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Table S1. Summary of error estimation diagnostics from BS and DISP over the
sampling year

BS Mapping CcC BB CD SIAs VE CS Unmapped
CcC 100 0 0 0 0 0 0
BB 0 86 0 8 6 0 0
CD 0 0 100 0 0 0 0
SIAs 0 0 0 100 0 0 0
VE 0 0 0 0 100 0 0
CS 0 0 0 4 0 96 0
DISP
Diagnostics
Error Code: 0
Largest
Decrease in -0.042
Q:
%dQ: -0.0003
o0 0 0 o

CC, VE, CS, CD, SIAs, and BB represent coal combustion, vehicular emission, crustal source,
construction dust, secondary inorganic aerosols, and biomass burning, respectively.

Table S2. Summary of error estimation diagnostics from BS and DISP in spring

BS Mapping VE CD SIAs CS CcC BB Unmapped
VE 96 2 1 0 1 0 0
CD 2 98 0 0 0 0 0
SlAs 0 0 100 0 0 0
CS 0 0 100 0 0 0
CcC 0 0 0 0 100 0 0
BB 0 0 0 0 0 100 0
DISP
Diagnostics
Error Code: 0
Largest
Decrease in Q: 00430
%dQ: -0.0017
0 0o u 0

CC, VE, CS, CD, SIAs, and BB represent coal combustion, vehicular emission, crustal source,
construction dust, secondary inorganic aerosols, and biomass burning, respectively.



Table S3. Summary of error estimation diagnostics from BS and DISP in summer

BS Mapping SlAs Unknown CS BB VE CcC Unmapped
SIAs 100 0 0 0 0 0
Unknown 0 98 0 0
CS 1 1 95 0 3 0 0
BB 1 0 0 87 10 1 1
VE 2 0 0 0 95 3 0
CcC 5 0 0 0 1 94 0
DISP
Diagnostics
Error Code: 0
Largest
Decrease in Q: 01070
%dQ: -0.0045
0000 o

CC, VE, CS, CD, SIAs, and BB represent coal combustion, vehicular emission, crustal source,
construction dust, secondary inorganic aerosols, and biomass burning, respectively.

Table S4. Summary of error estimation diagnostics from BS and DISP in autumn

BS Mapping CD cC SIAs BB CS VE Unmapped
CD 100 0 0 0 0 0 0
CcC 1 99 0 0 0 0 0
SIAs 0 0 100 0 0 0 0
BB 2 1 90 2 1 1
CS 0 2 0 96 2 0
VE 0 0 0 0 0 100 0
DISP
Diagnostics
Error Code: 0
Largest
Decrease in Q: 0.3860
%dQ: -0.0109
A R .

CC, VE, CS, CD, SIAs, and BB represent coal combustion, vehicular emission, crustal source,
construction dust, secondary inorganic aerosols, and biomass burning, respectively.



Table S5. Summary of error estimation diagnostics from BS and DISP in winter

BS Mapping BB SIAs CS cC CD VE Unmapped
BB 93 1 0 3 1 2 0
SIAs 0 100 0 0 0 0 0
CS 0 0 100 0 0 0 0
CcC 0 0 100 0 0 0
CD 0 0 0 3 90 7 0
VE 0 0 0 0 0 100 0
DISP
Diagnostics
Error Code: 0
Largest
Decrease in Q: 00400
%dQ: -0.0017
S:;Fiz:y 0 0 0 0 0 0

CC, VE, CS, CD, SIAs, and BB represent coal combustion, vehicular emission, crustal source,
construction dust, secondary inorganic aerosols, and biomass burning, respectively.

Table S6. Summary of error estimation diagnostics from BS and DISP during pre-LD

BS Mapping CD CC SIAs VE CS Unmapped
CD 95 1 1 0 2 1
CC 2 96 0 1 1 0
SIAs 3 0 97 0 0 0
VE 1 5 3 91 0 0
CS 2 2 0 0 96 0
DISP Diagnostics
Error Code: 0
Largesjt Decrease 10,0810
inQ:
%dQ: -0.0111
Swaps by Factor: 0 0 0 0 0

CC, VE, CS, CD, SIAs, and BB represent coal combustion, vehicular emission, crustal source,
construction dust, secondary inorganic aerosols, and biomass burning, respectively.



Table S7. Summary of error estimation diagnostics from BS and DISP during LD

BS Mapping CD cC SIAs VE BB CS Unmapped
CD 99 0 0 1 0 0 0
CcC 0 99 0 0 0 1 0
SIAs 0 0 99 1 0 0 0
VE 0 11 0 89 0 0 0
BB 0 0 3 0 97 0 0
CS 0 9 0 2 0 89 0
DISP
Diagnostics
Error Code: 0
Largest
Decrease in Q: 00490
%dQ: -0.0119
I R .

CC, VE, CS, CD, SIAs, and BB represent coal combustion, vehicular emission, crustal source,
construction dust, secondary inorganic aerosols, and biomass burning, respectively.

Table S8. Summary of error estimation diagnostics from BS and DISP during post-LD

BS Mapping cC VE SIAs BB CS Unmapped
CcC 100 0 0 0 0 0
VE 0 97 0 1 2 0
SIAs 0 0 100 0 0 0
BB 0 0 0 100 0 0
CS 3 0 1 0 95 1
DISP
Diagnostics
Error Code: 0
Largest
Decrease in Q: 01500
%dQ: -0.0087
A N .

CC, VE, CS, CD, SIAs, and BB represent coal combustion, vehicular emission, crustal source,
construction dust, secondary inorganic aerosols, and biomass burning, respectively.



Table S9. Comparison of chemical composition of PM, s in Hohhot and other cities.

PM Percentage (%0)
Location ~ Date type period =3 Reference
#eMH oM SO~ NOs NH,* cr EC MD others
pre-LD 108.7 27.8 24.4 22.9 8.0 2.9 4.6 4.7 4.7
. LD 68.3 30.5 17.2 18.0 4.9 3.9 5.4 11.8 8.2 .
Hohhot Offline This study
post-LD 32.6 35.0 9.5 10.2 1.8 2.8 7.5 18.9 14.2
anuual 42.6 315 134 12.3 3.3 25 6.6 14.2 16.1
. pre-LD 102.0 42 7 30 13 3 - - 8 .
Xi’an online (Tian et al., 2021)
LD 60.2 48 8 25 12 3 - - 7
LD - 10.6 9.8 20.2 9.7 2.8 3.1 - 43.8
Tianjin online i Ding et al., 2021
! Same period - 13.7 8.3 145 8.2 4.0 3.6 - sy O )
in 2019
. pre-LD - 18.2° 19.5 37.8 21.4 - 3.1 - -
Guangzhou online (Wang et al., 2021)
LD - 35.2° 20.3 18.7 22.1 - 3.8 - -
_ pre-LD 322 18.3 12.1 22.2 14.2 3.6 3.0 - 26.5°
Beijing online
LD 50.0 15.8 16.1 26.1 16.1 3.0 2.6 - 20.4°
. ) pre-LD 68.2 12.3 18.0 34.4 15.8 1.9 2.5 - 15.3°
Nanjing online (Renetal., 2021)
LD 44.0 17.9 21.5 24.7 14.1 3.2 1.9 - 16.8°
. pre-LD 59.6 16.8 11.3 26.7 12.7 1.2 2.2 - 29.0°
Changsha online
LD 36.6 20.8 125 14.2 9.2 15 13 - 40.5°
pre-LD 60.9 235 18.6 375 19.3 1.2 - - -
Shanghai online LD 41.2 39.5° 21.0 29.4 18.4 1.7 - - - (Chen et al., 2020)
post-LD 34.0 25.5° 27.4 26.6 19.1 1.5 - - -

2 The sum of POC and SOC. ® Sum of oxygenated and hydrocarbon-like organic aerosols. © Sum of trace elements and unidentified. “-” represent no date available in the

reference. Pre-LD, LD, and post-LD represent pre-lockdown, lockdown, and post-lockdown period, respectively.



Table S10 The changes of chemical composition of PM; s in Hohhot during pre-LD, LD, post-LD

Concentration Percentage
species period
change (ug m) p Change (%) p
) LD -12.42 0.004 -7.02 0.055
50 post-LD -17.46 0.000 -11.36 0.003
_ LD -10.38 0.007 -4.75 0.210
NOs post-LD -13.41 0.001 -8.23 0.036
. LD -4.27 0.005 -3.04 0.032
N post-LD -5.41 0.001 -4.44 0.003
LD -0.81 0.129 +0.96 0.154
cl post-LD 171 0.002 -0.14 0.841
LD -9.51 0.000 +2.35 0.423
oM post-LD -17.55 0.000 +2.97 0.326
e LD -1.53 0.000 +0.79 0.276
post-LD -2.27 0.000 +2.07 0.006
D LD +1.89 0.187 +6.96 0.003
post-LD +0.51 0.726 +11.55 0.000

Pre-LD, LD, and post-LD represent pre-lockdown, lockdown, and post-lockdown period, respectively. “-” and “+” represent “decrease” and “increase”, respectively.



Table S11. Comparison of source contribution of PM, s in Hohhot during pre-LD, LD, post-LD, and over the sampling year.

. Date PM Source contribution (%
Location 0 Model period cC VE DS snis : BB SS ip reference
108.7 pre-LD 32.2 355 11.2% 21.1 - - -
Hohhot  Offline PMF  68.3 LD 30.5 4.4 18.0° 37.8 9.4 - - This study
32.6 post-LD 68.7 14.7 10.6° 5.0 - - -
. - pre-LD 12 - 4 36 21 - 27 (Wang et
Tangshan Online PMF i LD 9 i 7 44 20 i 20 al., 2021)
. . 122.0 pre-LD 55 23.1 4.0 62.0 - - 3.5 (Yumin et
Taiyuan —online  PMF o 5 LD 6.2 7.7 23 715 ; ; 3.4 al., 2021)
46.2 pre-LD 9 33 13 27 - 4 12
Xiamen  online PMF 244 LD 33 24 45 31 ; 3 4 éﬁozngzi;
32.4 post-LD 11 25 24 25 - 8 7 ’
32.4 Spring 56.1 17.0 22.6° 4.2 - - -
24.3 Summer 24.0 48.4 19.72 5.3 2.6 - -
Hohhot Offline PMF 37.0 autumn 38.9 33.8 16.1° 11.1 - - - This study
80.8 winter 65.4 14.3 6.8° 10.5 - - -
42.6 annual 38.3 35.0 13.5° 11.4 1.7 - -
Tanjin Offline  PMF  60.1 annual 25 21 30 - 2° (Tianetal.,
Online PMF 543 annual 24 18 38 - 1° 2021)
Shanghai ~ Offline PMF 737 annual 2.4 18.3 46 31.6 12.3 10.6° 20.2 a(IFe;gz‘;t)
. d Z kovaet
Beijing Offline  PMF - annual 11.1 24.7 4.3 48.1 11.7 - (al., 2016)

CC, VE, DS, SlAs, BB, SS, IP represent coal combustion, vehicular emission, dust source, secondary inorganic aerosols, biomass burning, sea salt, and industrial process,
respectively. “-” represent no date available in the reference. * Sum of CS and CD contributions in this study. ° Sum of SS and BB. ¢ Ship emission. ® Sum of secondary sulfate

and secondary nitrate. Pre-LD, LD, and post-LD represent pre-lockdown, lockdown, and post-lockdown period, respectively.
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Figure S1. Comparison of air pollutants in Hohhot during the LD period with the

same period in 2017-20109.
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Figure S3. Source profiles of PMF for spring.
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