
Atmos. Chem. Phys., 22, 11845–11866, 2022
https://doi.org/10.5194/acp-22-11845-2022
© Author(s) 2022. This work is distributed under
the Creative Commons Attribution 4.0 License.

R
esearch

article

Impacts of condensable particulate matter on
atmospheric organic aerosols and fine

particulate matter (PM2.5) in China

Mengying Li1, Shaocai Yu1, Xue Chen1, Zhen Li1, Yibo Zhang1, Zhe Song1, Weiping Liu1, Pengfei Li2,
Xiaoye Zhang1,3, Meigen Zhang4,5,6, Yele Sun4,5, Zirui Liu4, Caiping Sun7, Jingkun Jiang8,9,

Shuxiao Wang8, Benjamin N. Murphy10, Kiran Alapaty10, Rohit Mathur10, Daniel Rosenfeld11, and
John H. Seinfeld12

1Research Center for Air Pollution and Health, Key Laboratory of Environmental Remediation and Ecological
Health, Ministry of Education, College of Environment and Resource Sciences, Zhejiang University,

Hangzhou, Zhejiang 310058, PR China
2College of Science and Technology, Hebei Agricultural University, Baoding, Hebei 071000, PR China

3Chinese Academy of Meteorological Sciences, China Meteorological Administration,
Beijing 100081, PR China

4State Key Laboratory of Atmospheric Boundary Layer Physics and Atmospheric Chemistry (LAPC),
Institute of Atmospheric Physics (IAP), Chinese Academy of Sciences (CAS), Beijing 100029, PR China

5College of Earth and Planetary Sciences, University of Chinese Academy of Sciences,
Beijing 100049, PR China

6Center for Excellence in Urban Atmospheric Environment, Institute of Urban Environment,
Chinese Academy of Sciences, Xiamen, PR China

7Environmental Information Institute, Chinese Research Academy of Environmental Sciences,
Beijing 100012, PR China

8State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment,
Tsinghua University, Beijing 100084, PR China

9State Environmental Protection Key Laboratory of Sources and Control of Air Pollution Complex,
Beijing 100084, PR China

10Center for Environmental Measurement and Modeling, U.S. Environmental Protection Agency,
Research Triangle Park, NC 27711, USA

11Institute of Earth Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
12Division of Chemistry and Chemical Engineering, California Institute of Technology,

Pasadena, CA 91125, USA

Correspondence: Shaocai Yu (shaocaiyu@zju.edu.cn) and Pengfei Li (lpf_zju@163.com)

Received: 17 March 2022 – Discussion started: 29 March 2022
Revised: 25 June 2022 – Accepted: 16 August 2022 – Published: 13 September 2022

Abstract. Condensable particulate matter (CPM) emitted from stationary combustion and mobile sources ex-
hibits high emissions and a large proportion of organic components. However, CPM is not generally measured
when conducting emission surveys of PM in most countries, including China. Consequently, previous emission
inventories have not included emission rates for CPM. Here, we construct an emission inventory of CPM in China
with a focus on organic aerosols (OAs) based on collected CPM emission information. Results show that OA
emissions are enhanced twofold after the inclusion of CPM in a new inventory for China for the years 2014 and
2017. Considering organic CPM emissions and model representations of secondary OA (SOA) formation from
CPM, a series of sensitivity cases have been simulated here using the three-dimensional Community Multiscale
Air Quality (CMAQ) model to estimate the contributions of CPM emissions to atmospheric OA and fine PM
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(PM2.5, particulate matter with aerodynamic diameter not exceeding 2.5 µm) concentrations in China. Compared
with observations at a Beijing site during a haze episode from 14 October to 14 November 2014, estimates of the
temporal average primary OA (POA) and SOA concentrations were greatly improved after including the CPM
effects. These scenarios demonstrated the significant contributions of CPM emissions from stationary combus-
tion and mobile sources to the POA (51 %–85 %), SOA (42 %–58 %), and total OA concentrations (45 %–75 %).
Furthermore, the contributions of CPM emissions to total OA concentrations were demonstrated over the 2
major cities and 26 other cities of the Beijing–Tianjin–Hebei region (hereafter referred to as the “BTH2+ 26
cities”) in December 2018, with average contributions of up to 49 %, 53 %, 54 %, and 50 % for Handan, Shi-
jiazhuang, Xingtai, and Dezhou, respectively. Correspondingly, the inclusion of CPM emissions also narrowed
the gap between simulated and observed PM2.5 concentrations over the BTH2+ 26 cities. These results improve
the simulation performance of atmospheric OA and PM2.5 and may also provide important implications for the
sources of OA.

1 Introduction

Atmospheric fine particulate matter (PM2.5, particulate mat-
ter with aerodynamic diameter not exceeding 2.5 µm) is a
serious and recurring air quality problem. Although the an-
nual average concentration of PM2.5 in China has declined
in recent years, it still exceeds standards promulgated by
the World Health Organization (WHO) air quality guidelines
(Lin et al., 2018). Heavy-haze episodes occur frequently in
winter, especially in the eastern regions of China (Li et al.,
2015; Chen et al., 2019; H. Li et al., 2017). Despite large
reductions in primary emissions during the COVID-19 lock-
down, several periods of heavy haze continued to occur in
eastern China (Huang et al., 2021; L. Wang et al., 2020,
2021). Organic aerosols (OAs) contribute a large fraction
to PM2.5 worldwide, ranging from 20 % to 90 % (Carlton
et al., 2009; Kanakidou et al., 2005), with a negative radia-
tive forcing and adverse impacts on air quality and human
health (Gehring et al., 2013; Pope et al., 2002). Primary OA
(POA) comes from a variety of sources, including fossil fu-
els and biomass burning. Secondary OA (SOA), in contrast,
is generated through the photochemical oxidation of volatile
organic compounds (VOCs) followed by gas–particle parti-
tioning of low-volatility organic compounds into the aerosol
phase (Fuzzi et al., 2006; Kroll and Seinfeld, 2008). In the lit-
erature, the significant contributions of OA to PM2.5 and of
SOA to OA have been demonstrated in many observational
results (He et al., 2020; Veld et al., 2021; Zhang et al., 2017).
For example, Huang et al. (2014) explored the role of OA
in PM2.5 during a severe haze episode in Beijing, Shanghai,
Xi’an, and Guangzhou, showing the substantial contribution
of OA to PM2.5 (30 %–50 %) as well as the fact that SOA ac-
counted for 30 %–77 % of OA. Sun et al. (2015) showed that
OA constituted up to 65 % of submicron aerosols in Beijing
during winter, with 38 % being SOA.

With respect to the chemical schemes of SOA formation,
a two-product model (Odum et al., 1996) was first proposed
based on absorptive partitioning theory (Pankow, 1994) and
chamber data. To address the underestimation in the early

two-product model (Fu et al., 2012; Gao et al., 2016), the
volatility basis set (VBS) framework was developed (Don-
ahue et al., 2006). In this VBS scheme, semi-volatile and
intermediate-volatility organic compounds (S/IVOCs) were
classified by their volatilities based on absorptive partition-
ing theory (Robinson et al., 2007). A large portion of SVOCs
are emitted as POA and then evaporate under ambient condi-
tions due to gas–particle partitioning, whereas IVOC species
exist in the form of organic vapor under various atmospheric
conditions in the absence of photochemical reactions (Shri-
vastava et al., 2011). To date, the VBS mechanism has been
incorporated into many global- and regional-scale models
(Lane et al., 2008; Murphy and Pandis, 2009; Shrivastava
et al., 2008; Han et al., 2016). The two-dimensional VBS
scheme was put forward to improve the accuracy of frag-
mentation processes and OA oxidation (Donahue et al., 2011;
Zhao et al., 2016). Despite advances in SOA formation mech-
anisms, a gap exists between the observed and modeled re-
sults due to uncertainties in the parameterization of SOA
yields, a lack of localized parameters, and incomplete infor-
mation on emission rates and properties of SOA precursors.
Thus, recent studies have begun to focus on the important ef-
fects of emissions, including traditional precursors (VOCs)
and S/IVOCs. For example, Zhao et al. (2017) found that
IVOC emissions, which were 1.5–30 times those of POA
emissions, contributed largely to OA concentrations over the
Beijing–Tianjin–Hebei (BTH) region. Wu et al. (2019) con-
structed an inventory of S/IVOCs for the Pearl River Delta
(PRD) region in China and conducted a simulation using
the Weather Research and Forecasting model with Chem-
istry (WRF-Chem) that led to an increase of 161 % in SOA
predictions. Emissions of S/IVOCs from mobile sources and
IVOCs from volatile chemical products were also parame-
terized in models to represent SOA formation (Jathar et al.,
2017; Lu et al., 2020; Pennington et al., 2021). Although the
significant role of potential emission sources in OA forma-
tion has been demonstrated, the underestimation of SOA by
current air quality models has not been completely resolved.
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Stationary combustion sources are one of the major emis-
sion sources of PM2.5, including power plants and facto-
ries. Moreover, sampling temperatures and dilution rates are
key factors for the accurate measurement of organic matter
(Morino et al., 2018). The total primary PM emitted from sta-
tionary sources is composed of filterable PM (FPM) and con-
densable PM (CPM). FPM exists in the liquid or solid phases,
whereas CPM is in the gas phase in flue (Corio and Sherwell,
2000; Feng et al., 2018). CPM is defined by the U.S. Envi-
ronmental Protection Agency (U.S. EPA, 2017) as particles
that are gaseous at flue gas temperature but condense or react
in the ambient air to form solid or liquid PM through dilution
and cooling immediately after discharge. Due to the ultralow
emission standards implemented by coal-fired power plants
(<10 mg Nm−3) in China since 2014, FPM emissions have
been substantially reduced (even below 5 mg Nm−3) (Tang
et al., 2019), making the remaining emissions of CPM an
important issue.

The Ministry of Science and Technology of China
issued a National Key R&D Project on the causes and
controls of air pollution in 2016, and the project docu-
mentation outlines the key technologies for controlling
CPM emissions (http://www.acca21.org.cn/zdy_cms/
siteResources/DisasterReduction/resources/otherfiles/
20160425/f15345793.pdf, last access: 10 March 2022).
Existing measurement studies on emission characteristics
and the chemical composition of CPM have exhibited
non-negligible emissions. For example, Yang et al. (2014,
2018a, b) conducted investigations on different types of
industrial boilers and power plants, and they concluded
that CPM constituted 25.7 %–96.5 % of PM2.5. For an
ultralow-emission coal-fired power plant, J. Li et al. (2017b)
reported that the emission concentrations of CPM accounted
for 83 % of the PM2.5. Wang et al. (2018) calculated the
average emission factors of CPM from two stacks in a waste
incineration power plant to be 0.201 and 0.178 g kg−1, which
were 22.0 and 31.2 times higher than the corresponding
values for FPM, respectively. Wu et al. (2020) found that
FPM emissions from four typical coal-fired power plants met
Chinese ultralow emission standards, whereas CPM showed
high levels (even above 10 mg Nm−3). CPM includes
organic and inorganic components, known as organic CPM
and inorganic CPM, respectively. The contributions of the
organic fractions varied from 13.6 % to 80.5 %, depending
on the different fuel types, test methods, and operating
conditions (Lu et al., 2019; Song et al., 2020; Yang et al.,
2021, 2018b). Furthermore, many studies have confirmed
that CPM contains more than 50 % organic components
(J. Li et al., 2017b, c; Song et al., 2020; Wu et al., 2020),
revealing that the large proportion of organic matter in CPM
needs to be taken into account. The aforementioned studies
provided valuable basic information on CPM emission char-
acteristics for data references in this study, as summarized
in Table S3. It is likely that the inorganic fractions of CPM
make a contribution to the water-soluble ions in PM2.5 and

that the organic components contribute to the organic matter
in PM2.5. In addition, the large amounts of semi-volatile and
intermediate-volatility organic compounds in CPM can be
important precursors for SOA formation.

Current measurement methods for PM in stationary ex-
haust sources in China (GB/T 16157–1996) have not in-
volved the collection of CPM; thus, the chemical composi-
tion of the collected PM has been quite different from that
actually released into the atmosphere (Hu et al., 2016). More-
over, the emission inventory constructed based on emission
surveys has not included the CPM emissions. Hence, it is
important to introduce CPM emissions to the current emis-
sion inventory. For example, a European study improved OA
simulations by including the CPM emissions from residen-
tial wood combustion sources (Denier van der Gon et al.,
2015). Morino et al. (2018) revised the emission inventory
via the consideration of CPM in Japan and showed that the
OA emission rates were up to 7 times higher following the
amendment and that CPM contributed greatly to atmospheric
OA concentrations. A shortcoming of that study was that it
did not separate the effects of CPM emissions on POA and
SOA concentrations. Moreover, studies still lack the quantifi-
cation of emissions of CPM released by stationary combus-
tion sources in China.

In this study, we used the available CPM emission in-
formation to construct an emission inventory of CPM from
stationary combustion and mobile sources in China (with a
focus on OA) and conducted 15 sensitivity simulations to
explore the contributions of CPM emissions to atmospheric
OA and PM2.5 concentrations during winter haze episodes
over China. This quantitative study on organic CPM emis-
sions and the roles of CPM in OA formation emphasizes the
importance of constraining CPM emissions from stationary
combustion and mobile sources.

2 Materials and methods

2.1 Estimations of CPM emissions

For ease of reading, Table 1 explicitly provides the defini-
tions of acronyms used in the following. We collected avail-
able emission measurement data of CPM based on the pub-
lished literature. In total, CPM emission data from 52 sta-
tionary combustion sources were acquired (Table S3). The
emission sectors for these data included coal-fired power
plants, waste incineration power plants, industrial coal boil-
ers, heavy oil boilers, wood boilers, natural gas boilers, diesel
boilers, iron and steel plants, and incinerators. Emissions of
CPM depend on many factors, including source categories,
fuel types, sampling flue gas temperature, and air pollution
control devices (Feng et al., 2021). Furthermore, different
measurement methods produce different CPM emission re-
sults (G. Wang et al., 2020). Recently, cooling and dilution
methods have been applied to monitor CPM concentrations.
CPM contains organic and inorganic fractions, but this study
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only focused on organic CPM emissions. The emission rate
of organic CPM was estimated as shown in Eqs. (1)–(3)
(Morino et al., 2018).

EOM (CPM)=
∑

A×EFOM(CPM)

=

∑
A×EFPM2.5 (FPM)×

EFOM(CPM)
EFPM2.5 (FPM)

(1)

EOM (CPM)=
∑

EPM2.5 (FPM)×
COM(CPM)
CPM2.5 (FPM)

(2)

EOMsi (CPM)= EOM(CPM)×
EOMsi(CPM)
EOM(CPM)

= EOM(CPM)×
COMsi(CPM)
COM(CPM)

(3)

Here, EOM (CPM) is the emission rate of organic matter in
CPM, EFOM (CPM) is the emission factor of organic mat-
ter in CPM, EPM2.5 (FPM) is the emission rate of FPM2.5,
EFPM2.5 (FPM) is the emission factor of FPM2.5, A denotes
the activity level, COM (CPM) is the concentration of organic
matter detected in CPM, and CPM2.5 (FPM) is the detected
concentration of FPM2.5. EOMsi (CPM) denotes the emis-
sion rate of OMsi in CPM, whereas COMsi (CPM) denotes
the concentration of OMsi in CPM. A and EFPM2.5 (FPM) in
Eq. (1) were combined to calculate EPM2.5 (FPM) in Eq. (2),
using values acquired from PM2.5 emission rates in the emis-
sion inventory of the baseline year. Among these parameters,
COM (CPM) and CPM2.5 (FPM) were derived from the col-
lected emission survey data from the abovementioned sta-
tionary combustion sources. The COM (CPM) /COM (FPM)
ratios should be used to estimate EOM (CPM); however,
due to the limited data and very low values of COM (FPM)
at these stationary sources, CPM2.5 (FPM) was used in-
stead of COM (FPM). The EOM (CPM) /EPM2.5 (FPM) and
EFOM (CPM) / EFPM2.5 (FPM) ratios should be equal to the
COM (CPM) /CPM2.5 (FPM) ratios at the same dilution ra-
tio in the emission surveys. Table 2 summarizes the EOM
(CPM) /EPM2.5 (FPM) emission ratios for these stationary
combustion sources. In this estimate, these emission ratios,
which were collected from the best available data, were ap-
plied to represent the stationary combustion sources in the
current emission inventory.

In addition, the component information of organic CPM
is important to model the participation of organic CPM in
atmospheric chemical reactions. The organic CPM mainly
contains alkanes (with C10–C30 being the major n-alkanes),
esters, and polycyclic aromatic hydrocarbons (PAHs) (J. Li et
al., 2017b, c; Song et al., 2020; Zheng et al., 2018). Follow-
ing Lu et al. (2018), based on the relationship between the
carbon number of n-alkanes and saturation concentrations
(C∗), it is reasonable to speculate that organic CPM is com-
posed of organic matter that is semi-volatile (SVOCs, 100

≤

C∗ ≤ 103 µg m−3) or has intermediate volatility (IVOCs,
103<C∗ ≤ 106 µg m−3), which is combined as OMsi (CPM).
This denotes a collective term for a range of organic matter

with different volatilities in CPM. As the volatility charac-
teristics of organic CPM from these stationary combustion
sources have not been accurately determined in relevant mea-
surement studies, the emissions of OMsi (CPM) were scaled
to emissions of OM (CPM) in this estimate, as shown in
Eq. (3) – that is, the total emissions of OM (CPM) were dis-
tributed in different volatility bins. The specific partitioning
coefficients for different volatility bins in the model will be
discussed in Sect. 2.3. In addition to stationary sources, mo-
bile sources also generate certain emissions of CPM. Due to
the lack of CPM emission data from on-road and off-road ve-
hicles, we increased OM emission rates of the transportation
sector (TR) by 30 % to consider the contributions of CPM
from these mobile sources, following Morino et al. (2018)
and Lu et al. (2020).

2.2 The model configuration

The three-dimensional Community Multiscale Air Quality
(CMAQ, v5.3.2) model developed by the U.S. Environmen-
tal Protection Agency was used to simulate the spatiotempo-
ral distributions of chemical species. For the detailed model
configuration, the reader can refer to Appel et al. (2021) and
Yu et al. (2014). The gas-phase chemical mechanism was
based on the Carbon Bond Mechanism 6 (CB6) scheme.
The aerosol module was based on the seventh-generation
aerosol module of the CMAQ (AERO7). The CMAQv5.0.2-
VBS version with AERO6 coupled with a VBS module
(AERO6VBS) was used for comparison. Compared with the
SOA formation in AERO6 in CMAQv5.2, the AERO7 mod-
ule includes some improvements, including enhanced con-
sistency in the SOA formation pathways between chemical
mechanisms based on CB and the Statewide Air Pollution
Research Center (SAPRC), updated photooxidized monoter-
pene SOA yields (Xu et al., 2018), added uptake of water
by hydrophilic organics (Pye et al., 2017), consumption of
inorganic sulfate when forming isoprene epoxydiol organic
sulfate (Pye et al., 2013), and replacement of the Odum
two-product model with a VBS framework to parameterize
SOA formation (Appel et al., 2021; Qin et al., 2021). Both
AERO6VBS and AERO7 contained five classes of organic
matter, with one class being nonvolatile and the other four
classes being semi-volatile with effective saturation concen-
trations of 1, 10, 100, and 1000 µg m−3, respectively. Each
of these volatility bins was assigned to the CMAQ species
of LVPO1, SVPO1, SVPO2, SVPO3, and IVPO1, respec-
tively. The emissions of unspeciated IVOCs were set equal
to 1.5 times the POA emissions in AERO6VBS and 6.579
times the POA emissions in AERO7 by default. The high
scale factor of 6.579 in AERO7 was set to consider miss-
ing pathways of SOA formation from combustion sources
including IVOC oxidation (Murphy et al., 2017, 2021), and
it was primarily parameterized in Los Angeles where ve-
hicle emissions are a principal source (Hayes et al., 2015).
Thus, this parameter setting may not be suitable for fire and
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Table 1. Definitions of acronyms used in this study.

Acronym Definition

FPM Filterable particulate matter from primary emissions that is in liquid or solid phases in flue

CPM Condensable particulate matter from primary emissions that is in gas phase at flue gas temper-
ature but condenses or reacts in the ambient air to form solid or liquid PM

OM (CPM) Organic matter measured in CPM

OMsi (CPM) Organic matter in CPM that is semi-volatile (SVOCs, 100
≤ C∗ ≤ 103 µg m−3) or has interme-

diate volatility (IVOCs, 103<C∗ ≤ 106 µg m−3) is combined as OMsi (CPM)

OM (C∗ ≤ 100) Organic matter with saturation concentrations (C∗) below 100 µg m−3

SVOCs Semi-volatile organic compounds from primary emissions

IVOCs Intermediate-volatility organic compounds from primary emissions

S/IVOCs SVOCs and IVOCs

POA Atmospheric organic aerosol from primary emissions of organic matter or that formed by con-
densation of organic vapors before photochemical reactions

SOA Atmospheric secondary organic aerosol generated by photochemical reactions and condensation
of organic vapors after photochemical reactions

ASOA SOA generated by photochemical oxidation of anthropogenic volatile organic compounds

BSOA SOA generated by photochemical oxidation of biogenic volatile organic compounds

SISOA SOA generated by photochemical oxidation of primary S/IVOCs

OA POA and SOA

Table 2. List of the ratios of the emission rates of OM in condensable particulate matter (CPM), EOM (CPM), to those of PM2.5 in filterable
particulate matter (FPM), EPM2.5 (FPM), from stationary combustion sources based on the collected references.

Method Emission source Number EOM (CPM)/EPM2.5 (FPM) References

[Min, Max] Mean±SD Median

Cooling method (EPA 202) Coal-fired power plant 30 [0.01, 25.4] 6.87± 7.25 3.99 J. Li et al. (2017b, c); Li (2018); X. Li et
al. (2019); Lu et al. (2019); Pei (2015);
Qi et al. (2017); Song et al. (2020);
K. Wang et al. (2020); Wu et al. (2020);
Yang et al. (2014, 2018b); Yang et
al. (2021); Zhou (2019)

Waste incineration power plant 2 [1.64, 4.95] 3.29± 1.65 3.29 Wang et al. (2018)

Industrial coal-fired boiler 6 [0.14, 1.03] 0.58± 0.34 0.50 Lu et al. (2019);
Yang et al. (2014, 2018a, b)

Heavy-oil-fired boiler 4 [0.28, 2.49] 1.62± 0.88 1.85 Yang et al. (2018a, b)

Wood-fired boiler 1 0.03 Yang et al. (2018a)
Natural-gas-fired boiler 1 6.67
Diesel-fired boiler 1 15.84

Iron and steel plants 5 [0.32, 7.22] 3.35± 2.21 3.00 Yang et al. (2014, 2015)

Incinerator 1 0.12 Yang et al. (2014)

Dilution method (ISO 25597) Iron and steel coking plant 1 0.416 Zhang et al. (2020)
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wood-burning sources. The scale factor was, therefore, ze-
roed out for these sources in this study, as stated in the re-
lease of CMAQv5.3.2. Meteorological fields were predicted
by the WRF model version 3.7. The physical schemes of
WRF were the same as those in Wu et al. (2018) and Zhang
et al. (2021). Meteorological initial and boundary conditions
were provided by the National Centers for Environmental
Prediction (NCEP) Final analysis dataset with a spatial res-
olution of 1◦× 1◦ and a temporal resolution of 6 h. The first
several days were used for model spin-up, although this var-
ied for different pollution periods, as described in Sect. 2.4.
The gridded anthropogenic emission data for 2014 and 2017
were derived from the Emission Inventory of the Air Benefit
and Cost and Attainment Assessment System (EI-ABaCAS)
developed by the Tsinghua University (Dong et al., 2020;
Zheng et al., 2019). It contained primary species such as
PM2.5, SO2, NOx , CO, non-methane VOCs (NMVOCs),
NH3, black carbon (BC), and organic carbon (OC) from
nine anthropogenic sectors (i.e., agriculture, power plants,
industry processes, industry combustion, steel, cement, resi-
dential, transport, and open burning). Biogenic source emis-
sions were calculated online using the Biogenic Emission
Inventory System version 3.14 (BEISv3.14) model (Carlton
and Baker, 2011). Dust emissions were calculated by an on-
line windblown dust scheme (Choi and Fernando, 2008).
Our study period in 2014 occurred before and during the
Asia-Pacific Economic Cooperation (APEC) summit held in
Beijing (5–11 November 2014). During the pre-APEC pe-
riod (28 October–2 November) and the APEC period (3–
11 November), some pollution control measures were gradu-
ally implemented in Beijing and its surrounding areas. Based
on the observed reductions in the concentrations of PM2.5,
SO2, NO2, NO, and CO during APEC in Beijing and its sur-
rounding cities (X. Li et al., 2017; Y. Li et al., 2019; Wen et
al., 2016) as well as the 28 % contribution of the emission
control measures to the reduction of the PM2.5 concentra-
tions (Liang et al., 2017), an approximate emission reduction
of 30 % was conducted in this study during the abovemen-
tioned time period for two municipalities (Beijing and Tian-
jin), four provinces (Hebei, Shanxi, Henan, and Shandong),
and the Inner Mongolia Autonomous Region. The simulation
domain covered mainland China with a 395× 345 grid with
a horizontal grid resolution of 12 km (Fig. 1). There were 29
vertical layers in a σz coordinate system reaching an upper
pressure of 100 hPa with 20 layers located in the lowest 3 km
to resolve the planetary boundary layer.

2.3 Design of sensitivity simulation cases

According to the emission parameters summarized in Ta-
ble 2, we carried out bootstrapping and Monte Carlo simu-
lations to obtain the mean and uncertainty ranges of the EOM
(CPM)/EPM2.5 (FPM) ratio for stationary combustion sources
including power plant (PP), industry combustion (IN), and
steel (IR) (see Table 3). First, the optimal probabilistic dis-

tributions and uncertainty ranges were determined for each
source category. The statistical bootstrap simulation was then
applied to calculate the mean and 95 % confidence interval
of emission ratios for each source category. Finally, the un-
certainties of these parameters were propagated to calculate
the total emission uncertainty by running Monte Carlo sim-
ulations 10 000 times. Notably, the estimated uncertainties
were only related to variabilities in the EOM (CPM) /EPM2.5

(FPM) ratio, but they did not necessarily represent the overall
uncertainties in the organic CPM emissions. On this basis, a
series of sensitivity cases including low, medium, and high
emission ratios were designed to explore the contributions
of organic CPM emissions to OA concentrations and quan-
tify the uncertainty ranges of the CPM effects on OA (see
Table 4).

Here, to explore the contributions of organic CPM emis-
sions to the atmospheric OA and PM2.5 concentrations, the
estimated emissions of organic CPM were added into the
CMAQ model as an individual source, separated from other
emission sources. For the base scenarios, the simulations
were performed with the inputs of the previous emission in-
ventory without the newly constructed organic CPM emis-
sions. Considering that organic FPM from stationary com-
bustion and mobile sources mainly contains low-volatility
matter, all of these emissions should be assigned to the
CMAQ species of LVPO1, and other volatility bins should
be assigned a scale factor of zero; the rest of the emissions
should retain the default settings in the model. In addition,
different volatility distributions could be chosen for differ-
ent emission sources, but this was not the focus of our study
nor did it interfere with the results of the CPM contribu-
tions. For the cases including CPM emissions from station-
ary combustion and mobile sources, the emissions of organic
CPM were mapped to surrogate species for different volatil-
ity bins (LVPO1, SVPO1, SVPO2, SVPO3, and IVPO1) in
the CMAQ model in order to represent the SOA formation
from CPM. These mixed species underwent gas–particle par-
titioning and multigenerational gas-phase photochemical ox-
idation of organic vapors by OH radicals to generate suc-
cessively lower-volatility and more-oxygenated species, and
they then produced SOA. Due to the unavailability of volatil-
ity distribution information for OMsi (CPM), different scal-
ing volatility bin factors were employed under each emis-
sion scenario to discuss the uncertainties of CPM effects.
In this study, we tested two kinds of scaling factors for the
five volatility bins: fac1 (0.09, 0.09, 0.14, 0.18, and 0.5)
(Grieshop et al., 2009) and fac2 (0.40, 0.26, 0.40, 0.51, and
1.43) (Shrivastava et al., 2011). As mentioned in Sect. 2.1,
organic CPM was composed of organic matter that was semi-
volatile or had intermediate volatility; thus, the first bin,
which represents nonvolatile organic matter, should be set to
zero. Here, the original partitioning coefficient of the first bin
was added to the following bin; thus the fac1 (0, 0.18, 0.14,
0.18, and 0.5) and fac2 (0, 0.66, 0.40, 0.51, and 1.43) scal-
ing factors were applied in the sensitivity simulation cases.
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Figure 1. (a) Map of the modeling domain and the location of each target city in the model evaluation. (b) The locations of the BTH2+ 26
cities are denoted using the red frame in panel (a). The colored shading represents the regional altitude.

Table 3. Probabilistic distributions with uncertainty ranges in the EOM (CPM)/EPM2.5 (FPM) ratio (95 % confidence interval). “Para1”
represents the mean for normal distributions and the mean of ln(x) for lognormal distributions. “Para2” represents the standard deviation for
normal distributions and the standard deviation of ln(x) for lognormal distributions. “Mean” represents the mean for emission ratios of each
source category derived from the statistical bootstrap simulation.

Input parameters Emission sources Distribution Para1 Para2 Mean Uncertainty ranges
type (95 % confidence level)

EOM (CPM)/EPM2.5 (FPM) Power plant Lognormal 1.07 0.93 4.12 (3.10, 5.29)
Industry combustion Lognormal −0.47 1.43 1.38 (0.62, 2.44)
Steel Normal 2.80 1.98 2.80 (0.92, 4.50)

Total (−27 %, 28 %)

The fac2 scaling factors estimated the total SVOCs emis-
sions as 3 times the POA emissions in order to consider
missing OMsi (CPM) emissions. Then, the fac3 scaling fac-
tors (0, 0.42, 0.27, 0.345, and 0.965), which were the aver-
age of fac1 and fac2, were also tested for the five volatil-
ity bins. The fac1, fac2, and fac3 scaling factors were ap-
plied to the OMsi (CPM) emissions for cases S1.1, S1.2, and
S1.3, respectively (see Table 4). For an evaluation of the sen-
sitivity of OA outputs to organic CPM emissions, we con-
ducted simulations with different magnitudes of CPM emis-
sions at the 95 % and 50 % confidence intervals. Thus, the
S2–S3 cases were designed with the uncertainty ranges of
EOM (CPM)/EPM2.5 (FPM) at the 95 % confidence interval
(73 % and 128 % of the amounts in case S1), and the S4–
S5 cases were designed with the uncertainty ranges at the
50 % confidence interval (90 % and 109 % of the amounts in
S1). Moreover, the contributions of individual emission cat-
egories including PP, IN, IR, and TR were quantified by ex-
cluding the perturbation of other sources in the S6–S9 cases.

The simulated contributions of CPM emissions to the POA,
SOA, OA, and PM2.5 concentrations under these scenarios
were calculated as the improved simulated concentrations af-
ter including CPM emissions relative to the base case and
were then divided by the simulations under these scenarios.

2.4 Observational data

For the year 2014, the simulation period was from 6 Octo-
ber to 14 November 2014, with the first 8 d being used for
model spin-up. Field observational data during the episode
from 14 October to 14 November 2014, at the Institute of
Atmospheric Physics (IAP; 39◦58′ N, 116◦22′ E) in Beijing
were from J. Li et al. (2017a) and Xu et al. (2015). Con-
centrations of aerosol components were measured in PM1.
In order to make a comparison between simulated and ob-
served results, the PM1/PM2.5 ratio of 0.77 was used to
calculate the observed component concentrations in PM2.5
based on observations from Xu et al. (2015). To distin-
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Table 4. Simulation case design. PP, IN, IR, and TR denote the power plant, industry combustion, steel, and transportation source sectors,
respectively. Three kinds of scaling factors for the five volatility bins of organic CPM are tested: fac1 (0, 0.18, 0.14, 0.18, and 0.5), fac2 (0,
0.66, 0.40, 0.51, and 1.43), and fac3 (0, 0.42, 0.27, 0.345, and 0.965), the latter of which is the average of fac1 and fac2.

Simulation Aerosol EPP_OM (CPM)/ EIN_OM (CPM)/ EIR_OM (CPM)/ Volatility
cases module EPM2.5 (FPM) EPM2.5 (FPM) EPM2.5 (FPM) bins

Only AERO6VBS 0 0 0
FPM AERO7 0 0 0
S1.1 AERO7 4.12 1.38 2.80 fac1
S1.2 AERO7 4.12 1.38 2.80 fac2
S1.3 AERO7 4.12 1.38 2.80 fac3
S2.1 AERO7 3.01 1.01 2.04 fac1
S2.2 AERO7 3.01 1.01 2.04 fac2
S3.1 AERO7 5.27 1.77 3.58 fac1
S3.2 AERO7 5.27 1.77 3.58 fac2
S4.2 AERO7 3.71 1.24 2.52 fac2
S5.2 AERO7 4.49 1.50 3.05 fac2
S6_TR AERO7 0 0 0 fac1
S7_IN AERO7 0 1.38 0 fac1
S8_IR AERO7 0 0 2.80 fac1
S9_PP AERO7 4.12 0 0 fac1

guish between SOA and POA, aerosol mass spectrometer
(AMS) measurements and the positive matrix factorization
(PMF) method were used by Xu et al. (2015), who identi-
fied three POA factors from coal combustion, biomass burn-
ing, and cooking, and two SOA factors from semi-volatile
and low-volatility oxygenated OA. Observational data of
OC at Qianyanzhou (located in Ji’an city) and Changsha on
3 November 2014 were provided by the CERN Atmospheric
Science Branch of the Institute of Atmospheric Physics,
Chinese Academy of Sciences (Liu et al., 2018). For the
year 2018, the simulation period was from 1 to 31 Decem-
ber 2018, with the first 5 d used for model spin-up. The ob-
served values of OC over the 2 major cities and 26 other cities
of the Beijing–Tianjin–Hebei region (hereafter referred to as
“BTH2+ 26 cities”) were provided by China National Envi-
ronmental Monitoring Center. These cities include Beijing,
Tianjin, Anyang, Baoding, Binzhou, Cangzhou, Changzhi,
Dezhou, Hebi, Handan, Hengshui, Heze, Jincheng, Jinan,
Jining, Jiaozuo, Kaifeng, Liaocheng, Langfang, Puyang, Shi-
jiazhuang, Tangshan, Taiyuan, Xingtai, Xinxiang, Yangquan,
Zibo, and Zhengzhou. The OA/OC ratio of 1.4 (Simon et al.,
2011) was used to calculate OA concentrations for compari-
son with the simulation results. The observed concentrations
of PM2.5 were collected from the Chinese National Environ-
mental Monitoring Center (CNEMC). As the observed PM2.5
data from 22 to 26 December were missing, the following
analysis of PM2.5 did not include those 5 d. The hourly ob-
served meteorological data, including temperature (T ), rel-
ative humidity (RH), wind speed (WS), and wind direc-
tion (WD), were provided by the China Meteorological Ad-
ministration (http://data.cma.cn/site/index.html, last access:
1 March 2022).

3 Results and discussion

3.1 Emissions of condensable particulate matter

Emissions of OM in CPM, EOM (CPM), were comparable to
or even exceeded the emissions of filterable PM2.5, EPM2.5

(FPM), for most stationary combustion sources, regardless
of the differences among these values (Table 2). Therefore,
we constructed a new emission inventory by including CPM.
The annual emissions of OA in the previous and modified
emission inventories over China for the years 2014 and 2017
are presented in Fig. 2. OM represents the organic matter in
the emission input before the application of volatility distri-
butions, whereas OM (C∗ ≤ 100 µg m−3) represents the or-
ganic matter allocated to the C∗ ≤ 100 bins after the appli-
cation of the volatility distributions for the fac1, fac2, and
fac3 cases. Based on the simulation case settings, OM (FPM)
from all of the sectors was multiplied by fac1 (0.5), whereas
OM (CPM) from stationary combustion and mobile sources
was multiplied by fac1 (0.5), fac2 (1.57), or fac3 (1.035).
In the previous inventory for 2014 without CPM, the emis-
sions of OM over mainland China were 3664.6 Gg, approxi-
mately equal to 40 % of PM2.5 emissions. After the inclusion
of CPM released by stationary combustion sources in the
new inventory, the emissions of OM were enhanced by a fac-
tor of 2 and even exceeded emissions of FPM2.5. The domi-
nant contributors of OM (FCPM, filterable and condensable
particulate matter) were combustion sources in the power
plant and industrial sectors, which were estimated to be 66 %
(7006.2 Gg) of the total OA emissions (10531.1 Gg). The
emissions of OM (C∗ ≤ 100 µg m−3) remained unchanged
for the open burning, domestic, and industry process sources,
as they were mostly FPM, whereas OM (C∗ ≤ 100 µg m−3)
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Figure 2. Annual emissions of PM2.5 and OM in filterable particulate matter (FPM), OM in filterable and condensable particulate mat-
ter (FCPM) before the application of volatility distributions, and OM (C∗ ≤ 100 µg m−3) in FCPM after the application of the volatility
distributions for the fac1, fac2, and fac3 cases over China in 2014 and 2017.

Figure 3. The observed and simulated hourly SOA concentrations during the episode from 14 October to 14 November 2014 at the Beijing
site for the sensitivity cases, as summarized in Table 3.

emissions for the power plant, industry combustion, and steel
sources were variable based on whether fac1, fac2, or fac3
was applied to the CPM. Similarly, the emissions of OM
(FCPM) were 3 times those of OM (FPM) for the year 2017.
The emissions of OM from power plant, industry combus-
tion, and steel sources increased by 33 times after consider-
ing CPM emissions. These results indicate that the inclusion

of organic CPM from stationary combustion sources had a
major impact on OM emissions and improved the contribu-
tions of the industrial and power sectors to OM emissions.

Notably, the emission estimates of OM in CPM contained
uncertainties, which were mainly attributed to the representa-
tiveness and limitations of the chosen emission sources. For
the power plant, industry combustion, and steel sectors, the
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Figure 4. The observed and simulated hourly POA concentrations during the episode from 14 October to 14 November 2014 at the Beijing
site for the sensitivity cases, as summarized in Table 3.

average EOM (CPM) /EPM2.5 (FPM) ratios were 4.12, 1.38,
and 2.80, respectively (Table 3). The estimation of uncertain-
ties related to variabilities in the EOM (CPM) /EPM2.5 (FPM)
ratio is described in Sect. 2.3. Overall, the uncertainty range
of EOM (CPM) related to variabilities in the ratio was−27 %
to + 28 % at the 95 % confidence interval. On this basis, a
series of sensitivity cases with different emission ratios were
set to determine the uncertainty ranges of CPM contributions
(Table 4). In the future, actual measurements of organic CPM
emissions from various sources and source-specific identifi-
cation of volatility distributions are needed to reduce uncer-
tainties in emission estimates.

3.2 Effects of CPM emissions on POA and SOA
concentrations

For the observed and simulated hourly SOA and POA con-
centrations at the Beijing site, Figs. 3 and 4 show obvious
improvements in the SOA and POA levels after the consider-
ation of CPM contributions. The specific model species for
POA and SOA are shown in Table S4. In all of the sim-
ulation scenarios, five complete ascending and descending
SOA episodes were well captured (see Fig. 3), with a much
lower mean bias between the observed and simulated val-
ues than shown in previous work (J. Li et al., 2017a). Three
pollution episodes were clearly captured by the model in the
pre-APEC period. The third episode (27 October–1 Novem-
ber) had lower observed SOA levels relative to the first (16–
21 October) and second episodes (22–26 October), attributed
to lower precursor emission concentrations, a lower temper-
ature, and regional transport by strong northerly winds on

26 October. During APEC, there were two pollution episodes
with lower SOA concentrations due to the effects of emis-
sion controls and meteorological conditions (Ansari et al.,
2019; Liang et al., 2017). Compared with the observed val-
ues, cases without CPM exhibited varying degrees of under-
estimation for SOA and POA. For example, in the base case,
the maximum SOA values were underestimated by 50 % dur-
ing the first episode and by up to 65 % during the second
episode, while the simulated hourly POA values varied in
the range of 0.12–19.06 µg m−3 (much lower than observed
POA values during the whole time period). In comparison,
the AERO6VBS case underpredicted SOA by up to 65 %,
and it simulated low levels of POA during the first three peri-
ods and high levels during the last two episodes. Overall, the
base case underestimated the average POA, SOA, and OA
levels by 74 %, 56 %, and 65 %, respectively, emphasizing
the potential contributions of missing CPM sources (Table 5).

After considering organic CPM emissions, the underes-
timation of average POA and SOA was reduced to respec-
tive values of 37 % and 15 % under the S1.1 scenario (Ta-
ble 5). From the simulated hourly variations in the S1.1 case
(Fig. 3), SOA concentrations were enhanced by between 0.01
and 1.86 times relative to the base case, which were val-
ues more consistent with the observations. The gap between
the average simulated and observed values decreased from
−9.84 to −2.61 µg m−3 (a 73 % decrease). For the peak val-
ues in the first, second, fourth, and fifth pollution episodes,
the improvements in the peak SOA concentrations were ap-
proximately 30, 30, 10, and 15 µg m−3, respectively. Nev-
ertheless, an overestimation of SOA occurred in the third
period, mainly due to meteorological conditions (observed

Atmos. Chem. Phys., 22, 11845–11866, 2022 https://doi.org/10.5194/acp-22-11845-2022



M. Li et al.: Impacts of CPM on atmospheric OAs and PM2.5 in China 11855

Table 5. Model evaluation statistics for hourly OA, POA, and SOA concentrations during 14 October–14 November 2014, and daily OA
concentrations during 6–30 December 2018, for different sensitivity simulation cases.

Period City Species Cases N OBS SIM MB NMB NME R

14 October–14 November 2014 Beijing

OA

Base

723

33.71 11.90 −21.81 −64.70 % 64.84 % 0.71
S1.1 33.71 25.08 −8.63 −25.60 % 47.00 % 0.70
S1.2 33.71 39.38 5.67 16.82 % 58.62 % 0.69
S1.3 33.71 31.88 −1.83 −5.43 % 49.63 % 0.70

POA

Base

723

16.25 4.28 −11.97 −73.66 % 73.75 % 0.54
S1.1 16.25 10.24 −6.01 −36.98 % 54.01 % 0.54
S1.2 16.25 23.32 7.07 43.51 % 87.16 % 0.53
S1.3 16.25 16.45 0.20 1.23 % 61.57 % 0.53

SOA

Base

723

17.46 7.62 −9.84 −56.36 % 57.22 % 0.74
S1.1 17.46 14.85 −2.61 −14.95 % 47.42 % 0.73
S1.2 17.46 16.05 −1.41 −8.08 % 48.24 % 0.73
S1.3 17.46 15.42 −2.04 −11.68 % 47.75 % 0.73

6–30 December 2018

Handan OA
Base

25
45.24 17.70 −27.54 −60.88 % 60.89 % 0.62

S1.1 45.24 35.04 −10.20 −22.55 % 38.00 % 0.61
S1.3 45.24 48.86 3.62 8.00 % 38.95 % 0.59

Shijiazhuang OA
Base

25
42.22 18.38 −23.84 −56.47 % 57.45 % 0.61

S1.1 42.22 38.88 −3.34 −7.91 % 35.69 % 0.61
S1.3 42.22 58.02 15.80 37.42 % 47.27 % 0.61

Xingtai OA
Base

25
42.22 13.35 −28.87 −68.38 % 68.37 % 0.58

S1.1 42.22 29.34 −12.88 −30.51 % 40.59 % 0.58
S1.3 42.22 42.56 0.34 0.81 % 34.52 % 0.56

Dezhou OA
Base

23
41.66 15.48 −26.18 −62.84 % 63.49 % 0.47

S1.1 41.66 31.25 −10.41 −24.99 % 42.76 % 0.54
S1.3 41.66 42.58 0.92 2.21 % 43.06 % 0.56

The abbreviations used in the table are as follows: OBS and SIM denote the mean observed and simulated concentrations (µg m−3), respectively; MB represents mean bias; NMB
represents normalized mean bias; NME represents normalized mean error; and R is the correlation coefficient.

and modeled wind directions were inconsistent during this
period), as shown in Fig. S1. The prevailing southerly and
northeasterly wind directions in the model during the third
period did not bring clean air from the northwestern bound-
ary to dilute the locally generated SOA (Y. Li et al., 2016,
2019). Moreover, higher simulated wind speeds transported
more precursors via the southerly and northeast winds and
caused the overestimation of SOA (see Fig. S1). Correspond-
ingly, the simulated hourly POA concentrations in the S1.1
case increased by 0.07–3.70 times compared with the base
case, narrowing the average gap between the simulated and
observed values from −11.97 to −6.01 µg m−3 (a 50 % de-
crease), but the high observed levels of POA were still not at-
tained under this scenario. Comparatively, the S1.2 case pre-
sented similar simulated hourly results for SOA to those of
the S1.1 case, with an enhancement of between 0.02 and 2.21
times versus the base case, whereas the simulated POA val-
ues were nearly 1.3 times higher than the S1.1 case, capturing
most of the high observations throughout the whole study pe-
riod. Under the S1.3 scenario, using different SVOC param-
eters compared with the S1.1 case, the simulated concentra-
tions of SOA were 4 % higher, and the simulated concentra-
tions of POA were 61 % higher than those under the S1.1 sce-

nario, as shown in Table 5. Based on the evaluation results,
the S1.3 scenario showed the optimal improvement effects,
with mean biases of 1.23 % for POA and −11.68 % for SOA
(see Table 5). Considering the uncertainty ranges of CPM
emissions, a series of sensitivity cases with different emis-
sion ratios were conducted. Under the minimum emission
scenario in the S2.1 case, the average SOA and POA con-
centrations were 12 %, and 15 % lower than those in the S1.1
case, respectively. Under the maximum emission scenario in
the S3.1 case, the average SOA and POA concentrations were
14 % and 19 % higher than those in the S1.1 case, respec-
tively. Thus the model can resolve 63 % (54 %–75 %) of the
observed POA concentrations and 85 % (75 %–97 %) of the
observed SOA concentrations in S1.1 (S2.1, S3.1). The S2.2
and S3.2 cases then applied the same S/IVOC parameters as
S1.2, and they also displayed similar SOA results to those in
the S2.1 and S3.1 cases, respectively. Under this setting, the
uncertainty ranges were from −13 % to +13 % for SOA and
from−22 % to+24 % for POA in the S1.2 case, as shown in
Table 5. For the S4.2 and S5.2 cases with the CPM emissions
at the 50 % confidence interval, SOA concentrations showed
small changes: 5 % lower in the S4.2 case and 4 % higher in
the S5.2 case compared with the S1.2 case. A similar minor
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sensitivity, 8 % decrease (S4.2) and 7 % increase (S5.2), was
found for POA using the aforementioned cases. To explore
the contribution of each source category to SOA and POA
and to identify the key anthropogenic sources of CPM, we
conducted simulations with different separate inputs (S6–S9;
see Table 4). Results show that the CPM emissions from the
IR sector made the largest contribution to the POA and SOA
increases, accounting for 59 % of POA and 55 % of SOA,
followed by the PP (26 % for POA and 30 % for SOA) and
IN (13 % for POA and 14 % for SOA) sectors. This was con-
sistent with the differences in the CPM emissions from the
abovementioned three source sectors (Fig. 2). The sensitivity
of SOA and POA to the emission ratio of organic CPM from
the TR sector was very small, indicating a weak impact on
OA due to the low contribution of transportation sources to
the OA emissions in FCPM. The above results demonstrate
that CPM from stationary sources is an important source for
both POA and SOA formation. In summary, when consider-
ing the uncertainties of organic CPM emissions, CPM can
be a significant contributor to OA concentrations, with con-
tributions of 58 % (51 %, 65 %) to POA, 49 % (42 %, 55 %)
to SOA, and 53 % (45 %, 59 %) to OA under the S1.1 (S2.1,
S3.1) scenario as well as contributions of 82 % (76 %, 85 %)
to POA, 53 % (45 %, 58 %) to SOA, and 70 % (63 %, 75 %)
to OA under the S1.2 (S2.2, S3.2) scenario. The S1.3 sce-
nario showed the best improvement of performance, with
CPM contributing 74 % to POA, 51 % to SOA, and 63 % to
OA.

Due to the better representation of temporal variations in
SOA and POA after including CPM emissions, OA simula-
tions were also improved. To separate the effects of CPM
on OA into different process contributions, we compared the
simulation results of the sensitivity cases, as shown in Fig. 5.
The OA composition contains POA, ASOA (SOA from an-
thropogenic VOCs), BSOA (SOA from biogenic VOCs), and
SISOA (SOA from S/IVOCs). The difference between the
simulated and observed values decreased from 21.81 µg m−3

in the base case to 8.63 µg m−3 in the S1.1 case (a 60 %
decrease), with an uncertainty of 11.92 µg m−3 (a 45 % de-
crease in S2.1) to 4.66 µg m−3 (a 79 % decrease in S3.1) rel-
ative to the base case. However, these cases still underesti-
mated the observed OA levels. The S1.2, S2.2, and S3.2 cases
increased the contributions of CPM to OA by 14.01, 10.24,
and 17.92 µg m−3 compared with S1.1, S2.1, and S3.1, re-
spectively. Notably, the simulated average OA values in S1.3
were relatively close to the observations, with average CPM
contributions of 19.98 µg m−3 and a minor underestimation
of 5.43 % (see Table 5). Taking OA composition into ac-
count, POA and SISOA accounted for the largest part in all
of these scenarios. The effects of CPM were only reflected
in the enhancements of POA and SISOA. These results sug-
gest that OA was sensitive to the emissions of organic CPM;
therefore, a reduction of emission uncertainties is required
to ensure better simulations. In summary, the revised simula-
tions after the inclusion of CPM from stationary combustion

Figure 5. The simulated concentrations of different OA compo-
nents averaged over the whole study period from 14 October to
14 November 2014 at the Beijing site for the sensitivity cases.
SISOA, BSOA, and ASOA denote SOA generated by S/IVOCs, bio-
genic VOCs, and anthropogenic VOCs, respectively. The red and
blue horizontal lines denote the average observed concentrations of
OA and POA, respectively.

Figure 6. The observed and simulated OA concentrations for the
sensitivity cases at Changsha and Qianyanzhou on 3 November
2014.

and mobile sources led to improved model performance with
respect to OA simulation during the winter haze episodes,
revealing a significant contribution of CPM to atmospheric
OA.

3.3 Effects of CPM on OA and PM2.5 concentrations

To ensure the accuracy and reliability of our modeling re-
sults, further studies in other cities are presented. Figure 6
shows large contributions of CPM to OA at Changsha and
Qianyanzhou on 3 November 2014. After the inclusion of
CPM effects in the S1.1, S1.2, and S1.3 cases versus the
base case, the simulated OA concentrations were improved
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Figure 7. The observed and simulated daily OA concentrations at (a) Handan, (b) Shijiazhuang, (c) Xingtai, and (d) Dezhou from 6 to
30 December 2018.

by 6.28, 15.80, and 9.60 µg m−3 for Changsha, respectively.
The simulated OA concentrations increased by 7.06, 15.28,
and 10.14 µg m−3 in the S1.1, S1.2, and S1.3 cases versus the
base case for Qianyanzhou, respectively. Comparatively, the
S1.2 case contributed to greater increases in OA concentra-
tions, narrowing the simulation–observation bias from 79 %
to less than 40 % for Changsha and from more than 70 %
to less than 25 % for Qianyanzhou. The remaining bias was
probably attributed to the underestimation of our estimated
CPM emissions, the effects of meteorological factors, and
other missing SOA formation pathways.

The impacts of CPM on OA were studied in the BTH
2+ 26 cities during the period from 6 to 30 December 2018.
Improvements in simulated daily OA concentrations were
found for Handan, Shijiazhuang, Xingtai, and Dezhou af-
ter the consideration of CPM, especially for high-pollution
days (Fig. 7). The modeled underestimations of OA were
improved from −60.88 % to −22.55 %, from −56.47 % to
−7.91 %, from −68.38 % to −30.51 %, and from −62.84 %
to −24.99 % with the inclusion of CPM emissions in the
S1.1 case relative to the base case for Handan, Shijiazhuang,
Xingtai, and Dezhou, respectively (Table 5). The contribu-
tion of CPM emissions to total OA concentrations reached
up to 49 %, 53 %, 54 %, and 50 % for Handan, Shijiazhuang,
Xingtai, and Dezhou, respectively. Under the S1.3 sce-

nario, the OA simulations showed greater increases, and
they slightly exceeded observed values, with mean biases of
8.00 %, 37.42 %, 0.81 %, and 2.21 % for the four respective
abovementioned cities. For example, daily OA levels in Han-
dan increased by between 5.60 and 57.89 µg m−3 after in-
cluding CPM effects (S1.1 versus the base case). On average,
the inclusion of CPM doubled the OA concentrations. How-
ever, some observations were not captured, whereas other
observed values (e.g., on 20 December) were overestimated,
indicating uncertainties in the estimated organic CPM emis-
sions. Under the S1.3 scenario, the average simulated OA
concentrations were enhanced by 1.8 times relative to the
base case, with good representation of some underestimated
values in the S1.1 case. For Shijiazhuang, which had daily
OA concentrations below 80 µg m−3, the base case under-
estimated OA levels by 12 %–78 %. After incorporating the
CPM emissions in the S1.1 case, the daily OA concentrations
were significantly improved by a factor of between 0.7 and
1.7. Some observed high values of OA were well captured
in the S1.1 case on December 10, with a simulated value of
67.75 µg m−3 versus an observed value of 58.65 µg m−3, and
on 14 and 30 December. Under the S1.3 scenario, the daily
OA levels increased by a factor of between 1.3 and 3.6 rel-
ative to the base case. Although the average OA concentra-
tions were somewhat overestimated in the S1.3 case, good
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Figure 8. Spatial distributions of the concentrations of POA, SOA, and OA averaged over the whole period from 14 October to 14 November
in 2014 generated by the simulations with FPM sources (base) and CPM sources (S1.1-base, S1.2-base, and S1.3-base).

agreement between observed and simulated values existed
on some days, including 9, 12, 13, 16–19, and 24 December.
For Xingtai, the simulated OA concentrations were enhanced
by a factor of between 1.0 and 1.8 in the S1.1 case relative
to the base case. The model can resolve 69 % of the aver-
age OA observations in the S1.1 case when the emissions
of CPM were included. The simulated average OA value
was improved by 29.21 µg m−3 in the S1.3 case compared
with the base case. Dezhou showed similar results with an
enhancement of 0.7–1.6 times for daily OA contributed by
CPM in S1.1. Although the observed high OA concentrations
that exceeded 80 µg m−3 on 11 and 16 December were not
captured in the S1.1 case, the bias between the simulated and
observed values was reduced to −21.92 and −25.63 µg m−3

versus −59.17 and −52.64 µg m−3 in the base case, respec-
tively. The underestimations of high OA levels on 11 and
16 December were resolved in the S1.3 case, and the average
concentration over the whole period was very close to the
observed value. Table S2 shows the model evaluation results
for PM2.5 concentrations for different sensitivity simulation

cases. Dezhou was not included due to missing data. After
including the CPM emissions in the S1.1 case, the model
can resolve 86 %, 86 %, and 72 % of average PM2.5 observa-
tions with a 32 %, 37 %, and 38 % increase in PM2.5 concen-
trations relative to the base case for Handan, Shijiazhuang,
and Xingtai, respectively. PM2.5 simulations were further en-
hanced for these four cities in the S1.3 case, with NMB val-
ues of 2.04 %, 7.21 %, and −12.08 %, respectively. It was
notable that the emissions of inorganic components in CPM
were not investigated in this study, which can cause model-
ing deviation. Other factors including boundary layer height
and wind can also affect the simulations. In summary, our
estimated CPM emissions showed a reasonable range, which
can make a significant contribution to atmospheric OA and
PM2.5.

3.4 Regional contributions of CPM to OA and PM2.5

The regional effects of CPM emissions on atmospheric OA
and PM2.5 from a nationwide perspective were investigated.
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Figure 9. Spatial distributions of the average PM2.5 concentrations over the BTH2+ 26 cities during the period from 6 to 30 December 2018
for the (a) base, (b) S1.1, and (e) S1.3 scenarios as well as (c) the absolute difference between the S1.1 and base scenarios and (f) the absolute
difference between the S1.3 and base scenarios. Among them, the PM2.5 concentrations from 22 to 26 December are not included due to the
missing observational data. (d) Scatterplots and linear regressions of observed (OBS) and simulated (SIM) daily PM2.5 concentrations for
all of the BTH2+ 26 cities during the above time period under the base, S1.1, and S1.3 scenarios.

The concentrations of POA, SOA, and OA averaged over the
whole study period, from 14 October to 14 November 2014,
showed varying degrees of regional increase after incorpo-
rating CPM emissions, mainly in the central and eastern re-
gions in China (Fig. 8). In the base case, the simulated val-
ues of POA and SOA were both lower than 14 µg m−3 over
China. Correspondingly, OA concentrations did not exceed
22 µg m−3, with the maximum values distributed in the BTH
region and Central China. After the consideration of CPM
effects in the S1.1 case relative to the base case, the con-
centrations of POA, SOA, and OA substantially increased
over North China, East China, and Central China including
Beijing; Tianjin; Shanghai; and the provinces of Liaoning,
Shandong, Shanxi, Henan, Hubei, Anhui, Jiangsu, Zhejiang,
Hunan, and Jiangxi. The most remarkable enhancement val-
ues were up to 10, 12, and 20 µg m−3 for POA, SOA, and
OA, respectively. Moreover, under the S1.2 scenario with the
same emissions as the S1.1 case but different S/IVOC pa-
rameterization, substantial increases in the simulated POA
values, by more than 16 µg m−3, were found for most cities
in North China, East China, and Central China, with the max-
imum distributed in the BTH region (up to 24 µg m−3), which
was attributed to large amounts of emissions from industrial
plants and power plants in this region. The OA concentra-

tions for many cities located in North China and East China
increased by more than 24 µg m−3 after including CPM emis-
sions in the S1.2 case. As the contributions of CPM to SOA
in the S1.2 case were only slightly larger than those in the
S1.1 case, the greater improvements in OA in the S1.2 sce-
nario mainly resulted from the POA increases. The regional
increases in the simulated POA, SOA, and OA values in the
S1.3 case were not lower than 10, 8, and 18 µg m−3 for most
cities in North China, East China, and Central China, respec-
tively.

The regional contributions of organic CPM emissions to
PM2.5 concentrations were explored in the BTH2+ 26 cities
averaged over the period from 6 to 30 December 2018
(Fig. 9). In the base case without the CPM effects, the model
comparisons against observations suggest that PM2.5 lev-
els were greatly underestimated in almost all cities except
Tangshan (Fig. 9a). Several cities with observed PM2.5 con-
centrations higher than 80 µg m−3 showed the greatest un-
derestimations, with simulated values under 50 µg m−3. Un-
der the S1.1 scenario including CPM emissions, the simu-
lated PM2.5 concentrations were substantially enhanced in
almost all of the studied cities and were, thus, closer to the
observations (Fig. 9b). The contributions of CPM to PM2.5
were not lower than 14 µg m−3 for the most cities (Fig. 9c).
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Figure 10. (a) Spatial distributions of hourly PM2.5 concentrations at some peak hours over the BTH2+ 26 and some other surrounding cities
under the base, S1.1, and S1.3 scenarios. The colored dots denote the observed values for each city. (b) Scatterplots and linear regressions of
observed (OBS) and simulated (SIM) hourly PM2.5 concentrations for all cities under the base, S1.1, and S1.3 scenarios.

Under the S1.3 scenario, CPM made a significant contribu-
tion to PM2.5 concentrations, more than 24 µg m−3 for most
cities (Fig. 9f). High observed values for Baoding, Shiji-
azhuang, Xingtai, Hengshui, Dezhou, and Handan were well
captured (Fig. 9e). The scatterplots of observed and simu-
lated daily PM2.5 concentrations for all BTH2+ 26 cities
in Fig. 9d show an obvious improvement in PM2.5 simula-
tions after including CPM emissions, with NMB values from
−32.4 % in the base case to −10.6 % in the S1.1 case and to
5.5 % in the S1.3 case. Nevertheless, there were still model–
measurement biases for PM2.5 concentrations in some cities
with high observed values exceeding 90 µg m−3, including

Baoding, Anyang, Puyang, Heze, Zhengzhou, and Kaifeng.
The insufficient improvement in PM2.5 can be attributed to
incomplete emission information of inorganic components,
which require further research. In addition, some heavy-
pollution hours were chosen to investigate the regional im-
pacts of CPM on PM2.5 concentrations, including 08:00,
09:00, 10:00, 11:00, and 21:00 LT (local time, UTC+8:00) on
15 December (Fig. 10a). Besides the BTH2+ 26 cities, some
surrounding cities (Chaoyang, Chengde, Datong, Dongying,
Huludao, Jinzhou, Linxi, Luoyang, Luohe, Qinhuangdao,
Qingdao, Rizhao, Sanmenxia, Shangqiu, Shuozhou, Tai’an,
Weihai, Weifang, Xinzhou, Xinyang, Yantai, Zaozhuang,
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Zhangjiakou, Zhoukou, and Zhumadian) were also included.
Results show that the underestimated PM2.5 concentrations
in the base case were substantially improved after consider-
ing CPM emissions in S1.1 and S1.3, especially for some
high observed values over 170 µg m−3. Better agreement be-
tween simulated and observed PM2.5 concentrations for all of
these cities was achieved, with NMB values from −32.6 %
in the base case to −12.3 % in S1.1 and to 0.6 % in S1.3
(Fig. 10b). In summary, the consideration of CPM effects
can improve the underestimation of regional OA and PM2.5
simulations to a certain extent, especially during the heavy-
pollution periods.

4 Conclusions

In this study, we focused on emissions of condensable PM
from stationary combustion and mobile sources and devel-
oped an emission inventory of organic CPM in China. Us-
ing emission inputs with and without CPM contributions, the
CMAQ model was applied to simulate the impacts of CPM
on atmospheric OA and PM2.5 in China. The results show
that the inclusion of CPM emissions increased annual OA
emissions by a factor of 2 for both the years 2014 and 2017.
The power plant, industry combustion, and steel sectors in
the stationary combustion sources dominated OA emissions
in the new inventory. A series of sensitivity scenarios with
different emission ratios and volatility distributions show that
CPM contributed significantly to the improvement of hourly
SOA and POA concentrations in Beijing during the period
from 14 October to 14 November 2014. The contributions
of CPM were 51 %–85 % for POA and 42 %–58 % for SOA
under these scenarios. The model comparison against obser-
vations suggests that the consideration of CPM effects im-
proved the underestimations of simulation results and cap-
tured the peak SOA and POA values well. In addition, the
enhancements of daily OA levels by CPM were demonstrated
during the 6–30 December 2018 period at Handan, Shiji-
azhuang, Xingtai, and Dezhou. Compared with daily obser-
vations, the NMB values for POA, SOA, and OA in these four
cities were improved from −60.88 %, −56.47 %, −68.38 %,
−62.84 % (the base case) to−22.55 %,−7.91 %,−30.51 %,
−24.99 % (the S1.1 case), respectively. The regional contri-
butions of CPM also narrowed the gap between simulated
and observed concentrations of PM2.5 in the BTH2+ 26
cities. In conclusion, our estimated CPM emissions con-
tributed significantly to the improvement of simulation per-
formance for both atmospheric OA and PM2.5, especially
during high-pollution episodes. Therefore, the CPM emis-
sions can be incorporated into chemical transport models
along with FPM to improve the simulation accuracies of OA
and PM2.5.

Our estimates of organic CPM emissions and SOA forma-
tion from CPM contained the following uncertainties:

1. The construction of the organic CPM emission
inventory in the present study was based on
EPOA(CPM) /EPM2.5 (FPM) ratios derived from
limited sources, instead of actual measurement data of
CPM emissions from the different sources and regions
over China.

2. As there was no explicit volatility characterization of
primary organic CPM species available for incorpora-
tion into the emission inventories, the S/IVOCs emis-
sions were scaled to the POA emissions.

3. Due to the lack of relevant data, the original surro-
gate species of S/IVOCs and their properties in the
CMAQ model remained unchanged for representing the
SOA formation from CPM, rather than introducing new
model species with identified parameters related to OH
reaction rates, effective saturation concentration, and
multigenerational aging products.

Based on these limitations, it is strongly recommended that
future studies conduct extensive surveys of CPM emissions
from various stationary combustion sources and measure
the actual emissions of source-specific and region-specific
S/IVOCs to better constrain OA simulations by chemical
transport models.
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