biases are also
similar under the different scenarios, with biases highest in
the tropics (Fig. 8d–f). High O3 mixing ratios in the Mid-
dle East and South Asia are reduced greatly after O3 bias
correction (Fig. 8g–h). There are also large decreases in sur-
face O3 mixing ratios in high-emission regions, e.g. North
America and East Asia, and continental outflow regions, e.g.
the North Atlantic. The corrected global annual mean sur-
face O3 mixing ratios are lower than those simulated under
all scenarios, and are highest under SSP3-7.0 and lowest un-
der SSP3-7.0-lowNTCF, which is consistent with the uncor-
rected UKESM1 results.

We show the changes in seasonal mean surface O3 mixing
ratios in North America, Europe, South Asia, East Asia and
the globe from the present day to the future in Fig. 9, compar-
ing the original assessments using UKESM1 with the bias-
corrected values. Under SSP3-7.0, the corrected changes
in global mean surface O3 are slightly larger than the un-
corrected UKESM1 results. However, in high-emission re-
gions, the corrected changes are generally smaller than those
originally simulated under both SSP3-7.0 and SSP3-7.0-
lowNTCF. In summer, corrected surface O3 mixing ratios in-
crease in all regions considered here under SSP3-7.0, and de-
crease under SSP3-7.0-lowNTCF. Corrected O3 increases in
South and East Asia under SSP3-7.0 are 6–8 ppb smaller than
those simulated, and this indicates that O3 air quality degra-
dation due to future emission growth and climate change
may not be as severe as the uncorrected UKESM1 simu-
lations suggest. Similarly, under SSP3-7.0-lowNTCF, cor-
rected O3 decreases are smaller in all regions, and this indi-
cates that the impacts of emission controls on O3 mitigation
may be smaller than those expected. This can be confirmed
by the smaller global mean O3 decreases under SSP3-7.0-
lowNTCF in the bias-corrected assessment (< 2 ppb) than in
the original UKESM1 simulation (> 3 ppb). In winter, the
corrected changes in surface O3 mixing ratios are smaller

than those simulated with UKESM1, regardless of whether
these changes are positive or negative.

These results highlight that the influence of changing
emissions and climate on O3 may not be as large as those
simulated with UKESM1 and, thus, projections of future sur-
face O3 changes may be overestimated. UKESM1 shows a
strong seasonality of surface O3, likely due to strong O3 sen-
sitivity to temperature and the chemical environment, and
this leads to large changes in future O3. UKESM1 typi-
cally overestimates future surface O3 changes, and other
chemistry–climate models are likely to display similar be-
haviour. Therefore, the impacts of changes in emissions and
climate on future O3 should be re-assessed in light of the un-
derlying surface O3 biases. We demonstrate the successful
application of a deep learning model to address this issue,
and it would be valuable to take a similar approach with the
output of other chemistry–climate models to provide a more
reliable assessment of future surface O3 changes.

8 Conclusions

There are large uncertainties in the simulation of surface
O3 in current chemistry–climate models, but it is difficult
to identify the causes of biases and improve representa-
tion of the key processes. In this study, we have demon-
strated the feasibility of correcting surface O3 biases for a
chemistry–climate model, UKESM1, using a machine learn-
ing technique. A deep artificial neural network is built with
input variables important for O3 chemistry and dynamics.
The deep learning model shows good performance in pre-
dicting surface O3 biases, with a high correlation coefficient
of 0.99 and small mean bias errors of 0.1 ppb. Application
of the deep learning model to the results from the process-
based UKESM1 model shows promise for predicting future
O3 concentrations under different climate and emission tra-
jectories with greater confidence.

This study has also explored the key factors governing O3
biases, which provides valuable insight for model improve-
ment. We find that temperature is an important factor govern-
ing O3 biases, especially for continental areas in the Northern
Hemisphere, indicating that physical and chemical processes
influenced by temperature may be not represented well. Pho-
tolysis rates also contribute to O3 biases across the globe,
indicating that simulated clouds and aerosols may be an im-
portant source of O3 biases. Chemical species such as PAN
and OH are closely associated with O3 biases on a regional
scale, suggesting that weaknesses in representation of key
chemical processes remains a substantial issue.

We have applied a deep learning model to generate a cor-
rection to the projections of surface O3 mixing ratios for
the present day and under future SSP3-7.0 and SSP3-7.0-
lowNTCF pathways. We find that global annual mean O3 bi-
ases (4.0 ppb) decrease by 0.4 ppb (11 %) and 2.7 ppb (67 %)
under these future scenarios, respectively. However, O3 bi-
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Figure 7. Annual mean change in surface O3 biases (ppb) between the present day (PD) and 2045–2055 under (a) SSP3-7.0 and (b) SSP3-
7.0-lowNTCF pathways.

Figure 8. Annual mean surface O3 mixing ratios (ppb) from UKESM1 simulations for (a) the present day (PD), (b) SSP3-7.0 and (c)
SSP3-7.0-lowNTCF. The corresponding surface O3 biases predicted with the deep learning model are shown in panels (d)–(f) and corrected
surface O3 mixing ratios are shown in panels (g)–(i). Annual global mean mixing ratios are shown in the top right of each panel.

ases in high-emission areas may increase due to increased
O3 precursors. We use this approach to demonstrate that sea-
sonal changes in surface O3 mixing ratios from the present
day to the future may be overestimated by as much as 6 ppb
with UKESM1, especially in high-emission areas, and this
highlights a strong O3 sensitivity to changes in future emis-
sions and climate in the model. A similar overestimation of
future O3 changes is likely in other chemistry–climate mod-
els, and the influence of emission controls on surface O3
mixing ratios may thus be smaller than suggested by current
model simulations. This suggests that emission-control poli-
cies may be less effective in improving regional air quality
than global model simulations indicate.

The deep learning model employed here is a valuable tool
for obtaining more reliable predictions of the magnitude and
spatial distribution of surface O3 mixing ratios. We acknowl-

edge that the choice of input variables and the machine learn-
ing approach applied are both likely to influence the sensitiv-
ity of O3 biases derived from the deep learning model, and
the relationships between O3 biases and input variables are
not always readily interpretable, which is common in ma-
chine learning. However, we demonstrate that the relation-
ships between the variables with the highest feature impor-
tance and surface O3 biases are intuitive, e.g. with tempera-
ture and photolysis rates, and this provides useful insight for
further model improvement. While we are not able to identify
the specific processes leading to biases using this approach, it
allows us to target processes that are most sensitive to these
variables. It would be valuable to develop explainable ma-
chine learning algorithms to use for bias correction. We also
note that there are weaknesses in the representation of O3
in the reanalysis data, which are likely to affect the magni-
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Figure 9. Changes in seasonal mean surface O3 mixing ratios (ppb) with and without corrections in DJF (blue bars) and JJA (red bars) from
the present day (PD) to (a) SSP3-7.0 and (b) SSP3-7.0-lowNTCF in North America, Europe, South Asia, East Asia and the globe.

tude of the biases we have derived. However, we have suc-
cessfully demonstrated the feasibility of bias correction using
these data, and will explore the challenges of data sparsity
and spatial representativeness associated with use of surface
measurements directly in future work. This approach should
also be directly applicable for models with smaller initial bi-
ases, and in this case it would be particularly valuable to
consider daily or hourly mean O3 to explore representation
of synoptic and diurnal variations in O3. However, develop-
ment of robust and reliable surface O3 climatology based on
observations would be particularly useful to improve the as-
sessment of model biases. The approach applied here pro-
vides a valuable opportunity to examine the uncertainties in
a chemistry–climate model, and helps improve assessment of
the impacts of changing emissions and climate on future air
quality.
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