

Supplement of

Impacts of condensable particulate matter on atmospheric organic aerosols and fine particulate matter $(PM_{2.5})$ in China

Mengying Li et al.

Correspondence to: Shaocai Yu (shaocaiyu@zju.edu.cn) and Pengfei Li (lpf_zju@163.com)

The copyright of individual parts of the supplement might differ from the article licence.

Supporting Information

2 S1. Meteorological evaluation

Comparisons between simulated and observed hourly meteorological variables including T, RH, WS, and WD from October 14 to November 14, 2014, at the Beijing site are displayed in Fig. S1. Results show that the model reproduced the hourly variations of T and RH reasonably well, although the maximum and minimum T, and RH did not totally match the observed values. The simulated WS were overestimated, but the hourly changes were reproduced. The variations of WD were not well captured, but the magnitudes of simulated WD were consistent with the observations over the whole period. A more detailed model evaluation for meteorological variables during October 14 –November 14, 2014 and December 1–30, 2018 at 9 cities over China is given in Table S1. MB, GE, RMSE denote the bias, root mean square error, and fractional error. respectively, and R refers to the correlation coefficient between observed and simulated results. For the Beijing site in 2014, the MB of T was -0.3 \Box , indicating a small deviation of modeled temperature. Good correlations between simulation and observation were shown for T, RH, and WS with R values of 0.90, 0.75, and 0.62, respectively. For all these cities, T, RH, and WS had the R values of 0.83~0.94, 0.67~0.89, and 0.21~0.70 during the study period in 2014, respectively. The R values for T, RH, and WS in 2018 were 0.74~0.95, 0.52~0.85, and 0.33~0.75, respectively. The GE and RMSE of WS were lower than model performance criteria (2 m/s) (Emery et al., 2001) for most cities, displaying relatively good simulations of wind speed. In summary, the WRF model showed a relatively consistent simulation performances of meteorological variables.

Figure S1. The observed and simulated hourly meteorological variations of temperature (T), relative humidity (RH), wind speed (WS), and wind direction (WD) during the episode from October 14 to November 14, 2014 at the Beijing site.

Figure S2. The observed and simulated hourly OA concentrations during the episode from October 14 to November 14 in 2014 at the Beijing site in the sensitivity cases as summarized in Table 3.

- **F**0

			2014 (0	October 14	to Novem	ber 14)			20	18 (Dece	mber 1 to 3	0)	
Variables		OBS	SIM	MB	GE	RMSE	R	OBS	SIM	MB	GE	RMSE	R
	Beijing	11.91	11.61	-0.30	2.01	2.52	0.90	-2.15	-3.29	-1.14	2.07	2.63	0.90
	Baoding	11.93	12.83	0.90	2.10	2.65	0.91	-2.35	-1.53	0.82	2.21	2.79	0.90
	Xingtai	13.52	13.84	0.32	1.82	2.35	0.90	-0.06	-0.08	-0.02	1.80	2.22	0.91
	Jinan	14.17	13.04	-1.13	1.68	2.12	0.94	1.16	-0.21	-1.37	1.80	2.29	0.95
T (□)	Changsha	18.65	18.90	0.25	2.08	2.76	0.84	5.90	8.82	2.92	3.14	3.66	0.88
	Hangzhou	17.71	17.29	-0.42	1.74	2.12	0.90	7.57	9.01	1.44	1.88	2.52	0.91
	Guangzhou	22.13	24.04	1.91	2.17	2.89	0.86	16.01	17.60	1.59	2.51	3.33	0.85
	Guiyang	14.22	15.45	1.23	2.27	2.84	0.83	4.79	6.15	1.36	2.51	3.27	0.85
	Wulumuqi	6.93	7.54	0.61	1.78	2.27	0.93	-12.65	-10.79	1.86	2.96	3.92	0.74
	Beijing	51.30	35.74	-15.56	17.84	23.19	0.75	29.55	35.00	5.45	9.03	11.67	0.85
	Baoding	57.15	37.51	-19.64	21.22	26.13	0.73	46.07	37.66	-8.41	13.03	17.80	0.74
	Xingtai	60.64	38.44	-22.20	23.29	28.42	0.68	45.83	32.91	-12.92	15.87	22.22	0.64
	Jinan	53.37	51.57	-1.80	8.35	11.21	0.89	47.49	49.77	2.28	11.66	15.30	0.82
RH (%)	Changsha	64.42	58.96	-5.46	11.42	15.18	0.83	84.49	70.71	-13.78	16.72	23.23	0.80
	Hangzhou	70.37	69.19	-1.18	10.79	13.10	0.85	80.97	85.02	4.05	9.43	12.32	0.75
	Guangzhou	75.58	65.30	-9.28	11.94	15.93	0.80	78.90	66.98	-11.92	15.04	19.35	0.74
	Guiyang	85.30	78.05	-7.25	12.37	16.30	0.67	85.31	79.53	-5.78	11.12	16.79	0.72
	Wulumuqi	56.03	43.32	-12.71	14.87	17.62	0.84	73.54	72.89	-0.65	10.30	12.86	0.52
	Beijing	2.03	2.97	0.94	1.34	1.67	0.62	2.38	3.41	1.03	1.47	1.90	0.56
	Baoding	2.11	2.84	0.73	1.26	1.64	0.57	1.71	2.50	0.79	1.21	1.57	0.53
	Xingtai	1.35	3.43	2.08	2.15	2.66	0.51	2.67	3.09	0.43	1.39	1.81	0.33
	Jinan	2.87	4.51	1.64	1.87	2.28	0.70	2.10	3.61	1.51	1.66	1.99	0.62
WS (m/s)	Changsha	1.90	3.23	1.33	1.49	1.82	0.50	3.56	4.11	0.55	1.19	1.43	0.75
	Hangzhou	2.11	2.95	0.84	1.18	1.49	0.48	2.46	3.91	1.45	1.63	2.01	0.67
	Guangzhou	2.16	3.24	1.08	1.40	1.69	0.50	3.01	4.31	1.30	1.54	1.85	0.69
	Guiyang	2.41	3.68	1.27	1.49	1.85	0.43	2.69	4.00	1.31	1.56	1.95	0.34
	Wulumuqi	2.17	3.74	1.57	1.95	3.08	0.21	1.69	2.04	0.35	1.22	1.57	0.37

60 Table S1 Model evaluation statistics for meteorological variables including T, RH and WS.

61 Note: OBS denotes the observation value; SIM denotes the simulation value; MB denotes mean bias; GE denotes gross error;

62 RMSE denotes root mean square error; R denotes correlation coefficient.

Table S2 Model evaluation statistics for hourly PM_{2.5} concentrations during October 14–November 14, 2014,
 and daily PM_{2.5} concentrations during December 6–30, 2018, under different sensitivity simulation cases.

74

Dariad	City	Smaaiaa	Casas	N	ODG	CIM	MD	NIMD	NIME	D
Period	City	Species	Cases	IN	OB2	SIM	MB	INMB	INIVIE	ĸ
October			base		83.09	35.64	-47.45	-57.11%	57.32%	0.71
14–	Daijing	DM	S1.1	602	83.09	48.71	-34.38	-41.38%	44.54%	0.72
November	Beijing	$PM_{2.5}$	S1.2	692	83.09	62.79	-20.30	-24.43%	41.82%	0.73
14, 2014			S1.3		83.09	55.42	-27.67	-33.30%	42.13%	0.73
			base		89.60	58.14	-31.46	-35.11%	43.10%	0.60
	Handan	PM _{2.5}	S1.1	18	89.60	76.95	-12.65	-14.12%	36.60%	0.59
			S1.3		89.60	91.43	1.83	2.04%	35.71%	0.58
December			base		89.68	56.40	-33.28	-37.11%	37.11%	0.68
6–30, 2018	Shijiazhuang	PM _{2.5}	S1.1	18	89.68	77.14	-12.54	-13.98%	26.93%	0.67
			S1.3		89.68	96.15	6.47	7.21%	33.33%	0.66
			base		83.51	43.60	-39.91	-47.79%	49.75%	0.64
	Xingtai	PM _{2.5}	S1.1	18	83.51	60.15	-23.36	-27.97%	37.40%	0.63
	7 miguur	-2.5	S1.3		83.51	73.42	-10.09	-12.08%	32.58%	0.62

75

76 Note: OBS and SIM denote mean concentrations (µg m⁻³) of observations and simulations, respectively; MB: mean bias;

77 NMB: normalized mean bias; NME: normalized mean error; R: correlation coefficient.

	Table S3	The collected	CPM e	emission	information	from a	review	of references.
--	----------	---------------	-------	----------	-------------	--------	--------	----------------

Emi: sou	ssion Irce	Fuel	APCD*	T(°C)	FPM _{2.5} (mg/Nm ³)	CPM (mg/Nm ³)	CPM- organic (mg/Nm ³)	CPM- inorganic (mg/Nm ³)	Flue gas volume flow rate	Measurement methods	Location	References
coal	Α		FF + WFGD		12. 1 ±3. 6	17. 2 ± 1. 7						
fired	В	coal	ESP + WFGD		33. 4 ±3. 7	23. 6 ± 2. 0	10/	67%		condensation	CEDD	$(D_{ei}, 2015)$
boiler	С	coar	SCR+ESP+ WFGD		16. 2 ±2. 6	22. 8 ± 2. 3	170	0770		condensation	enn	(101, 2013)
			SCR+ESP+ BH+WFGD	88	1.04	12.94					CFPP	
coal-fire	ed boiler	coal	integrated purification	40	27.41	22.6				condensation	heating plant	(Hu et al.,
			BH+WFGD	52	9.29	22.55				Inter	heating plant	2010)
			integrated purification	43	46.58	35.81					industrial enterprise	
Iron ar cokinş	nd steel g plant	coal	DFGD +FF +SCR	169.9	0.3 mg/m ³ 0.4 mg/kg coal	1.2 mg/m ³ 1.7 mg/kg coal	10.4%		231406 ±28521 m ³ /h 168.6 t(coal)/h	indirect dilution GC-MS		(Zhang et al., 2020)
	#1			51		7.5 5.8 3.5						
	#2		$SCD \pm ESD \pm$	48.8		3 2 2.5						
СЕРР	#3	coal	WFGD +	63.8		5.5 1.5 4				dry impinger	coal-fired	
CITI	#4	cour	WESP	50.6		2.5 1 2.5			-		power plants	
	#5			50.3		11 2.5 3			-	indirect		(Wang et
	#6			52.1		10 1.5 1.3				dilution		al., 2020a)
coking	g plant		DFGD +FF +SCR	169.9		24.5 1.2 0.5				direct dilution	iron and steel	
sinterir	ng plant		ESP+ absorption	129.2		10 5 1.5					plant	

			tower									
	stack #1	household	SNCR+SDF GD+ DFGD	146.5		19 0.5					waste	
WIPP	stack #2	garbage kitchen waste	+activated carbon adsorption+ FF	145.3		21 1.0			300 tons/day		incineration power plants	
WIPP	stack #1	household garbage kitchen	SNCR+ SDFGD+ bag	146.5	$\begin{array}{c} 0.87 \pm 0.1 \\ mg/m^{3} \\ 0.009 \pm \\ 0.001 g/kg \end{array}$	19.04± 3.67 mg/m ³ 0.201± 0.039g/kg	22.6%	77.1%	131784 m ³ /h 300t(solid waste)/d	EPA 201A EPA 202 extraction	Shandong	
	#2	waste	filter	145.3	0.68 ±0.19 0.006± 0.002g/kg	21.09± 3.32 0.178± 0.028g/kg	5.3%	94.4%	105427 m ³ /h 300t/d	gravimetric method/ GC-MS		(Wang et al., 2018)
WIPP	#3	household garbage kitchen waste coal	ESP+ bag filter	120	3.3 ± 0.65				150 t/d	two–stage virtual impactor	Zhejiang	
circul fluidiz boi	lating ed bed iler	coal	SNCR&SCR +ESP+FGD+ WESP			3.75			220 t/h	parallel sampling system dilution	Ultralow Emission coal-fired Power Plant	(Zheng et al., 2018)
pulve coal l	erized poiler	bituminou	SCR+ESP&F F+WFGD		9.8 ± 6.8 g/t(coal)	12 167.83 ± 33.92 g/t(coal)	5.8	6.2	200 t/h	EPA 202 extraction	Coal-fired power plants	(Wu et al.,
pulve coal l	erized poiler	s coai	SCR+FF+WF GD		15.67± 4.12 g/t(coal)	15 138.45 ± 21.89	10.5	4.5	410 t/h	gravimetric method/	(CFPFS) #1 #2 #3 #4	2020)

						g/ t(coal)						
circul fluidiz	ating ed bed		SNCR+FF+ WFGD&WE SP		21.76 ± 5.91 g/t(coal)	9.5 109.89 ± 35.76 g/t(coal)	6.5	3	260 t/h			
pulve coal t	erized poiler		SCR+ESP+W FGD&WESP		4.70 ± 1.19 g/t(coal)	10 74.33 ± 13.68 g/t(coal)	3.3	6.7	2209 t/h			
coal-fire	d boiler	coal	SCR+ ESP+ GGH+WFGD +WESP	80	1.1	7.9	4.3	3.6			LH CFPP #1unit	(Li et al., 2017a)
coal-	stage1				0.46	18.6	62%				VO CEDD	(List al
fired	stage2	coal		130	0.4	11.9	81%		2×10 ⁶ Nm ³ /h		IQ CFPP	(L1 et al., 2017h)
boiler	stage3					27.1	87%				#1uIIIt	20170)
coal-	E1			100	3.8	36.3	21.6	14.7		100 22210		(O; et el
fired	E2	coal		97	3.8	31.8	10.3	21.5		180 23210-	71	(Q1 et al., 2017)
boiler	E3		SCR+ LLT-	93	10.1	40.8	21.7	19.1		2009 EDA 202	Znejlang	2017)
coal-	stage1		ESP+ MGGH	86	3.5	48.7	44.3	4.4		EPA 202	IX CEDD	
fired boiler	Stage2	coal	+ WFGD+ WESP	95	7.8	35.2	28.8	6.4	10 L/min	extraction gravimetric	#7unit	(Li et al., 2019)
coal-fire	ed boiler	coal			1.81	10.66	5.59	5.07	3688100 Nm ³ /h 360.88 t(coal)/h	GC-MS	Ultralow- Emission JX CFPP #8unit	(Song et al., 2020)
1 C					1.4	32	29.9	2.1			FT #1unit	(I: 2010)
coal-fire	a boiler	coal			2.2	18.3	13.7	4.6			YQ #2unit	(L1, 2018)
			SCR+ESP+		2.54	24.8	23.1	1.69			ZJK #8unit	(Zhou,
coal-		coal	WFGD		6.14	16.24	11.4	4.85			WT #2unit	2019)

fired	stage1				14	6 66	4 44	2 22				
boiler	stage2		SCR+LLT-		0.83	6.69	5.51	1.45				
	stage3		ESP+WFGD		1.14	8.93	6.68	2.25			JX #7unit	
	stage4		+WESP		1.77	6.66	4.05	2.61				
	0				1.81	10.66	5.59	5.07			JX #8unit	
1.0	1				0.45	12.7 ± 1.44			2300000	EPA 201A		
coal-fire	d power	coal	SCR + BH +	105	5.25	142	90 ±3.7%		Nm ³ /h	EPA 202/		
pla	int		SWFGD		g/t(coal)	g/t(coal)			275 t(coal)/h	extraction		(Lu et al.,
					1.9	28.0 ± 6.32			20000 Nur 3/h	gravimetric	food	2019)
coal-fire	ed boiler		SCR + ESP +	59	20.1	307		$93\pm2.4\%$	80000 Nm ³ /n	method/	processing	
			WFGD		g/t(coal)	g/t(coal)			8 t(coal)/n	GC-MS	plant	
Power	r plant	coal oil	ESP+FGD		0.75	2.15		89%				
industr	y boiler	coal	Cyclone+ BH		16.9	29.3		69.4%		EPA 201A		
bri	ck									EPA 202	Tairran	(Vene et al
manufa	cturing				8.67	83.5		72.3%			Taiwan,	(rang et al.,
pla	ant									extraction	China	2014)
incine	erator		BH		0.15	0.17		89.8%		gravillettic		
arc fu	rnace		BH		2.12	2.53		72.8%		method		
			ESP									
sinte	ering	coke	denitrification	161	1.01	65.3		95.4%	468 t flux/h			
			de-dioxin							EPA 201A		
1	1	coke oven		170	0.27	80.7		520/	150 4 2 2 1/1	EPA 202	iron and steel	
соке п	naking	gas		1/8	0.37	89.7		52%	159 t coal/n	<i>, ,</i> .	plants	(Yang et al.,
blast f	urnace	mixed gas	BH	57.5	0.16	3.84		69.9%	166t steel/h	extraction		2015)
Basic o	oxygen		DU	57.0	0.15	1.22		(2,(0))	15.7t waste	gravimetric		
furn	nace	natural gas	ВН	57.8	0.15	1.32		63.6%	steel/h	method		
electr	ic arc	motural and	CO convertor	70.5	0.29	2.02		59 40/	144t waste			
furr	nace	natural gas	+ BH	70.5	0.28	2.02		38.4%	steel/h			
municip	al solid	municipal	SNCR+	157	FC	CPM	OC+EC		4210 Nm ^{3/b}	dilution	central	(Yang et al.,
waste in	cinerator	solid	semidry lime	137	10.2 ± 0.0	67 mg/Nm ³	33.1%		4210 INIII ² /II	sampling/	Taiwan,	2016)

		waste	scrubber+acti vated carbon injection+ BH		61.6 ± 4.52	2 g/ton waste	OC/EC 1.73			extraction gravimetric method	China	
					$0.29\pm\!0.03$	28.1 ±17				in-stack sampling		
1	1(n=4)		cyclone	65.3	18.6±13.7	22.7 ± 5.61	22.9%	77.1%			in Arretain1	
coal-	2(n=5)		EP	44.6	3.83 ± 1.05	3.92 ± 1.08	45.6%	54.4%			industrial	
hoilora	3(n=3)	Taw coar	baghouse	83.3	3.51 ± 3.21	8.61 ± 4.03	41.1%	58.9%			plants	
bollers	4(n=3)		EP	101	0.84 ± 0.18	5.96 ± 2.21	13.6%	86.4%			power plants	(Yang et al
oil- fired	1(n=8)	heavy oil	no	148	141 ± 76.1	242 ± 131	80.5%	19.5%		EPA 201A EPA 202		2018b)
boilers	2(n=2)		cyclone	195	22.6± 5.28	84.2 ± 38.1	62.4%	37.6%	-			
	3(n=1)		BH	125	2.31	3.16	20.4%	79.6%		extraction		
CFBs	(n=5)	coal	cyclone+ BH	76.6	19.3 ± 2.94	27.2 ± 3.49	2.765	6.77 ± 1.74		gravimetric		
WFBs	(n=5)	wood	wet scrubber	70.6	90.8± 40.6	31.4 ± 14.1	3.104	4.98 ± 2.23		method		
HOFB	s (n=4)	heavy oil	no	159	28 ± 5.6	163 ± 62.8	69.686	27.1 ± 23.7			industrial	(Yang et al.,
DFBs	(n=1)	diesel	no	162	0.273	7.67	4.324	2.65			boilers	2018a)
NGFB	s (n=3)	natural gas	no	133	0.352 ± 0.157	7.02 ± 3.1	2.349	3.38 ± 1.51				
CEDD	С		SCR+ESP+W FGD+ WESP	47	3.9	7.33	4.04	3.29	119 t(coal)/h	ED4 202	north China	(Wang et
CFPP	D	1	SCR+BF+W FGD+ WESP	46	0.55	6.15	3.51	2.64	150.2 t(coal)/h	EPA 202	around Beijing	al., 2020b)
CEDD	А	coai	SCR+ESP+W FGD+ WESP	50.1	2.35	15.92	9.59	6.33		gravimetric	Xi'an city, Shaanxi	(Yang et al.,
ULLL	В		SCR+LLTe+ ESP+ WFGD	53.9	3.96	30.69	8.73	21.96		method	Urumqi City, Xinjiang	2021)

Note: Air pollution control devices (APCDs) include selective catalytic reduction denitration device (SCR), selective noncatalytic reduction (SNCR), electrostatic precipitator (ESP), gas-gas heat exchanger (GGH), tube type gas-gas heat exchanger (MGGH), wet flue gas desulfurization (WFGD), wet electrostatic precipitator (WESP), low-low temperature

electrostatic precipitator (LLT-ESP), fabric filters (FF), baghouse (BH), seawater flue gas desulfurization (SWFGD), and semi-dry flue gas desulphurization(SDFGD).

Table S4 The model species for POA, ASOA (SOA from anthropogenic VOCs), BSOA (SOA from biogenic VOCs), and SISOA (SOA from low volatile S/IVOCs).

	model species
DOA	ALVPO1I ASVPO1I ASVPO2I APOCI APNCOMI
FUA	ALVPO1J ASVPO1J ASVPO2J APOCJ ASVPO3J AIVPO1J APNCOMJ
ASOA	AAVB1J AAVB2J AAVB3J AAVB4J AOLGAJ
DSOA	AISO1J AISO2J AISO3J AMT1J AMT2J AMT3J AMT4J AMT5J AMT6J AMTNO3J
DSUA	AMTHYDJ AGLYJ ASQTJ AOLGBJ
SISOA	ALVOO1I ALVOO2I ASVOO1I ASVOO2I ALVOO1J ALVOO2J ASVOO1J ASVOO2J
SISUA	ASVOO3J APCSOJ
	AAVB1J AAVB2J AAVB3J AAVB4J AOLGAJ AORGCJ AISO1J AISO2J AISO3J AMT1J
SOA	AMT2J AMT3J AMT4J AMT5J AMT6J AMTNO3J AMTHYDJ AGLYJ ASQTJ AOLGBJ
SOA	ALVOO1I ALVOO2I ASVOO1I ASVOO2I ALVOO1J ALVOO2J ASVOO1J ASVOO2J
	ASVOO3J APCSOJ

References

Emery, C., Tai, E. and Yarwood, G.: Enhanced meteorological modeling and performance evaluation for two Texas ozone episodes, Texas Natural Resource Conservation Commission, ENVIRON International Corporation, pp. 1–235. Available online: http://www.tceq.state.tx.us/assets/public/implementation/air/am/contracts/reports/mm/

Enhanced Met Modeling And Performance Evaluation.pdf.

Hu, Y., Feng, Y., Wang, C., Ma, Z. and Jiang, T.: Studies on Monitoring Method of Condensable Particulate and Water-soluble Ions in Fumes from Coal Fired Boilers, Environ. Monit. Manag. Technol., 28(1), 41–45, 2016.

Li, J., Qi, Z., Li, M., Wu, D., Zhou, C., Lu, S., Yan, J. and Li, X.: Physical and Chemical Characteristics of Condensable Particulate Matter from an Ultralow-Emission Coal-Fired Power Plant, Energy and Fuels, 31(2), 1778–1785, doi:10.1021/acs.energyfuels.6b02919, 2017a.

Li, J., Li, X., Zhou, C., Li, M., Lu, S., Yan, J. and Qi, Z.: Study on the Influencing Factors of the Distribution Characteristics of Polycyclic Aromatic Hydrocarbons in Condensable Particulate Matter, Energy and Fuels, 31(12), 13233–13238, doi:10.1021/acs.energyfuels.7b01991, 2017b.

Li, J.: Experimental study on emission characteristics of condensable particulate matter and typical organic pollutants in coal-fired flue gas., Ph.D. thesis, School of Energy Engineering, Zhejiang University, China, 164 pp., 2018.

Li, X., Zhou, C., Li, J., Lu, S. and Yan, J.: Distribution and emission characteristics of filterable and condensable particulate matter before and after a low-low temperature electrostatic precipitator, Environ. Sci. Pollut. Res., 26(13), 12798–12806, doi:10.1007/s11356-019-04570-y, 2019.

Lu, C. M., Dat, N. D., Lien, C. K., Chi, K. H. and Chang, M. B.: Characteristics of Fine Particulate Matter and Polycyclic Aromatic Hydrocarbons Emitted from Coal Combustion Processes, Energy and Fuels, 33(10), 10247–10254, doi:10.1021/acs.energyfuels.9b02201, 2019.

Pei, B.: Determination and emission of condensable particulate matter from coal-fired power plants, Huanjing Kexue/Environmental Sci., 36(5), 1544–1549, doi:10.13227/j.hjkx.2015.05.005, 2015.

Qi, Z., Li, J., Wu, D., Xie, W., Li, X. and Liu, C.: Particulate Matter Emission Characteristics and Removal Efficiencies of a Low-Low Temperature Electrostatic Precipitator, Energy and Fuels, 31(2), 1741–1746, doi:10.1021/acs.energyfuels.6b02692, 2017. Song, J., Lu, S., Wu, Y., Zhou, C., Li, X. and Li, J.: Migration and distribution characteristics of organic and inorganic fractions in condensable particulate matter emitted from an ultralow emission coal-fired power plant, Chemosphere, 243, 125346,

doi:10.1016/j.chemosphere.2019.125346, 2020.

Wang, G., Deng, J., Ma, Z., Hao, J. and Jiang, J.: Characteristics of filterable and condensable particulate matter emitted from two waste incineration power plants in China, Sci. Total Environ., 639, 695–704, doi:10.1016/j.scitotenv.2018.05.105, 2018.
Wang, G., Deng, J., Zhang, Y., Li, Y., Ma, Z., Hao, J. and Jiang, J.: Evaluating Airborne Condensable Particulate Matter Measurement Methods in Typical Stationary Sources in China, Environ. Sci. Technol., 54(3), 1363–1371, doi:10.1021/acs.est.9b05282, 2020a.

Wang, K., Yang, L., Li, J., Sheng, Z., He, Q. and Wu, K.: Characteristics of condensable particulate matter before and after wet flue gas desulfurization and wet electrostatic precipitator from ultra-low emission coal-fired power plants in China, Fuel, 278(June), 118206, doi:10.1016/j.fuel.2020.118206, 2020b.

Wu, B., Bai, X., Liu, W., Lin, S., Liu, S., Luo, L., Guo, Z., Zhao, S., Lv, Y., Zhu, C., Hao, Y., Liu, Y., Hao, J., Duan, L. and Tian, H.: Non-Negligible Stack Emissions of Noncriteria Air Pollutants from Coal-Fired Power Plants in China: Condensable

Particulate Matter and Sulfur Trioxide, Environ. Sci. Technol., 54(11), 6540–6550, doi:10.1021/acs.est.0c00297, 2020.

Yang, F., Li, Z., Liu, H., Feng, P., Tan, H., Zhang, S. and Lu, X.: Emission characteristics of condensable particulate matter and sulfur trioxide from coal-fired power plants, J. Energy Inst., 94, 146–156, doi:10.1016/j.joei.2020.12.003, 2021.

Yang, H.-H., Kuei-Ting Lee, Hsieh, Y.-S., Luo, S.-W. and Li, M.-S.: Filterable and Condensable Fine Particulate Emissions from Stationary Sources, Aerosol Air Qual. Res., 14, 2010–2016, doi:10.4209/aaqr.2014.08.0175, 2014.

Yang, H. H., Lee, K. T., Hsieh, Y. S., Luo, S. W. and Huang, R. J.: Emission characteristics and chemical compositions of both filterable and condensable fine particulate from steel plants, Aerosol Air Qual. Res., 15(4), 1672–1680, doi:10.4209/aaqr.2015.06.0398, 2015.

Yang, H. H., Luo, S. W., Lee, K. T., Wu, J. Y., Chang, C. W. and Chu, P. F.: Fine particulate speciation profile and emission factor of municipal solid waste incinerator established by dilution sampling method, J. Air Waste Manag. Assoc., 66(8), 807–814, doi:10.1080/10962247.2016.1184195, 2016.

Yang, H. H., Arafath, S. M., Lee, K. T., Hsieh, Y. S. and Han, Y. Te: Chemical characteristics of filterable and condensable PM2.5 emissions from industrial boilers with five different fuels, Fuel, 232(168), 415–422, doi:10.1016/j.fuel.2018.05.080, 2018a.

Yang, H. H., Arafath, S. M., Wang, Y. F., Wu, J. Y., Lee, K. T. and Hsieh, Y. S.: Comparison of Coal- and Oil-Fired Boilers through the Investigation of Filterable and Condensable PM_{2.5} Sample Analysis, Energy and Fuels, 32(3), 2993–3002, doi:10.1021/acs.energyfuels.7b03541, 2018b.

Zhang, Y., Deng, J., Wang, G., Li, Y., Xu, P. and Jiang, J.: Characterization of haracterization of condensable particulate matter emitted from a typical coking plant in iron and steel plant, Environ. Eng., 2020.

Zheng, C., Hong, Y., Liu, S., Yang, Z., Chang, Q., Zhang, Y. and Gao, X.: Removal and Emission Characteristics of Condensable Particulate Matter in an Ultralow Emission Power Plant, Energy and Fuels, 32(10), 10586–10594,

doi:10.1021/acs.energyfuels.8b02464, 2018.

Zhou, C.: Experimental study on emission and distribution characteristics of organic pollutants in condensable particulate matter in coal-fired flue gas., Master thesis, School of Energy Engineering, Zhejiang University, China, 82 pp., 2019.