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Abstract. China, being one of the major emitters of greenhouse gases, has taken strong actions to tackle climate
change, e.g., to achieve carbon neutrality by 2060. It also becomes important to better understand the changes in
the atmospheric mixing ratios and emissions of CH4, the second most important human-influenced greenhouse
gas, in China. Here we analyze the sources contributing to the atmospheric CH4 mixing ratios and their trends
in China over 2007–2018 using the GEOS-Chem model simulations driven by two commonly used global an-
thropogenic emission inventories: the Emissions Database for Global Atmospheric Research (EDGAR v4.3.2)
and the Community Emissions Data System (CEDS). The model results are interpreted with an ensemble of
surface, aircraft, and satellite observations of CH4 mixing ratios over China and the Pacific region. The EDGAR
and CEDS estimates show considerable differences reflecting large uncertainties in estimates of Chinese CH4
emissions. Chinese CH4 emission estimates based on EDGAR and natural sources increase from 46.7 Tg per
annum (Tg a−1) in 1980 to 69.8 Tga−1 in 2012 with an increase rate of 0.7 Tga−2, and estimates with CEDS
increase from 32.9 Tga−1 in 1980 and 76.7 Tga−1 in 2014 (a much stronger trend of 1.3 Tga−2 over the period).
Both surface, aircraft, and satellite measurements indicate CH4 increase rates of 7.0–8.4 ppbva−1 over China
in the past decade. We find that the model simulation using the CEDS inventory and interannually varying OH
levels can best reproduce these observed CH4 mixing ratios and trends over China. Model results over China
are sensitive to the global OH level, with a 10 % increase in the global tropospheric volume-weighted mean OH
concentration presenting a similar effect to that of a 47 Tga−1 decrease in global CH4 emissions. We further
apply a tagged tracer simulation to quantify the source contributions from different emission sectors and regions.
We find that domestic CH4 emissions account for 14.0 % of the mean surface mixing ratio and drive 66.7 % of
the surface trend (mainly via the energy sector) in China over 2007–2018. We emphasize that intensive CH4
measurements covering eastern China will help us better assess the driving factors of CH4 mixing ratios and
support the emission mitigation in China.
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1 Introduction

Atmospheric methane (CH4) is the second most important
anthropogenic greenhouse gas, contributing more than a
quarter of the human-induced radiative imbalance since 1750
(IPCC, 2013). It also plays an important role in atmospheric
chemistry as an essential precursor for tropospheric ozone
and stratospheric water vapor (Turner et al., 2019). Global
mean atmospheric CH4 surface mixing ratios increased from
about 1650 ppbv in the mid 1980s to about 1770 ppbv in
the late 1990s, then stabilized around this level in the early
2000s, and started increasing again from 2007 (Dlugokencky
et al., 2009; Nisbet et al., 2019). The regrowth of the at-
mospheric CH4 mixing ratio has drawn worldwide attention
and led to many different or even contradictory explanations
(Zhang et al., 2021; Yin et al., 2021; Zhao et al., 2019; Turner
et al., 2019; Maasakkers et al., 2019). Difficulties in the at-
tribution of the trends are mainly associated with large un-
certainties in changes in the CH4 emissions from various
sources, as well as the chemical loss via oxidation by hy-
droxyl radical (OH) (Turner et al., 2019). A better under-
standing and quantification of the interannual variability in
CH4 emissions and the drivers of the concentration growth
in the recent decade is important to support its mitigation.

CH4 has both important anthropogenic and natural
sources. It can be emitted from human activities including
coal mining, oil and gas exploitation, livestock, rice cultiva-
tion, waste deposit, and wastewater treatment. It also has a
large natural source from wetlands, with small sources from
forest fires, termites, and geological seeps. Global bottom-up
estimates of CH4 emissions based on statistics of source ac-
tivities or process-based models have reported a wide range
of total CH4 emissions of 542–852 Tga−1 in the 2000s
(Kirschke et al., 2013). Atmospheric top-down analyses con-
strained by surface, satellite, and aircraft observations of
CH4 mixing ratios tend to suggest lower total CH4 emis-
sions of 526–569 Tga−1 in the period (Kirschke et al., 2013)
and find even greater uncertainties in the relative contribu-
tions from different CH4 emission sectors (Kirschke et al.,
2013; Saunois et al., 2016, 2020). Over 90 % of atmospheric
CH4 is lost via oxidation by OH in the troposphere, leading
to a lifetime of 9.14 (±10 %) years against this sink (IPCC,
2013). Additional minor sinks include soil absorption, loss in
the stratosphere, and reactions with chlorine radicals (IPCC,
2013). The contemporary growth of atmospheric CH4 levels
reflect an imbalance between its global sources and sinks.

China is one of the most significant methane producers,
especially for anthropogenic sources such as coal mining
(Saunois et al., 2016). Anthropogenic sources in China con-
tributed about 13 % of the global anthropogenic CH4 emis-
sions in the 2000s (Kirschke et al., 2013). The recent bottom-
up emission inventory of Peng et al. (2016) found that the
total Chinese CH4 emissions increased from 24.4 Tga−1 in
1980 to 45.0 Tga−1 in 2010, with the largest source sector
being rice cultivation in 1980 which was replaced by coal

mining after 2005. However, large uncertainties exist in our
understanding of the contemporary changes in CH4 emis-
sions over China (Saunois et al., 2020), e.g., whether the Chi-
nese CH4 emissions from coal mining have decreased due
to the mitigation policy in recent years (Miller et al., 2019;
Sheng et al., 2019). Atmospheric inversion analyses are typ-
ically applied at global scales due to very limited in situ CH4
measurements over this region in the 2000s. The increases
in spatiotemporal observations (from satellite or aircraft) and
the development of atmospheric transport models would be
helpful in constraining methane sources over China, but dif-
ferent datasets and methods could provide discrepant infor-
mation (Thompson et al., 2015; Miller et al., 2019). China
has pledged to peak the carbon dioxide emissions by 2030
and to reach carbon neutrality by 2060 for tackling climate
change. As CH4 is the second most important anthropogenic
greenhouse gas, it also becomes crucial to quantify its emis-
sions and concentration trends in China.

In this study, we aim to better understand the recent trends
in CH4 emissions and mixing ratios in China using the
GEOS-Chem (Goddard Earth Observing System-Chemistry)
chemical transport model driven by two commonly used
global anthropogenic emission inventories: the Emission
Database for Global Atmospheric Research (EDGAR, ver-
sion 4.3.2) (Janssens-Maenhout et al., 2019) and the Com-
munity Emissions Data System (CEDS, version 2017-05-18)
(Hoesly et al., 2018). We use an ensemble of surface, aircraft,
and satellite observations to assess the CH4 mixing ratios and
trends from the surface to the troposphere and conduct a se-
ries of model simulations to examine their driving factors, as
well as the influence of the interannual variability in global
volume-weighted OH concentrations. An improved tagged
CH4 tracer simulation (with 100 region- and sector-specific
tracers) is applied to identify and quantify the contributions
to the spatial patterns of CH4 mixing ratios and trends over
China in the recent decade of 2007–2018.

2 Measurements and the GEOS-Chem model

2.1 Surface and aircraft measurements

We use the surface CH4 mixing ratio measurements from
the Global Monitoring Division (GMD) of the Earth Sys-
tem Research Laboratory (ESRL) at the National Oceanic
and Atmospheric Administration (NOAA). The CH4 mix-
ing ratios are measured by gas chromatography with flame
ionization detection (Dlugokencky, 2005). The measurement
database (https://www.esrl.noaa.gov/gmd/dv/data/, last ac-
cess: 3 March 2021) includes 95 sites globally providing
monthly averages of mixing ratios (ppbv). The database has
been widely used in assessing regional and global CH4 mix-
ing ratios and budgets (Bergamaschi et al., 2013; Fraser et al.,
2013; Cressot et al., 2014; Turner et al., 2016; Miller et al.,
2019).
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Here we focus on four sites located in China, as summa-
rized in Table 1, including Dongsha Island (DSI; 20.7◦ N,
116.7◦ E) measuring from March 2010 to December 2018,
Lulin (LLN; 23.5◦ N, 120.9◦ E) from August 2006 to De-
cember 2018, Shangdianzi (SDZ; 40.7◦ N, 117.1◦ E) from
September 2009 to September 2015, and Waliguan (WLG;
36.3◦ N, 100.9◦ E) from May 1991 to December 2018. Three
of these sites (LLN, SDZ, and WLG) are mountain-top sites,
while DSI is located in the marine boundary layer. The WLG
site located in the Qinghai–Tibet Plateau at 3810 m above
sea level is the first baseline observatory in China, providing
continuous measurements since the year 1991.

We analyze measurements of CH4 mixing ratios from two
aircraft campaigns: the High-performance Instrumented Air-
borne Platform for Environmental Research (HIAPER) Pole-
to-Pole Observation (HIPPO) and the Atmospheric Tomog-
raphy Mission (ATom). HIPPO consists of five campaigns
from January 2009 to September 2011 (Wofsy et al., 2011).
ATom consists of four campaigns from July 2016 to May
2018 (Wofsy et al., 2018). Figure 1 shows the flight tracks
from the two campaigns. Both HIPPO and ATom datasets
provide the merged 10 s data products for all flights (Wofsy
et al., 2017, 2018), which cover the four seasons temporally
and the regions over the Pacific Ocean and North Amer-
ica spatially. Both campaigns provide global-scale measure-
ments of atmospheric composition in all seasons and con-
duct continuous profiling between ∼ 0.15 and 8.5 km alti-
tude with many profiles extending to nearly 14 km. Here we
sample the model results at the hourly resolution along flight
tracks as shown in Fig. 1 and average them in 2◦ latitude bins
for the comparison.

2.2 GOSAT satellite observations

The TANSO-FTS ((Thermal And Near infrared Sensor for
carbon Observation – Fourier Transform Spectrometer) in-
strument on board the Greenhouse Gases Observing Satel-
lite (GOSAT) launched in early 2009 measures the backscat-
tered solar radiation from a sun-synchronous orbit at around
13:00 LT (Butz et al., 2011; Kuze et al., 2016). The obser-
vations have a pixel resolution of around 10 km diameter and
are separated by about 250 km along the observing track with
a global coverage every 3 d (Parker et al., 2015). GOSAT re-
trieves column-averaged dry-air CO2 and CH4 mixing ratios
from the shortwave infrared (SWIR) spectrum with near-unit
sensitivity down to the surface (Butz et al., 2011). We use the
University of Leicester version 7.2 GOSAT XCH4 proxy re-
trieval over China from January 2010 to December 2017. The
glint data over the oceans are not used in this study due to the
sparse data coverage. The CH4 product has been validated
by Parker et al. (2015) against the Total Carbon Column Ob-
serving Network (TCCON) and MACC-II (Monitoring At-
mospheric Composition and Climate) model XCH4 data, and
a precision of 0.7 % is suggested.

To compare with the GEOS-Chem model results as de-
scribed below, the GOSAT CH4 observations and satellite
averaging kernels are averaged over the 2◦× 2.5◦ or 4◦× 5◦

model grid. We use the satellite observations which pass the
criteria that the grid has more than 12 months of valid ob-
servations which have passed their quality control. The sim-
ulated vertical profiles (VMRmod) are applied with the satel-
lite averaging kernels (AKs) and a priori estimates (VMRapr)
using Eq. (1) following Parker et al. (2020).

XCHmod
4 =

Nlev∑
i=0

{[
VMRapr

i

+

(
VMRmod

i −VMRapr
i

)
AKi

]
hi

}
, (1)

where AKi is the retrieval averaging kernel and hi is the
pressure weight for the vertical level i. This provides col-
umn mean CH4 mixing ratios (XCHmod

4 ), with the vertical
sensitivity of satellite retrievals accounted for.

2.3 The GEOS-Chem model description and simulation
design

We use the GEOS-Chem global chemical transport model
v11-02 release candidate (http://geos-chem.org, last access:
3 March 2021) driven by MERRA-2 meteorological fields
from the NASA Global Modeling and Assimilation Office
(GMAO). The MERRA-2 dataset has a native horizontal res-
olution of 0.5◦ latitude× 0.625◦ longitude and is degraded
to 4◦×5◦ or 2◦×2.5◦ resolutions for input to GEOS-Chem.
We use the CH4 simulation that calculates the CH4 sinks us-
ing prescribed global distributions of OH concentrations or
loss frequencies. The model has been applied in a number of
studies to understand the global and regional CH4 emissions
and mixing ratios (Wecht et al., 2014; Turner et al., 2015;
Maasakkers et al., 2019, 2021; Lu et al., 2021; Zhang et al.,
2021). All the simulations are initiated in the year 1980, and
we focus on the model results in the period of 2007–2018.
We find that changes in the initial CH4 conditions in January
1980 would not affect simulation results after January 2000,
indicating that a spin-up time of over 20 years is sufficient
for our analyses.

We use and compare two global anthropogenic CH4 in-
ventories: the Emissions Database for Global Atmospheric
Research (EDGAR v4.3.2) covering 1970–2012 (Janssens-
Maenhout et al., 2019) and the Community Emissions Data
System (CEDS, version 2017-05-18) (Hoesly et al., 2018)
covering 1970–2014. A detailed comparison of the two emis-
sion estimates will be presented in Sect. 3. The EDGAR CH4
emissions do not account for seasonal variations. Here we
have applied seasonal scalars to CH4 emissions from manure
management based on a temperature dependence described
by Maasakkers et al. (2016) and to those from rice cultiva-
tion following Zhang et al. (2016) in the EDGAR inventory.
The CEDS inventory as used in this study provides gridded
emission estimates with monthly variations.

Atmos. Chem. Phys., 22, 1229–1249, 2022 https://doi.org/10.5194/acp-22-1229-2022
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Figure 1. Locations of NOAA surface sites (red circles), TCCON sites (green triangles) in China, and aircraft flight tracks of HIPPO and
ATom campaigns.

For natural sources, monthly wetland emissions are from
the WetCHARTs version 1.0 extended ensemble mean for
2001–2015 (Bloom et al., 2017) and are scaled by 1.1 to
match the estimates in Kirschke et al. (2013) and Saunois
et al. (2020). Open fire emissions are from the Quick Fire
Emissions Database version 2.4 with daily variability over
2009–2015 (Darmenov and Da Silva, 2013). Termite and
seepage emissions are, respectively, from Fung et al. (1991)
and Maasakkers et al. (2019).

The oxidation of CH4 by tropospheric OH is calculated
in the model using 3-D monthly averaged OH concentra-
tions archived from a standard GEOS-Chem tropospheric
chemistry simulation in Wecht et al. (2014). Global uni-
form scalers are then applied to account for the interannual
variability in OH concentrations during 1980–2010 as sim-
ulated by the CESM model in Zhao et al. (2019). As shown
in Fig. S1 in the Supplement, the resulting global volume-
weighted mean OH increases by 0.20 %a−1 in 1980–2000
and 0.37 %a−1 in 2000–2010, finally reaching to 10.9×
105 molec.cm−3. Other minor sinks include tropospheric ox-
idation by chlorine atoms using monthly chlorine concentra-
tion fields of Sherwen et al. (2016), stratospheric loss com-
puted with monthly loss frequencies of Murray et al. (2012),
and soil uptake of Fung et al. (1991) with a temperature-
dependent seasonality (Ridgwell et al., 1999).

We have conducted a series of model simulations over
1980–2018 as summarized in Table 1 to investigate the im-
pacts of OH concentrations and model resolution. For all the
datasets of emissions (using EDGAR and CEDS) and sinks
as described above, the closest available year will be used
for simulation years beyond their available time ranges as
recent studies suggested weak trends in Chinese CH4 emis-
sions after 2010 (Sheng et al., 2021; Liu et al., 2021). Since
CH4 has a long lifetime of about 9 years, model results in
the later years (e.g., after 2012 for EDGAR and after 2014
for CEDS) are strongly affected by the emissions in earlier
years. Evaluations of these model results with the NOAA
surface measurements at the four Chinese sites indicate that
the simulation with CEDS and interannually varying OH at

2◦× 2.5◦ resolution (GCC in Table 1) relatively better cap-
tures the measured mixing ratios and trends from 2007 on-
wards, as will be discussed in Sect. 3.2.

We further apply a tagged CH4 tracer simulation to quan-
tify the sources contributing to CH4 mixing ratios and trends
in China over 2007–2018. The tagged CH4 tracer approach
has been recently applied in GEOS-Chem to quantify source
contributions in the US Midwest (Yu et al., 2021) and
GFDL-AM4.1 with focuses on the global CH4 budget (He
et al., 2020). We implement 100 tracers that tag CH4 emis-
sions from different source types (agriculture, energy, indus-
try, transportation, wastewater, residents, shipping, biomass
burning, wetlands, seeps, and termites) and different re-
gions (China, India, Europe, South America, North America,
Africa, Oceania, etc.). The regions used for the tagged simu-
lation are shown in Fig. 2, mainly based on Bey et al. (2001)
with additional tagged regions for China and India in Asia.
Global soil uptake is also tagged as a sink of CH4. We run the
tagged CH4 simulation using the model settings of GCC (i.e.,
CEDS and interannually varying OH) for the period of 1980–
2018. The results allow us to quantify the detailed source
contributions to CH4 mixing ratios and trends over China.

3 Results

3.1 CH4 emissions and sinks over the globe and China

Figure 3 and Table S1 in the Supplement compare the an-
thropogenic emissions of EDGAR and CEDS, natural emis-
sions, and sinks in our model simulations (GCE (GEOS-
Chem with EDGAR emissions) and GCC (GEOS-Chem with
CEDS emissions) as shown in Table 1) with the estimates
in the literature summarized by Saunois et al. (2020). The
emissions in the two decades of 2000–2009 and 2008–2017
from both bottom-up and top-down studies are reported in
Saunois et al. (2016, 2020) and are thus compared with cor-
responding estimates in this study. The anthropogenic emis-
sion source categories are different in the EDGAR and CEDS
inventories, and we organize all sources into five main cate-

https://doi.org/10.5194/acp-22-1229-2022 Atmos. Chem. Phys., 22, 1229–1249, 2022
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Figure 2. Regions defined in the tagged CH4 tracer simulation. The regions are North America (NA), South America (SA), Europe (EU),
Africa (AF), Oceania (OC), China (CHN), India (IND), and Rest of Asia (RtAS). All other areas are included in the rest of the world (RW)
region.

gories (agriculture and waste, biomass burning, fossil fuels,
wetlands, and other sources) following Saunois et al. (2020),
as also summarized in Table S2 in the Supplement.

As shown in Fig. 3, the global total (anthropogenic and
natural) emissions over 2000–2009 are 520 Tga−1 for GCE
and 533 Tga−1 for GCC. These total emissions are in the low
end of the top-down estimates of 547 Tga−1 with a range
of 524–560 Tga−1 and are smaller than the bottom-up es-
timates of 703 (566–842) Tga−1. The bottom-up estimates
summarized by Saunois et al. (2020) included EDGAR and
CEDS, and we can see that the differences from our emis-
sions are largely driven by the underestimates of some natu-
ral emissions (e.g., geological, termite, and freshwater emis-
sions), which are substantially reduced in the top-down es-
timates. In the 2008–2017 period, global total CH4 emis-
sions in GCE and GCC have increased to 556 Tga−1 in
GCE and to 574 Tga−1 in GCC and are within the top-
down emission range of 576 (550–594) Tga−1. The contri-
butions of anthropogenic sources on total CH4 emissions are
about 63 % (2000–2009) and 65 % (2008–2017) in GCE and
65 % (2000–2009) and 67 % (2008–2017) in GCC, which
are slightly larger than 60 % and 62 % in the top-down es-
timates of Saunois et al. (2020). The global CH4 chemical
losses simulated in GCE and GCC are also consistent with
the top-down estimates for both periods, while the sink of
soil uptake might be underestimated in the model.

Table 2 and Fig. 4 compare the annual CH4 emissions
and sinks in China simulated in GCE and GCC with the
results reviewed by Saunois et al. (2020) and Kirschke
et al. (2013) and a bottom-up anthropogenic emission inven-
tory of Peng et al. (2016) for the period of 2000–2009. To-
tal Chinese CH4 emissions are 57.2 Tga−1 (2000–2009) and

67.6 Tga−1 (2008–2017) in GCE and 55.5 Tga−1 (2000–
2009) and 73.7 Tga−1 (2008–2017) in GCC. Considerable
differences between GCE and GCC can be seen for the
emission estimates of different sectors. The CH4 emissions
from fossil fuels over 2000–2009 are 23.4 Tga−1 in GCC,
which are at the high end of the bottom-up estimates (12.6–
23.9 Tga−1) summarized in Saunois et al. (2020). The CH4
emissions from fossil fuels in GCE are lower (15.8 Tga−1

over 2000–2009) and are slightly higher than the estimate of
12.8 in Peng et al. (2016). By contrast, CH4 emissions from
agriculture and waste in GCE (33.3 Tga−1 over 2000–2009)
are much higher than those in GCC (25.3 Tga−1 over 2000–
2009), and they are, respectively, at the high and low ends
of the bottom-up (24.0–33.0 Tga−1) estimates in Saunois
et al. (2020). The natural sources (e.g., wetlands, biomass
burning) and the soil uptake in our study are relatively low
compared with the estimates in Saunois et al. (2020). For the
period of 2008–2017, the CH4 emissions from fossil fuels in-
crease to 22.8 Tga−1 in GCE and 38.4 Tga−1 in GCC, which
are also at the averaged level and the high end of the bottom-
up estimate (16.6–39.6 Tga−1) in Saunois et al. (2020).

Figure 5 further shows annual total Chinese CH4 emis-
sions from different sectors and their percentage contribu-
tions during 1980–2018 in both GCE and GCC simulations.
Chinese total CH4 emissions in GCE are 46.7 Tga−1 in the
year 1980 and increase to 69.8 Tga−1 (49.5 % increase) in
2012 (the last available year for EDGAR v4.3.2), present-
ing an increasing trend of 0.7 Tga−2 over 1980–2018. GCC
simulations have a stronger trend of 1.3 Tga−2 over the pe-
riod than GCE, with total emissions of 32.9 Tga−1 in 1980
and 76.7 Tga−1 in 2014 (the last available year of CEDS).
Both GCE and GCC show faster increases after 2003 than
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Figure 3. Global CH4 budgets from main source categories and sinks for the 2000–2009 (2000s) and 2008–2017 (2010s) periods. Categories
are grouped based on Table S2 including emissions from agriculture and waste (AW), fossil fuels (FF), wetlands (WL), biomass burning (BB),
others (OT), and sinks due to soil uptake (SU) and chemical loss (CL). The bar charts show bottom-up (dark-colored bars) and top-down
(light-colored bars) estimates in previous studies as summarized by Saunois et al. (2020). The global CH4 sources and sinks in the GCE
(black circles) and GCC (black triangles) model simulations are also shown. Table S1 summarizes the values presented in the figure.

Figure 4. Similar to Fig. 3 but for CH4 sources and sinks over China averaged for the 2000–2009 and 2008–2017 periods. The bar charts
show previous Chinese bottom-up (dark-colored bars on the left) and top-down (light-colored bars on the right) estimates as summarized by
Saunois et al. (2020) and Kirschke et al. (2013) and are compared with model results in the GCE (black circles) and GCC (black triangles)
simulations. The bottom-up estimates of 2000–2009 mean Chinese CH4 emissions by Peng et al. (2016) are also shown as black stars. Values
presented in the figure are summarized in Table 2.

the years before, which are largely driven by the emissions
from the fossil fuels or energy sector. The largest differ-
ences between GCE and GCC, as also discussed in Fig. 4,
come from the sectors of fossil fuels and agriculture. Agri-
cultural sources in GCE account for 54.7 % of the total CH4
emissions in 1980 and gradually decrease to 37.0 % in 2018,
which mainly results from decreases in emissions from rice
cultivation with some offset due to increases in the live-
stock emission. The contributions of agricultural sources in
GCC are much smaller with values of 36.3 % in 1980 and
21.5 % in 2018. The energy or fossil fuels sector becomes
the largest contributor of Chinese CH4 emissions in recent
years in GCC, accounting for 52.2 % of the total emissions

in 2018, and largely drives the larger positive trend in GCC
than GCE.

The comparisons above indicate large uncertainties in the
Chinese CH4 emission estimates, as to some extent covered
by the EDGAR and CEDS anthropogenic emission inven-
tories. The magnitude and temporal variations of methane
budgets over the past decades are known to have large
uncertainties (Kirschke et al., 2013; Turner et al., 2019;
Saunois et al., 2020). Relative uncertainties are about 20 %–
35 % for anthropogenic emissions such as fuel exploitation
and agriculture and waste, about 50 % for biomass burning
and wetlands, and up to 100 % or greater for other natural
sources (Saunois et al., 2020). Uncertainties in the methane
sinks are about 10 %–20 % by proxy methods such as using
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Figure 5. Time series of annual Chinese CH4 emissions from different sectors (a, b) and their percentage contributions (c, d) in the GCE (a, c)
and GCC (b, d) model simulations during the period of 1980–2018. The emission sectors and their abbreviations are listed in Table S2. Annual
mean emission totals and trends over 1980–2018 (with asterisks denoting the statistical significance of p value < 0.05) are shown inset.

methyl chloroform and are 20 %–40 % by atmospheric chem-
istry models (Saunois et al., 2016). More detailed regional
methane datasets can help improve assessing the global bud-
get (Xu and Tian, 2012; Valentini et al., 2014; Saunois et al.,
2016). We will further discuss the uncertainties in CH4 emis-
sions in the last section.

3.2 Observed and simulated methane mixing ratios and
trends in China

Based on the emissions described above, we have conducted
a series of model simulations as summarized in Table 1 and
evaluated the model results with surface CH4 measurements
at the four Chinese sites. We find that when using the interan-
nually fixed OH (global tropospheric volume-weighted mean
of 10.6× 105 molec.cm−3 as shown in Fig. S1), both model
simulations with the EDGAR and CEDS emissions overes-
timate the observed CH4 trends from 2007 onwards by 0.8–
6.2 ppbva−1 with EDGAR (Run1) and by 4.0–10.9 ppbva−1

with CEDS (Run2). The model simulated CH4 mixing ra-
tios and trends over China are rather sensitive to the global
OH levels. In the sensitivity simulations with global OH de-
creasing 10 % (Run5) or increasing 10 % (Run6) relative to
the fixed levels (global mean of 10.9×105 molec.cm−3) over
2010–2018, CH4 mixing ratios would, respectively, increase
by 2.0 %–3.4 % or decrease by 1.9 %–3.2 % at the four Chi-
nese sites (Fig. S2 in the Supplement). Increasing OH levels

by 10 % would lead to negative trends in CH4 mixing ratios
at all four sites over 2010–2018 (Fig. S2). Such effects are
also found in the simulation with global CH4 emissions de-
creasing by 50 Tga−1 over the same period (Run 7 in Table 1
and Fig. S2).

The uses of interannually varying OH (Fig. S1) in model
simulations (Run3 and Run4 in Table 1) overall correct the
high biases in simulated CH4 trends in simulations with
fixed OH (Run1 and Run2) at the Chinese sites. We find
that changing model horizontal resolution from 4◦× 5◦ to
2◦× 2.5◦ does not significantly affect the simulated surface
CH4 trends. Hereafter, we will focus our analyses on the
model simulations at 2◦× 2.5◦ resolution and with interan-
nually varying OH (i.e., GCE and GCC in Table 1).

Figure 6 shows the measured and simulated time series of
monthly CH4 mixing ratios at the four Chinese sites. Both
GCE and GCC model results are shown, and distinct dif-
ferences in CH4 mixing ratios can be seen between the two
simulations. Among the four Chinese sites, the largest CH4
mixing ratio is observed at the SDZ site, a rural site near
Beijing surrounded by high anthropogenic emissions, com-
pared with the other three Chinese background sites (DSI,
LLN, and WLG). GCC with high anthropogenic emission
estimates simulate on average 1.0 %–4.7 % higher CH4 mix-
ing ratios than GCE results and are 0.3 %–6.5 % higher than
measurements at the four Chinese sites. Measured CH4 mix-
ing ratios at the four sites have been increasing at the rates
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of 7.0–7.9 ppbva−1 since 2007. The GCC model results re-
produce the trends in CH4 mixing ratios at the DSI, LLN,
and WLG sites, while they overestimate the 2009–2015 trend
measured at SDZ by a factor of 2. The GCE model re-
sults in general underestimate the measured trends except for
that at the SDZ site. These results can be explained by the
higher CH4 emission estimates and increases in CEDS than
EDGAR since 2007 and may also reflect that the regional
CH4 emissions around SDZ (i.e., North China) are too high
in CEDS. Further evaluations of the two model simulations
with CH4 column mixing ratio measurements (since 2011)
at six TCCON sites in Asia (Wunch et al., 2011) show simi-
lar results, with small biases of 0.2 %–1.0 % in CH4 mixing
ratios for GCC and negative biases of 2.6 %–3.7 % for GCE
(Fig. S3 in the Supplement). This again reflects the higher
Chinese CH4 emission estimates in years around 2012 in
CEDS than EDGAR, which then affect the model simula-
tions afterwards by using their emissions of the latest avail-
able years.

Comparisons with satellite and aircraft observations fur-
ther provide spatially and vertically resolved evaluations of
the model simulations. Figures 7 and 8 show, respectively,
the GOSAT-observed and model-simulated spatial distribu-
tions of seasonal mean CH4 mixing ratios and trends over
2010–2017. The latitude-dependent biases between simula-
tions and observations have been found to be noticeable at
the 4◦×5◦ resolution but are significantly smaller at 2◦×2.5◦

(Stanevich et al., 2020). The GOSAT-observed CH4 col-
umn mixing ratios over China peak in autumn (1825.6 ppbv
on average) and reach a minimum in spring (1797.4 ppbv).
There is a stronger seasonality in the CH4 mixing ratio in
the South China (1856.9 ppbv in autumn vs. 1826.8 ppbv
in spring) likely attributed to the seasonal variation in agri-
culture emissions. The GOSAT-observed 2010–2017 trends
show small spatial and seasonal variations over China with
values of 7.67–8.43 ppbva−1. Both GCE and GCC model-
simulated CH4 mixing ratios present similar spatial patterns
with high correlation coefficients (r > 0.90), while GCE-
simulated mixing ratios are on average biased low by 23.5–
32.4 ppbv (∼ 1.6 %), and GCC results are overestimated by
25.6–36.8 ppbv (∼ 1.7 %). This discrepancy between the two
simulations is mainly due to the CH4 emissions from fossil
fuels, which are 23.5 Tga−1 for the GCE and 39.9 Tga−1

for the GCC in China over 2010–2017. As for the CH4
trends during 2010–2017 over China, both GCC and GCE
show similar spatial patterns as those observed by GOSAT
with moderate correlations of 0.2–0.5, while GCC model re-
sults have smaller biases of −1.7–0.4 ppbva−1, compared to
GCE results that in general underestimate the trends by 2.6–
4.7 ppbva−1.

Figure 9 shows the latitudinal distribution of annual mean
CH4 mixing ratios as observed by HIPPO and ATom air-
craft campaigns at three altitude layers (1–2, 4–5, and 7–
8 km). Model results sampled along the flight tracks at their
observing time are also shown. Both aircraft measurements
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Figure 6. Comparison of GCE-simulated (with EDGAR anthropogenic emissions and interannually varying OH; red lines) and GCC-
simulated (with CEDS and interannually varying OH; blue lines) monthly mean CH4 mixing ratios with NOAA in situ observations (black
lines) in China. The observed mean mixing ratios (in unit of ppbv), trends (ppbva−1), and corresponding model biases are shown inset.

and model results are then averaged in 2◦ latitude bins. As
shown in Fig. 9, large latitudinal gradients in the tropospheric
CH4 mixing ratios between the northern and southern hemi-
spheres, in particular in the lowest 2 km of the tropics, are
observed by the aircraft measurements and are captured by
the model results with the two emission inventories. Similar
to the comparison with GOSAT observations, GCE model-
simulated CH4 mixing ratios tend to be lower than those in
GCC due to the lower estimate of global emissions in GCE
(556 Tga−1) than GCC (574 Tga−1) since 2008 (Table S1).
GCE model results underestimate the aircraft measurements
with mean negative biases of 27.5–31.1 ppbv at the three al-
titude layers for HIPPO and even larger negative biases of
61.5–73.7 ppbv for ATom. By contrast, GCC model results
are in general too high with biases of 18.4–22.8 ppbv for
HIPPO and−1.7–9.4 ppbv for ATom. The biases in GCC are
overall smaller than those in GCE.

The changes in the model bias for the comparisons with
HIPPO and ATom measurements reflect their simulated
trends in the CH4 mixing ratios. Since both HIPPO (2009–
2011) and ATom (2016–2018) provide measurements over
the Pacific (black box in Fig. 1), we calculate the differ-
ences between HIPPO and ATom measurements as the ob-
served CH4 concentration trends over this region, and these
trends also largely reflect the influences from upwind Asian
CH4 sources and levels. Figure 10 shows aircraft-observed
and corresponding model-simulated trends separated for four
seasons. The HIPPO (2009–2011) and ATom (2016–2018)
CH4 trends as estimated by the aircraft measurements range
from 5.8 to 10.7 ppbva−1 for the different seasons and alti-
tudes, with typically higher increasing rates in boreal sum-
mer and autumn than those in boreal spring and winter.
Both GCE and GCC model results tend to underestimate the
trends, but the biases in GCC are much smaller than GCE. A

distinct feature that can be seen from aircraft observations is
the high CH4 increasing rates over the tropics in boreal sum-
mer and autumn (reaching 15 ppbva−1), while both model
results do not capture it and show weak latitudinal gradi-
ents in the CH4 trends. These tropical CH4 increases are
likely driven by the increasing tropical microbial emissions
either from wetlands or livestock shown in some recent pa-
pers (Nisbet et al., 2016; Saunois et al., 2017; Worden et al.,
2017; Maasakkers et al., 2019; Yin et al., 2021; Zhang et al.,
2021), which have not been found in the model simulations.

Summarizing the comparisons of model results with all
available measurements over China and the Pacific, we
find that the surface, aircraft, and satellite CH4 measure-
ments have indicated rather consistent increase rates of CH4
mixing ratios over China with values ranging from 7.0 to
8.4 ppbva−1 in recent years. As CH4 has a lifetime of about
9 years, such increases reflect changes in not only domes-
tic emissions but also global emissions. The GCE and GCC
model simulations with the interannually varying OH levels
both capture the main features of the observed CH4 mixing
ratios and trends over China, and the GCC results show much
smaller model biases than GCE. We will thus use the GCC
model simulation to quantify the domestic and global sources
contributing to the CH4 mixing ratios and trends over China.

3.3 Source attribution of CH4 mixing ratios and trends
in 2007–2018

Here we apply the GCC model configuration (i.e., the
CEDS inventory and interannually varying OH) in the tagged
CH4 simulation. The GCC model results can generally re-
produce the spatial distribution of GOSAT-observed CH4
levels and trends as shown in Fig. S4 in the Supple-
ment, with mean biases of 27.4 ppbv (observed 1805 ppbv
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Figure 7. The 2010–2017 seasonal mean GOSAT-observed and model-simulated atmospheric CH4 mixing ratios over Asia. Both observa-
tions and the GEOS-Chem model simulations are re-grided to the 2◦×2.5◦ model resolution. The model results are then applied with satellite
averaging kernels. The middle and right panels show, respectively, GCE (with EDGAR anthropogenic emissions and interannually varying
OH; column b) minus GOSAT (column a) and GCC (with CEDS and interannually varying OH; column c) minus GOSAT differences. The
observed mean atmospheric CH4 mixing ratio, GOSAT vs. model correlation coefficients (r), and mean model biases over China are shown
inset. The seasonal means are averages of March–April–May (MAM), June–July–August (JJA), September–October–November (SON), and
December–January–February (DJF).

vs. simulated 1833 ppbv) in the global CH4 mixing ratio
and −0.8 ppbva−1 (observed 7.08 ppbva−1 vs. simulated
6.26 ppbva−1) in the trend. As described in the Sect. 2.3,
our tagged CH4 simulation includes 100 region- and sector-
specific CH4 tracers. The tagged CH4 simulation is con-
ducted over 1980–2018, and we analyze the results for 2007–
2018. Figure 11 shows contributions of CH4 emissions from
different source regions and different sectors on the mean
surface mixing ratios and trends in China during this time
period, and the values are also summarized in Table 3 for
mixing ratios and Table 4 for trends. As for mixing ratios,
we find that the largest contributor of the Chinese CH4 mix-
ing ratio averaged over 2007–2018 is the wetland emission in
South America, accounting for 10.5 % due to the large emis-
sion magnitude. Together with other sources, emissions in
South America contribute 20.2 % of the surface CH4 levels
over China, followed by the sources from Africa (17.0 %)

and Europe (15.0 %). The Chinese domestic emissions ac-
count for 14.0 % of the CH4 mixing ratio. The emission con-
tributions to the mixing ratio are generally proportional to
their emission magnitudes because of the CH4 lifetime of
about 9 years, and seasonal variations in the percentage con-
tributions are small, as can be seen in Fig. 11 (the top left
panel).

Figure 11 and Table 4 also show the source contribu-
tions to the 2007–2018 trends in the surface CH4 mixing
ratio over China. Based on the emission inventory in GCC,
the simulated mean trend in the surface CH4 mixing ratio
is 9.75 ppbva−1 over the land of China. The domestic en-
ergy sector is identified as the largest driver of the trend in
China contributing an increase rate of 5.54 ppbva−1. Ac-
counting for the trends driven by emissions from the agri-
cultural and wastewater sectors, domestic contributions can
reach 6.50 ppbva−1 (67 % of 9.75 ppbva−1). The remain-
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Figure 8. The same as Fig. 7 but for seasonal mean trends in atmospheric CH4 mixing ratios over 2010–2017. The middle and right panels
show, respectively, GCE (with EDGAR anthropogenic emissions and interannually varying OH; column b) minus GOSAT (column a) and
GCC (with CEDS and interannually varying OH; column c) minus GOSAT differences. The observed mean CH4 concentration trend, GOSAT
vs. model correlation coefficients (r), and mean model biases over China are shown inset.

Table 3. Sources contributing to the mean surface CH4 mixing ratio in China over 2007–2018∗.

Concentration (%) AGR ENE WST RCO BBN WTL SEE TER OTH TOT

China 3.4 6.4 2.3 0.8 0.1 0.6 0.1 0.2 0.1 14.0
India 3.7 0.5 1.0 0.3 0.0 0.5 0.0 0.1 0.0 6.2
Rest of Asia 3.7 1.6 1.6 0.3 0.3 5.0 0.1 0.2 0.0 12.8
Europe 3.2 5.8 2.4 0.2 0.2 2.7 0.2 0.2 0.1 15.0
Africa 2.7 4.9 1.3 0.4 1.3 5.5 0.2 0.7 0.0 17.0
North America 2.1 2.7 1.5 0.1 0.1 6.1 0.2 0.2 0.0 13.0
South America 4.1 3.4 1.1 0.1 0.4 10.5 0.2 0.5 0.0 20.2
Oceania 0.7 0.2 0.1 0.0 0.2 0.3 0.0 0.1 0.0 1.7
Rest of World 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.1

Total 23.5 25.7 11.3 2.3 2.5 31.3 0.9 2.2 0.3 100

∗ Percentage contributions of CH4 emissions from the CEDS sectors (Table S2) including agriculture (AGR), energy (ENE),
wastewater (WST), residents (RCO), biomass burning (BBN), wetlands (WTL), seeps (SEE), termites (TER), and others (OTH)
including industry (IND), transportation (TRA), and shipping (SHP), as well as from different regions (Fig. 2). Values are estimated
using the tagged CH4 tracer simulation.
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Figure 9. HIPPO and ATom aircraft-measured latitudinal gradients of CH4 mixing ratios. Measurements from HIPPO (a–c) and ATom (d–f)
flights are averaged in 2◦ latitude bins and at three altitude levels (a, d: 1–2 km; b, e: 4–5 km; and c, f: 7–8 km). The black symbols and bars
represent the mean values and ranges for each bin. The corresponding model results from the GCE (with EDGAR anthropogenic emissions
and interannually varying OH; red lines) and GCC (with CEDS and interannually varying OH; blue lines) simulations are also shown, and
the values inset present the mean model biases relative to aircraft measurements.

ing trends of 3.25 ppbva−1 are then contributed by emis-
sion changes outside China. We find that the anthropogenic
sources (mainly from energy, agricultural, and wastewa-
ter sectors) in Africa and other Asian regions (India and
Rest of Asia) contribute, respectively, trends of 3.25 and
2.45 ppbva−1 over China, highlighting the strong CH4 emis-
sion increases in these regions such as large emission in-
creases from livestock sources over South Asia and tropical
Africa in 2010–2018 (Zhang et al., 2021). On the contrary,
Europe is the only region where CH4 emissions from nearly
all sectors have been decreasing (Jackson et al., 2020), which
leads to a negative trend of −1.81 ppbva−1 over China. We
find strong spatial variation in the contribution values over
different regions of China with standard deviations up to
11 % for the contributions to CH4 mixing ratios and up
to 0.4 ppbva−1 to the trends (Fig. 11). Not only near the
surface, we find similar results for the CH4 mixing ratios
throughout the troposphere over China with slightly smaller
growth rates in the upper troposphere (Fig. S5 in the Supple-
ment).

Our results indicate that trends in China are dominated
by energy emissions from coal, oil, and gas, with signifi-
cant contributions from the wastewater and agricultural sec-
tors. This is consistent with the top-down emission inver-
sion results by Miller et al., (2019) that found the Chinese
coal emission is increasing in 2010–2015, while the bottom-
up emission estimates of Sheng et al. (2019) suggested de-
creases in the coal emission in 2012–2016. The lack of sub-
country emission factors may result in large uncertainties
in the bottom-up emission estimates. A recent global emis-

sion inversion study using the EDGAR v4.3.2 inventory as
the prior estimate also found large overestimates in the Chi-
nese emissions from coal (Maasakkers et al., 2019). Using
the overestimated emissions from the domestic coal sector in
the model would offset the influence of missing increases in
microbial emissions in the tropics as discussed in Sect. 3.2.

The analyses above demonstrate strong foreign source
contributions to the CH4 mixing ratios, as well as CH4 trends
over China. We further find large spatial heterogeneity in the
domestic vs. foreign contributions. Figure 12 shows the spa-
tial distributions of domestic emission contributions to Chi-
nese CH4 surface mixing ratios and trends over 2007–2018
calculated as the percentages of sums of all Chinese-tagged
tracers to the total levels. We can see that the domestic con-
tribution to the CH4 surface mixing ratio ranges from 12.4 %
in the western China to 15.1 % in central China, and to the
trends ranges from 62.6 % over the Tibet Plateau to 70.1 %
in the central China. The largest domestic contributions for
both surface mixing ratios and trends are found in the central
eastern China, so that measurements over this region would
most reflect the CH4 emission changes in China.

4 Conclusions and discussion

In summary, we have investigated the sources contributing to
the CH4 mixing ratios and trends over China in the recent
decade (2007–2018) using the GEOS-Chem global model.
The CH4 model simulations are conducted considering two
different commonly used anthropogenic emission inventories
(EDGAR v4.3.2 and CEDS) and are evaluated with available
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Figure 10. Comparisons of simulated CH4 trends in GCE (with EDGAR anthropogenic emissions and interannually varying OH; red dots)
and GCC (with CEDS and interannually varying OH; blue dots) against aircraft observation trends (black symbols) in four seasons (spring:
March–April–May; summer: June–July–August; autumn: October–November; winter: January–February). All observations and model re-
sults sampled along the flight tracks are averaged in 2◦ latitude bins and at three altitude levels (left: 1–2 km; middle: 4–5 km; and right:
7–8 km). Mean observed and simulated CH4 trends are shown inset.

Table 4. Contributions of region- and sector-specific emissions to the surface CH4 trends in China over 2007–2018∗.

Trend (ppbv a−1) AGR ENE WST RCO WTL OTH Total

China 0.30 5.54 0.68 −0.04 0.01 0.01 6.50
India 0.56 0.32 0.32 0.05 −0.03 0.00 1.21
Rest of Asia 0.62 0.92 0.44 0.00 −0.07 0.03 1.93
Europe −0.81 −0.49 −0.40 −0.07 −0.08 0.05 −1.81
Africa 0.91 0.93 0.49 0.12 −0.75 −0.05 1.64
North America −0.09 −0.10 −0.16 −0.01 −0.32 0.06 −0.63
South America 0.57 0.50 0.20 0.00 −0.35 0.04 0.95
Oceania −0.07 0.05 −0.03 −0.01 0.00 −0.01 −0.07
Rest of World 0.00 0.01 0.00 0.00 0.00 0.00 0.02

Total 1.98 7.68 1.54 0.03 −1.61 0.12 9.75

∗ Contributions of CH4 sources from different CEDS sectors and from different regions to the mean surface trends
in China over 2007–2018. The CEDS sectors include agriculture (AGR), energy (ENE), wastewater (WST),
residents (RCO), wetland (WTL), and others (OTH) combining industry, transportation, shipping, biomass
burning, seeps, and termites (Table S2). Values are estimated using the tagged CH4 tracer simulation as described
in the text.
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Figure 11. Contributions of CH4 emissions from different regions and different source sectors on the mean surface CH4 mixing ratios (a, b)
and trends (c, d) in China over 2007–2018. Panels (a) and (c) show region-specific source contributions for different seasons, and error
bars are standard deviations denoting spatial variation in contributions over China. Panels (b) and (d) show region- and sector-specific
contributions for the annual values. Source contributions are estimated using the tagged CH4 tracers accounting for emission sources from
agriculture (AGR), energy (ENE), industry (IND), transportation (TRA), residents (RCO), wastewater (WST), shipping (SHP), biomass
burning (BBN), wetlands (WTL), seeps (SEE), and termites (TER) and from nine regions (Africa, China, Europe, India, Asia excluding
China and India, Oceania, South America, North America, and the rest of the world).

Figure 12. Spatial distributions of Chinese domestic emission contributions in percentage for CH4 surface mixing ratios (a) and trends (b)
in 2007–2018 over China. The percentage contributions are estimated by summing up all the Chinese-tagged CH4 tracers divided by the total
CH4 tracers in the tagged simulation.
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surface, aircraft, and satellite measurements of CH4 mixing
ratios over China and the Pacific region. The surface, air-
craft, and satellite measurements have shown CH4 concen-
tration increase rates of 7.0–8.4 ppbva−1 over China in re-
cent years. We find that model results are sensitive to the
selection of anthropogenic emission inventories and OH lev-
els. By using the CEDS anthropogenic emission inventory
and interannually varying OH levels (Fig. S2), the model
can generally reproduce the measured CH4 mixing ratios and
trends over China. This corresponds to mean Chinese an-
thropogenic CH4 emissions of 69.4 Tga−1 (with an increase
rate of 1.2 Tga−2) and global tropospheric volume-weighted
mean OH concentrations of 10.8×105 molec.cm−3 (with an
increase rate of 0.25 %a−1) over 2007–2018.

We apply a tagged CH4 tracer simulation that implements
region- and sector-specific tracers to diagnose and to under-
stand their emission contributions. Using the model simu-
lation with CEDS and interannually varying OH, we find
strong influences from foreign sources on both CH4 mix-
ing ratios and recent increases over China due to the long
lifetime of CH4. For the mean surface CH4 mixing ratio
over China (1873.0 ppbv over 2007–2018), domestic CH4
emissions account for 14.0 %, and contributions from the
sources outside China reach 86.0 %, including 20.2 % from
South America, 17.0 % from Africa, 15.0 % from Europe,
13.0 % from North America, and 12.8 % from the Rest of
Asia group. For the mean CH4 concentration trend over
China (9.75 ppbva−1 over 2007–2018), the largest driver
is estimated to be the domestic energy source contributing
5.54 ppbva−1, and other important domestic source contri-
butions include emissions from wastewater (0.68 ppbva−1)
and agriculture (0.30 ppbva−1); natural sources such as wet-
land emissions have insignificant trend contributions. Emis-
sion changes in foreign sources are also significant. The in-
crease rate of 3.14 ppbva−1 in the Chinese surface CH4 mix-
ing ratio can be attributed to sources in other Asian coun-
tries (India and Rest of Asia), 1.64 ppbva−1 to Africa, and
0.95 ppbva−1 to South America (Table 4).

It should be noted that our source attribution results can
be biased by the use of CEDS and the uncertainty in the
interannual variations in OH levels. The Chinese anthro-
pogenic CH4 emissions in the CEDS inventory are higher
and have increased more rapidly than EDGAR v4.3.2 in the
past decade. The two emission inventories significantly dif-
fer in the sectors of fossil fuels and agriculture. CEDS es-
timates higher CH4 emissions from fossil fuels while lower
emissions from agriculture compared with EDGAR v4.3.2.
A number of top-down emission inversion studies using sur-
face and satellite observations have found that the EDGAR
v4.3.2 (Maasakkers et al., 2019; Miller et al., 2019) and pre-
vious EDGAR versions (Alexe et al., 2015; Thompson et al.,
2015; Turner et al., 2015; Pandey et al., 2016) overestimated
the CH4 emissions from coal production in China likely due
to the CH4 emission factors for coal mining being too high
in the region (Peng et al., 2016). A recent bottom-up es-

timate suggested that Chinese coal mining CH4 emissions
have been decreasing since 2012 driven by China’s coal mine
regulation (Sheng et al., 2019), but the interannual trend in
Chinese coal emissions still has large uncertainties among
studies (Miller et al., 2019; Sheng et al., 2019; Lu et al.,
2021).

We also find that the interannual variability in OH con-
centrations can strongly affect the simulated CH4 concentra-
tion trends. Using interannually fixed OH concentrations, the
model would overestimate the observed CH4 growth from
2007 onwards in China with both the EDGAR and CEDS an-
thropogenic emissions. The influence of a 10 % increase in
the global volume-weighted mean OH concentration (from
10.9× 105 molec.cm−3 to 12.0× 105 molec.cm−3) on the
simulated Chinese CH4 mixing ratios is equivalent to that of
a 47 Tga−1 decrease in global CH4 emissions. The use of in-
terannual variability in OH provided by Zhao et al. (2019)
improves the model-simulated Chinese CH4 mixing ratios
and trends. However, large discrepancies exist in the differ-
ent model OH simulations that would lead to a wide range
(>±30 ppbv) of simulated CH4 mixing ratios (Zhao et al.,
2019). Despite these uncertainties, our study emphasizes the
importance of emission changes in both domestic and for-
eign and anthropogenic and natural sources on the Chinese
CH4 concentration trends. Future work with more intensive
CH4 measurements covering eastern China will help us bet-
ter assess the driving factors of Chinese CH4 mixing ratios
and recent growth.

Data availability. NOAA surface observations are avail-
able at https://doi.org/10.15138/VNCZ-M766 (Dlugokencky
et al., 2019). The GOSAT Proxy XCH4 data can be ac-
cessed through the Copernicus C3S Climate Data Store
(https://cds.climate.copernicus.eu, Parker et al., 2015). TC-
CON data were obtained from the TCCON Data Archive hosted
by CaltechDATA through https://data.caltech.edu/records/266
(Goo et al., 2017), https://data.caltech.edu/records/1092 (Liu et
al., 2018), https://data.caltech.edu/records/957, https://data.caltech.
edu/records/1090, https://data.caltech.edu/records/958 (Morino
et al., 2017a, b, c), and https://data.caltech.edu/records/288
(Shiomi et al., 2017). The HIPPO data used in this study
can be obtained at https://doi.org/10.3334/CDIAC/hippo_010
(Wofsy et al., 2017). The ATom data are available at
https://doi.org/10.3334/ORNLDAAC/1581 (Wofsy et al., 2018).
Modeling dataset can be accessed by contacting the corresponding
author.
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online at: https://doi.org/10.5194/acp-22-1229-2022-supplement.
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