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Abstract. Air quality (AQ) forecasting systems are usually built upon physics-based numerical models that are
affected by a number of uncertainty sources. In order to reduce forecast errors, first and foremost the bias, they
are often coupled with model output statistics (MOS) modules. MOS methods are statistical techniques used to
correct raw forecasts at surface monitoring station locations, where AQ observations are available. In this study,
we investigate the extent to which AQ forecasts can be improved using a variety of MOS methods, including
moving average, quantile mapping, Kalman filter, analogs and gradient boosting machine methods, and consider
as well the persistence method as a reference. We apply our analysis to the Copernicus Atmospheric Monitoring
Service (CAMS) regional ensemble median O3 forecasts over the Iberian Peninsula during 2018–2019. A key
aspect of our study is the evaluation, which is performed using a comprehensive set of continuous and categorical
metrics at various timescales, along different lead times and using different meteorological input datasets.

Our results show that O3 forecasts can be substantially improved using such MOS corrections and that im-
provements go well beyond the correction of the systematic bias. Depending on the timescale and lead time, root
mean square errors decreased from 20 %–40 % to 10 %–30 %, while Pearson correlation coefficients increased
from 0.7–0.8 to 0.8–0.9. Although the improvement typically affects all lead times, some MOS methods appear
more adversely impacted by the lead time. The MOS methods relying on meteorological data were found to pro-
vide relatively similar performance with two different meteorological inputs. Importantly, our results also clearly
show the trade-offs between continuous and categorical skills and their dependencies on the MOS method. The
most sophisticated MOS methods better reproduce O3 mixing ratios overall, with the lowest errors and highest
correlations. However, they are not necessarily the best in predicting the peak O3 episodes, for which simpler
MOS methods can achieve better results. Although the complex impact of MOS methods on the distribution of
and variability in raw forecasts can only be comprehended through an extended set of complementary statistical
metrics, our study shows that optimally implementing MOS in AQ forecast systems crucially requires selecting
the appropriate skill score to be optimized for the forecast application of interest.
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1 Introduction

Air pollution is recognized as a major health and environ-
mental issue (World Health Organization, 2016). Mitigating
its negative impacts on health requires reducing both pol-
lutant concentrations and population exposure. Air quality
(AQ) forecasts can be used to warn the population of the po-
tential occurrence of a pollution episode while allowing the
implementation of temporary emission reductions, including,
for example, traffic restrictions, shutdown of industries and
bans on the use of fertilizers in the agricultural sector.

AQ forecasting systems are typically based on regional
chemistry-transport models (CTMs), which remain subject to
numerous uncertainty sources, leading to persistent system-
atic and random errors, especially for ozone (O3) and particu-
late matter (PM) (e.g., Im et al., 2015a, b). More importantly,
they often largely underestimate the strongest episodes that
exert the worst impacts upon health. In addition to the error
sources related to the models themselves and the input data,
part of the discrepancies between in situ observations and
geophysical forecasts are due to inherent representativeness
issues since concentrations measured at a specific location
are not always comparable to the concentrations simulated
over a relatively large volume.

To overcome these limitations, operational AQ forecasting
systems based on geophysical models often rely on so-called
model output statistics (MOS) methods for statistically cor-
recting the raw forecasts at monitoring stations. The basic
idea of MOS methods is to combine raw forecasts with past
observations, and eventually with other ancillary data, at a
given station in order to produce a better forecast, preferably
at a reasonable computational cost. As these MOS methods
often significantly reduce systematic errors, bringing mean
biases close to zero, they are also commonly referred to as
bias-correction or bias-adjustment methods, although they
may not be aimed at directly reducing this specific metric.
MOS methods relying on local data (first and foremost the
local observations) can also be seen as so-called downscal-
ing methods since they allow some of the local features that
cannot be reproduced at typical CTM spatial resolution to be
captured.

Over the last decades, several MOS methods have been
proposed for correcting weather forecasts, before their more
recent application to AQ forecasts, essentially on O3 and fine
particulate matter (PM2.5, with aerodynamic diameter lower
than 2.5 µm). A very simple approach consists of subtract-
ing the mean bias (or multiplying by a mean ratio to avoid
negative values in the corrected forecasts) calculated from
past data (McKeen et al., 2005). A more adaptive version
consists of correcting the forecast by the model bias calcu-
lated over the previous days, which assumes some persis-
tence in the errors (Djalalova et al., 2010). Other authors pro-
posed fitting linear regression models between chemical con-
centration errors and meteorological parameters (e.g., Hon-
oré et al., 2008; Struzewska et al., 2016). Liu et al. (2018)

applied a set of autoregressive integrated moving average
(ARIMA) models to improve Community Multiscale Air
Quality (CMAQ) model forecasts. The Kalman filter (KF)
method is a more sophisticated approach, yet still relatively
simple to implement, based on signal processing theory (e.g.,
Delle Monache et al., 2006; Kang et al., 2008, 2010; Borrego
et al., 2011; Djalalova et al., 2010, 2015; Ma et al., 2018).
Initially employed for correcting meteorological forecasts
(Delle Monache et al., 2011; Hamill and Whitaker, 2006), the
ANalogs (AN) method provides an observation-based fore-
cast using historical forecasts and has recently provided en-
couraging results for correcting PM2.5 CMAQ forecasts over
the United States (Djalalova et al., 2015; Huang et al., 2017).

A common limitation in the aforementioned studies is that
MOS corrections are assessed mainly in terms of continuous
variables (i.e., pollutant mixing ratios), while typically less
attention is put on the parallel impact in terms of categori-
cal variables (i.e., exceedances of given thresholds), which is
however one of the primary goals of AQ forecasting systems.
This can give a partial, if not misleading, view of the ad-
vantages and disadvantages of the different MOS approaches
proposed in the literature.

The present study aims at providing a comprehensive as-
sessment of the impact of different MOS approaches upon
AQ forecasts. We consider a representative set of MOS meth-
ods, including some already proposed in the recent litera-
ture and another one based on machine learning (ML). These
MOS corrective methods are applied to the Copernicus At-
mospheric Monitoring Service (CAMS) regional ensemble
O3 forecasts, focusing on the Iberian Peninsula (Spain and
Portugal) during the period 2018–2019. The MOS methods
are evaluated for a comprehensive set of continuous and cat-
egorical metrics, at various timescales (hourly to daily) and
along different lead times (1 to 4 d), with different meteoro-
logical input data (forecast vs reanalyzed), in order to provide
a more complete vision of their behavior.

The paper is organized as follows: Sect. 2 first describes
the data and MOS methods used in this study; Sect. 3 in-
cludes the evaluation of the raw (uncorrected) CAMS re-
gional ensemble O3 forecast over the Iberian Peninsula,
along with a detailed assessment of the MOS results and
some sensitivity analyses; and a broader discussion and con-
clusion are provided in Sect. 4.

2 Data and methods

2.1 Data

2.1.1 Ozone observations

Hourly O3 measurements over 2018–2019 are taken from
the European Environmental Agency (EEA) AQ e-Reporting
(EEA, 2020) and accessed through GHOST (Globally Har-
monised Observational Surface Treatment). GHOST is a
project developed at the Earth Sciences Department of the
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Barcelona Supercomputing Center that aims at harmoniz-
ing global surface atmospheric observations and metadata,
for the purpose of facilitating quality-assured comparisons
between observations and models within the atmospheric
chemistry community (Bowdalo, 2022). On top of the pub-
lic datasets it ingests, GHOST provides numerous data flags
that are used here for quality assurance screening (see Ap-
pendix A). In this study, daily mean, daily 1 h maximum and
daily 8 h maximum (hereafter respectively referred to as d,
d1max and d8max) are computed only when at least 75 % of
the hourly data are available (i.e., 18 over 24 h). Note that
despite such data availability criteria, large data gaps at some
stations and during some days might occur mainly during
daytime (for instance due to maintenance operations that typ-
ically occur during working hours). Considering all stations
and days with at least 18 h of data, the frequency of data gaps
exceeding 4 h between 08:00 and 15:00 UTC was found to
be only 0.6 % (1854/314 005). Such situations occur with a
similarly low frequency on days exceeding the target thresh-
old (77/13 221 or 0.6 %) and never occur on days exceeding
the information threshold.

Our study focuses on the Iberian Peninsula, over a do-
main ranging from 10° W to 5° E longitude and from 35
to 44° N latitude that includes Spain, Portugal and part of
southwestern France. In total, 455 O3 monitoring stations
are included, which represents an observational dataset of
7 437 862 hourly O3 measurements with 93 % of hourly data
availability.

2.1.2 CAMS regional ensemble forecast

The benefit of MOS corrections is investigated on the CAMS
regional ensemble forecasts. As one of the six Coperni-
cus services, CAMS provides AQ forecast and reanalysis
data at both regional and global scales (https://www.regional.
atmosphere.copernicus.eu/, last access: 20 November 2020).
At regional scale, nine state-of-the-art CTMs developed by
European research institutions are currently participating in
the operational ensemble AQ forecasts (CHIMERE from
INERIS, EMEP from MET Norway, EURAD-IM from Uni-
versity of Cologne, LOTOS-EUROS from KNMI and TNO,
MATCH from SMHI, MOCAGE from METEO-FRANCE,
SILAM from FMI, DEHM from Aarhus University, GEM-
AQ from IEP-NRI). In addition, MONARCH from BSC and
MINNI from ENEA will join the ensemble soon. The en-
semble forecast is computed as the median of all individual
forecasts. Note that due to possible technical failures, all nine
forecasts are not always available for computing the full en-
semble. The CAMS regional forecasts are provided over 4
lead days, hereafter referred to as D+ 1, D+ 2, D+ 3 and
D+ 4 (starting at 00:00 UTC).

2.1.3 HRES and ERA5 meteorological data

Some MOS methods rely on meteorological data. In this
study, meteorological data are taken from the Atmospheric
Model high-resolution 10 d forecast (HRES) (https://www.
ecmwf.int/en/forecasts/datasets/set-i, last access: 1 Septem-
ber 2020) provided by the European Centre for Medium-
Range Weather Forecasts (ECMWF). HRES has a native spa-
tial resolution of about 9 km and 137 vertical levels. In addi-
tion, to investigate the sensitivity to the meteorological in-
put data, we replicated all our experiments with the ERA5
reanalysis dataset (Copernicus Climate Change Service
(C3S), 2017; https://www.ecmwf.int/en/forecasts/datasets/
reanalysis-datasets/era5, last access: 1 September 2020).
ERA5 data have a native spatial resolution of about 31 km
and 137 vertical levels, although data were downloaded on
a 0.25°× 0.25° regular longitude-latitude grid from the Cli-
mate Data Store. At all surface O3 monitoring stations, for
both HRES and ERA5, we extracted the following variables
at the hourly scale: 2 m temperature (code 167), 10 m surface
wind speed (207), normalized 10 m zonal and meridian wind
speed components (165 and 166), surface pressure (134), to-
tal cloud cover (164), surface net solar radiation (176), sur-
face solar radiation downwards (169), downward UV radi-
ation at the surface (57), boundary layer height (159), and
geopotential at 500 hPa (129).

2.2 Applying MOS under restrictive operational
conditions

A novel aspect of this study is that we provide a compar-
ison of a set of MOS methods under potentially restrictive
training conditions in operational context. To mimic such re-
strictions we assume that (1) no past data, neither modeled
nor observed, are available for training at the beginning of
the period of study (here 1 January 2018) and (2) the num-
ber of modeled and observed data continuously grows with
time along the period of study (here 2018–2019). On a given
day, the MOS methods can therefore only rely on the histor-
ical data accumulated since the beginning of the period. Our
approach consists of understanding the behavior of the differ-
ent MOS methods in a worst-case scenario where a new or
upgraded operational AQ forecasting system is implemented
together with a MOS module for which there are few or no
hindcast data. We believe that such a strategy allows the dif-
ferent MOS methods to be compared in a balanced way given
the operational context. As described in detail in the next sec-
tion, some MOS methods require very limited prior informa-
tion to achieve their optimal performance, while others need
a larger number of training data. In an operational context,
the first category of methods might thus be advantaged at the
beginning before being gradually supplanted with the second
category. We note, however, that methods relying on limited
past data may respond better to an abrupt change in envi-
ronmental conditions, as experienced for instance during the
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COVID-19 lockdowns. Although not covered by the present
study, we acknowledge here that in an operational context,
the relationship between the length of past training data and
the performance of the corresponding MOS prediction is an
interesting aspect to investigate, as is the quantification of
the spin-up time beyond which the MOS method might not
significantly improve. Only some insights will be given by
comparing the performance obtained in 2019 with and with-
out using the data available in 2018. Similarly, our study does
not investigate how potential issues (delays) in the near-real-
time availability of the observations can impact the perfor-
mance of the MOS methods, although this might be another
important aspect to take into account in operational condi-
tions; to the best of our knowledge, EEA observations are
typically available with a 2 h lag, but some sporadic techni-
cal failures can induce extended delays.

2.3 Description of the model output statistics (MOS)
methods

This section describes the different MOS methods imple-
mented for correcting the raw forecasts (hereafter referred to
as RAW), namely moving average (MA), Kalman filter (KF),
quantile mapping (QM), analogs (AN) and gradient boost-
ing machine (GBM) methods. All MOS methods are applied
independently at each monitoring station. The skill of these
different forecasts (including the RAW) is assessed relative
to the persistence (PERS) reference method, which uses the
previously observed concentration values at a specific hour
of the day (averaged over 1 or several days) as the predicted
value. As a first approach, we use a time window of 1 single
day (hereafter referred to as PERS(1)).

2.3.1 Moving average (MA) method

We primarily consider the moving average (MA) method, by
which the raw CAMS forecast bias in the previous day(s) is
used to correct the forecast. As a first approach, we use a time
window of 1 single day (hereafter referred to as MA(1)). The
sensitivity to the time window is discussed in Sect. 3.4.

2.3.2 Quantile mapping (QM) method

The quantile mapping (QM) method aims at adjusting the
distribution of the forecast concentrations to the distribution
of observed concentrations. For a given day, the QM method
consists of (1) computing two cumulative distribution func-
tions (CDFs), corresponding to past modeled and observed
O3 mixing ratios, respectively; (2) locating the current O3
forecast in the model CDF; and (3) identifying the corre-
sponding O3 values in the observation CDF and using it as
the QM-corrected O3 forecast. For instance, if the current O3
forecast gives a value corresponding to the 95th percentile,
the QM-corrected O3 forecast will correspond to the 95th
percentile of the observed O3 mixing ratios. This approach

thus aims at correcting all quantiles of the distribution, not
only the mean.

In the operational-like context in which this study is con-
ducted (Sect. 2.2), the first QM corrections are computed
when 30 d of data have been primarily accumulated to ensure
a minimum representativeness of the model and observation
CDFs. For computational reasons, both CDFs are updated
every 30 d (although an update frequency of 1 single day
would be optimal in a real operational context). The choice
of a 30 d update frequency only aims at reducing the com-
putational cost of running all MOS methods at all stations
during the 2-year period. In a real operational context, only
1 d would have to be run, which would allow the update fre-
quency to be increased up to 1 d; i.e., the CDFs would be up-
dated every day, ensuring that we are taking advantage from
the entire observational dataset available at a given time.

2.3.3 Kalman filter (KF) method

The Kalman filter (KF) is an optimal recursive data process-
ing algorithm with numerous science and engineering appli-
cations (see Pei et al., 2017, for an introduction). In atmo-
spheric sciences, it offers a popular framework for sophis-
ticated data assimilation applications (e.g., Gaubert et al.,
2014; Di Tomaso et al., 2017) but can also be used as a sim-
ple yet powerful MOS method for correcting forecasts (e.g.,
Delle Monache et al., 2006; Kang et al., 2008; De Ridder
et al., 2012). The KF-based MOS method aims at recursively
estimating the unknown forecast bias (here taken as the state
variable of interest), combining previous forecast bias esti-
mates with forecast bias observations. The updated forecast
bias estimate is computed as a weighted average of these two
terms, both being considered to be uncertain, i.e., affected by
a noise with zero mean and a given variance. A detailed de-
scription of the KF algorithm can be found in Appendix B,
but an important aspect to be mentioned here is that each of
these two terms is weighted according to the value of the so-
called Kalman gain that intrinsically depends on the ratio of
both variances (hereafter referred to as the variance ratio).
The value chosen for this internal parameter substantially af-
fects the behavior of the KF, and thus the obtained MOS cor-
rections. A variance ratio close to zero induces a Kalman gain
close to 0. In such situations, the estimated forecast bias cor-
responds to the estimated forecast bias of the previous day,
independently of the forecast error. A very high (infinite)
variance ratio gives a Kalman gain close to 1. In this case,
the estimated forecast bias corresponds to the observed fore-
cast bias of the previous day, which thus makes it equivalent
to the MA(1) method.

In this study, the variance ratio is adjusted dynamically
and updated regularly in order to optimize a specific statis-
tical metric, in our case the RMSE (the corresponding ap-
proach being hereafter referred to as KF(RMSE)). The dif-
ferent steps are (1) at a given day of update, the KF correc-
tions over the entire historical dataset are computed consider-
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ing different values of variance ratio, from 0.001 to 100 in a
logarithmic progression; (2) the RMSE is computed for each
of the corrected historical time series obtained; and (3) the
variance ratio associated with the best RMSE is retained and
used until the next update. Other choices of metrics to opti-
mize are explored in Sect. 3.4.

As for QM, for computational reasons, the update fre-
quency is set to 30 d in this study (although, again, an update
frequency of 1 single day would be optimal).

2.3.4 Analogs (AN) method

The analogs method (AN) implemented here consists of
(1) comparing the current forecast to all past forecasts avail-
able, (2) identifying the past days with the most similar fore-
cast (hereafter referred to as analog days or analogs) and
(3) using the corresponding past observed concentrations to
estimate the AN-corrected O3 forecast (e.g., Delle Monache
et al., 2011, 2013; Djalalova et al., 2015; Huang et al., 2017).
The current forecast is compared to each individual past fore-
cast in order to identify which ones are the most similar.
Based on a set of features including the raw O3 mixing ra-
tio forecast from the AQ model and the 10 m wind speed,
2 m temperature, surface pressure and boundary layer height
forecast from the meteorological model, the distance metric
proposed by Delle Monache et al. (2011) and previously used
in Djalalova et al. (2015) (see the formula in Appendix C) is
used to compute the distance (i.e., to quantify the similarity)
of each individual past forecast with respect to the current
forecast. Then, as a first approach, the 10 best analog days
that correspond here to the 10 most similar past forecasts are
identified (hereafter referred to as AN(10); other values are
tested in Sect. 3.4). From those best analog days, the MOS-
corrected forecast is computed as the weighted average of the
corresponding observed concentrations, where weights are
taken as the inverse of the distance metric previously com-
puted. In comparison to a normal average, introducing the
weights is expected to slightly reduce the dependence upon
the number of analog days chosen.

Therefore, in the analogs paradigm, the past days of sim-
ilar chemical and/or meteorological conditions are identified
in the forecast (i.e., model) space, while the output (i.e., the
AN-corrected forecast) is taken from the observation space.
The AQ model thus only serves to identify the past observed
situations that look similar to the current one.

2.3.5 Machine-learning-based MOS method

We also explore the use of ML algorithms as an innovative
MOS approach for correcting AQ forecasts. In ML terms,
it corresponds to a supervised regression problem where a
ML model is trained to predict the observed concentrations,
hereafter referred to as the target or output, based on multi-
ple ancillary variables, hereafter referred to as the features or
inputs, coming from meteorological and chemistry-transport

geophysical models and/or past observations. In this context,
the use of ML is of potential interest because (i) we suspect
that some relationships exist between the target variable and
at least some of these features, (ii) these relationships are
likely too complex to be modeled in an analytical way, and
(iii) data are available for extracting (learning) information
about them. Over the last years, ML algorithms became very
popular for many types of predictions, notably due to their
ability to model complex (typically non-linear and multi-
variable) relationships with good prediction skills. Among
the myriad of ML algorithms developed so far, we focus on
the decision-tree-based ensemble methods, and more specif-
ically on the gradient boosting machine (GBM), which often
gives among the best prediction skills (as shown in various
ML competitions and model intercomparisons; e.g., Caruana
and Niculescu-Mizil, 2005).

At each monitoring station, one single ML model is trained
to forecast O3 concentrations at all lead hours (from 1 to
96) or days (from 1 to 4), depending on the timescale used
(see Sect. 2.4). The features taken into account include a
set of chemical features (raw forecast O3 concentration, O3
concentration observed 1 d before), meteorological features
(2 m temperature, 10 m surface wind speed, normalized 10 m
zonal and meridian wind speed components, surface pres-
sure, total cloud cover, surface net solar radiation, surface
solar radiation downwards, downward UV radiation at the
surface, boundary layer height, and geopotential at 500 hPa,
all forecast by the meteorological model) and time features
(day of year, day of week, lead hour). Although the past O3
observed concentration corresponds to recursive information
that will not be available for all forecast lead days, we use
here the same value for all lead days. The tuning of the GBM
models is described in Appendix D.

As for QM, the GBM model is first trained (and tuned)
only after 30 d to accumulate enough data and then retrained
every 30 d based on all historical data available.

2.4 Timescales of MOS corrections

Current AQ standards are defined according to pollutant-
dependent timescales, e.g., daily 8 h maximum (d8max) con-
centration in the case of O3. In the literature, MOS correc-
tions are typically applied to hourly concentrations, provid-
ing hourly corrected concentrations from which the value at
the appropriate timescale can then be computed. Following
this approach, for a given MOS method X, corrections in
this study are first computed based on hourly time series
(hereafter referred to as Xh), from which daily 24 h aver-
age (Xd), daily 1 h maximum (Xd1max) and daily 8 h max-
imum (Xd8max) corrected concentrations are then deduced.
In addition, MOS corrections are computed directly on daily
24 h average (Xdd, the additional “d” indicating that the MOS
method is applied directly on daily rather than hourly time se-
ries), daily 1 h maximum (Xdd1max) and daily 8 h maximum
(Xdd8max) time series, respectively. When needed, meteoro-
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logical features are used at the same timescale. This is done
to investigate whether applying the MOS correction directly
at the regulatory timescale can help to achieve better perfor-
mance.

2.5 Evaluation metrics and skill scores

In this study, O3 forecasts are evaluated using an extended
panel of continuous and categorical metrics to provide a com-
prehensive view of the impact of the different MOS methods
on the predictions. Continuous metrics used to evaluate the
O3 concentrations include the following.

– nMB: normalized mean bias

– nRMSE: normalized root mean square error

– PCC: Pearson correlation coefficient

– slope: slope of the predicted-versus-observed O3 mix-
ing ratio to quantify how well the lowest and highest O3
concentrations are predicted

– nMSDB: normalized mean standard deviation bias to
investigate how well the O3 variability is reproduced by
the forecast

Categorical metrics used to evaluate the O3 exceedances be-
yond certain thresholds include the following.

– H : hit rate to quantify the proportion of observed ex-
ceedances that are correctly detected

– F : false alarm rate to quantify the proportion of ob-
served non-exceedances erroneously forecast as ex-
ceedances

– FB: frequency bias to investigate the extent to which the
forecast is predicting the same number of exceedances
as observed (no matter if they are predicted on the cor-
rect days)

– SR: success ratio to show how much of the predicted
exceedances are indeed observed

– CSI: critical success index to quantify the proportion of
correctly predicted exceedances when discarding all the
corrected rejections

– PSS: Peirce skill score to investigate the extent to which
the forecast is able to separate exceedances from non-
exceedances

– AUC: area under the receiver operating characteristic
(ROC) curve to quantify the probability that the forecast
predicts higher O3 concentrations during a situation of
exceedance compared to a situation of non-exceedance

The formula of these different metrics can be found in Ap-
pendix E. Each of them thus highlights a specific aspect of
the performance. Regarding categorical metrics, Jolliffe and
Stephenson (2011) gave a detailed explanation of the differ-
ent metric properties desirable for assessing the quality of a
forecasting system (see Table 3.4 in Jolliffe and Stephenson,
2011). In this framework, PSS can be considered to be one
of the most interesting metrics for assessing the accuracy of
the different RAW and MOS-corrected forecasts, given that
it gathers numerous valuable properties: (i) truly equitable
(all random and fixed-value forecasting systems are awarded
the same score, which provides a single no-skill baseline),
(ii) not trivial to hedge (the forecaster cannot cheat on their
forecast in order to increase PSS), (iii) base-rate-independent
(PSS only depends on H and F , which makes it invariant to
natural variations in climate, which is particularly interesting
in the framework of AQ forecasting, where AQ standards and
subsequently the base rate can also change) and (v) bounded
(values are comprised within a fixed range). It is worth noting
that no perfect metric exists, and PSS (as most other metrics)
does not benefit from the properties of non-degeneracy (it
tends towards meaningless values for rare events).

In addition, results are also discussed in terms of skill
scores, using the 1 d persistence (PERS(1)) as the reference
forecast. Skill scores aim at measuring the accuracy of a fore-
cast relative to the accuracy of a chosen reference forecast
(e.g., persistence, climatology, random choice). They can be
computed as S(X)= (X−Xreference)/(Xperfect−Xreference),
with X the score of the forecast, Xreference the score of the
PERS(1) reference forecast and Xperfect the score expected
with a perfect forecast. Skill scores indicate if a given fore-
cast has a perfect skill (value of 1), a better skill than the
reference forecast (value between 0–1), a skill equivalent to
the reference forecast (value of 0) or a worse skill than the
reference (value below 0, unbounded). To be converted into
skill scores, the aforementioned metrics of interest need to
be transformed into scores following the rule “the higher the
better” (to constrain the skill score to values below 1). For
the different metricsM , the corresponding scoreX(M) is ob-
tained applying the following transformations: X(M)=−M
for nRMSE and X(M)=−|1−M| for slope; no transforma-
tions are required for the other metrics (H , F , SR, CSI, PSS
and AUC). Note that, as indicated by its name, PSS is already
intrinsically defined as a skill score (where the reference cor-
responds to a climatology or random choice, both giving PSS
values tending toward 0), but it does not prevent it from being
converted into a skill score related to the persistence forecast.

In order to ensure fair comparisons between observations
and all the different forecasts, O3 values at a given hour are
discarded when at least one of these different dataset does
not have data. Over the 2018–2019 period, the resulting data
availability exceeds 94 % whatever the timescale considered.
Note that about 4 % of the data are missing here due to the
aforementioned minimum of 30 d (i.e., January 2018) of ac-
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cumulated historical data requested to start computing the
corrected forecasts with some MOS methods.

3 Results

We first briefly describe the O3 pollution over the Iberian
Peninsula as observed by the monitoring stations and simu-
lated by the CAMS regional ensemble forecast (Sect. 3.1).
Then, we investigate the performance of the MOS methods
on both continuous (Sect. 3.2) and categorical (Sect. 3.3) O3
forecasts. Different sensitivity tests on the MOS methods are
performed in Sect. 3.4, including a test on the impact of the
input meteorological data on the MOS performance.

3.1 Ozone pollution over the Iberian Peninsula

The European Union sets different standards regarding O3
pollution, including (1) a target threshold of 60 ppbv for the
daily 8 h maximum, with 25 exceedances per year allowed
on average over 3 years; (2) an information threshold of
90 ppbv for the daily 1 h maximum; and (3) an alert thresh-
old of 120 ppbv for the daily 1 h maximum. In this study,
we focus on the first two thresholds and exclude the last
one mainly because exceedances of the alert threshold are
extremely rare (only 13 exceedances over 314 005 points,
i.e., 0.004 %). With such a low frequency of occurrence, such
events remain extremely difficult to predict (without predict-
ing too many false alarms).

The mean O3 mixing ratios, as well as the annual number
of exceedances, are shown in Fig. 1 for both observations and
raw CAMS ensemble forecasts. The time series at the differ-
ent timescales are shown in Fig. 2. Over the Iberian Penin-
sula, annual mean O3 mixing ratios range between 10 and
50 ppbv, depending on the type of monitoring station (urban
traffic, urban background, rural background), with typically
higher levels on the Mediterranean coast compared to the At-
lantic one. Over the entire domain and time period, the tar-
get (d8max> 60 ppbv) and information (d1max> 90 ppbv)
thresholds have been exceeded 13 221 and 274 times, respec-
tively (i.e., 4 % and 0.08 % of the 314 005 points, respec-
tively). These exceedances are well distributed in time along
the 2018–2019 period, with 404 d out of 730 d (55 %) with
at least one station exceeding the target threshold, and 78 d
out of 730 d (11 %) with at least one station exceeding the in-
formation threshold. These exceedances are observed over
a large part of the peninsula, but with a higher frequency
in specific locations, including the surroundings (typically
downwind) of the largest cities (e.g., Madrid, Barcelona, Va-
lencia, Lisbon, Porto) and close to industrial areas (e.g., Puer-
tollano, a major industrial hot spot 200 km south of Madrid).

Figure 1. Overview of the O3 pollution over the Iberian Penin-
sula, as observed by monitoring stations (a, c, e) and as simulated
by the CAMS regional ensemble D+ 1 forecasts (b, d, f), showing
the mean O3 mixing ratios (a, b) and the number of exceedances
of the standard (d8max> 60 ppbv; c, d) and information thresh-
old (d1max> 90 ppbv; e, f) over the period 2018–2019. In order
to limit the overlap, stations are plotted here by decreasing value
and with decreasing size (lowest values with largest symbols but
in background, highest values with smallest symbols but in fore-
ground). For clarity, the stations without any observed or simulated
exceedance are omitted.

3.2 Performance on continuous forecasts

3.2.1 RAW forecasts

Considering the annual mean O3 mixing ratios at all 456 sta-
tions (Fig. 1), the raw CAMS ensemble forecast represents
moderately well the spatial distribution of annual O3 over
the Iberian Peninsula (PCC of 0.54 for D+ 1 forecasts) and
strongly underestimates the spatial variability (nMSDB of
−42 %). At least part of these errors are due to the fact that all
station types are taken into account here, including traffic sta-
tions where local road transport NOx emissions can strongly
reduce the O3 levels (titration by NO), which cannot be prop-
erly represented by models at 10 km spatial resolution. In
this study, all station types are included because we are ul-
timately interested in predicting O3 exceedances at all loca-
tions where they can be observed (and thus where air quality
standards apply). It is worth noting that the impact of the
MOS methods on the different metrics might vary from one
type of station to another, although this aspect is beyond the
scope of our study. The raw CAMS ensemble forecast cor-
rectly identifies regions where most exceedances of the target
threshold occur but often with underestimated frequency, es-
pecially around Madrid, in southern Spain (in-land part of the
Andalusia region) and along the Mediterranean coast. More
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Figure 2. Time series of the mean O3 mixing ratios over the Iberian Peninsula, as observed by monitoring stations (in black) and as simulated
by the raw CAMS regional ensembleD+1 forecasts (in yellow). Time series are shown at the hourly (h), daily mean (d), daily 1 h maximum
(d1max) and daily 8 h maximum (d8max) timescales. O3 mixing ratios are averaged over all surface stations of the domain.

severe deficiencies are found with the information threshold
that is almost never reached by the CAMS ensemble (with
one single exception around Porto).

The overall statistical results are shown in Fig. 3 for the
different forecast methods, and a subset of these statistics
is given in Table 1 (and in Table S1 in the Supplement for
additional timescales). For a given lead day and timescale,
statistics are computed here after aggregating data from all
monitoring stations; therefore, statistics ofD+1 O3 forecasts
at the hourly scale can be based on 730 d× 24 h× 455 sta-
tions= 7 971 600 points if there are no data gaps. The RAW
forecast moderately overestimates the O3 mixing ratios, es-
pecially at hourly and daily timescales, but shows a rea-
sonable correlation at all timescales (above 0.75). How-
ever, its main deficiency lies in the underestimated vari-
ability (nMSDB around −30 %), which is reflected in the
low model-versus-observation linear slope obtained (around
0.5–0.6). The deterioration of the performance of the raw
CAMS forecasts with lead time is very low, with hourly scale
nRMSE and PCC decreasing from 38% and 0.75 atD+1 to
39% and 0.72 at D+ 4, potentially due to their relatively
coarse spatial resolution.

As expected (by construction), the PERS(1) reference
forecast gives unbiased O3 forecasts. Due to the temporal
auto-correlation of O3 concentrations, reasonable results are
obtained at D+ 1 (nRMSE, PCC and slope of 36%, 0.74
and 0.74) but quickly deteriorate with the lead time (down to
42%, 0.65 and 0.64 at D+ 4). A subset of skill scores with

PERS(1) for reference is shown in Fig. 4. Apart from the
slope that is always better reproduced by PERS(1), the RAW
forecast reaches better skill scores than PERS(1) on both the
nRMSE and PCC but only beyond D+ 1 (with values typi-
cally ranging between 0–0.2), and not at all timescales (for
instance, PERS(1) systematically shows better RMSE than
RAW at the daily scale).

3.2.2 MOS-corrected forecasts

The MA(1) method removes most of the bias of O3 concen-
trations and variability. Some residual biases appear when
computing the daily 1 h maximum from the MOS-corrected
hourly O3 concentrations (i.e., d1max scale) but can be
removed by applying the MA(1) method directly at this
timescale (i.e., dd1max scale). The MA(1) method substan-
tially improves the other metrics for all lead days, with hourly
scale nRMSE, PCC and slope of 31%, 0.81 and 0.82 atD+1
and 36%, 0.74 and 0.75 at D+ 4. Thus, the performance
still deteriorates with lead time, but slightly less dramatically
than with PERS(1). In terms of skill scores, such a simple ap-
proach as MA(1) is found to strongly improve the skills ini-
tially obtained with RAW alone, whatever the timescale or
lead time. Skills scores range between 0.1–0.3 for nRMSE
and 0.3–0.4 for PCC and slope, with slightly higher values
at daily and d8max scales. The variations in skill along lead
time differ between nRMSE/PCC (lowest and highest skills
typically obtained at D+ 1 and D+ 2, D+ 3 and D+ 4, re-
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Table 1. Evaluation of the different forecast methods on continuous metrics, at D+ 1 (and D+ 4 in parentheses), for the h, d, d1max and
d8max timescales (see Table S1 in the Supplement for the evaluation results at dd, dd1max and dd8max timescales).

Timescale Forecast nMB nRMSE PCC slope nMSDB N

h GBM −0 % (−1 %) 25 % (28 %) 0.87 (0.83) 0.75 (0.71) −13 % (−15 %) 7 067 085
AN(10) 0 % (0 %) 26 % (28 %) 0.86 (0.82) 0.75 (0.70) −13 % (−15 %) 7 067 085
KF(RMSE) 0 % (−0 %) 25 % (28 %) 0.86 (0.83) 0.78 (0.74) −10 % (−11 %) 7 067 085
QM 3 % (3 %) 31 % (33 %) 0.81 (0.78) 0.81 (0.78) 0 % (−1 %) 7 067 085
MA(1) −0 % (−1 %) 31 % (36 %) 0.81 (0.74) 0.82 (0.75) 2 % (0 %) 7 067 085
PERS(1) 0 % (0 %) 36 % (42 %) 0.75 (0.65) 0.75 (0.65) 0 % (−0 %) 7 067 085
RAW 18 % (17 %) 38 % (39 %) 0.75 (0.72) 0.53 (0.50) −29 % (−30 %) 7 067 085

d GBM −1 % (−1 %) 16 % (18 %) 0.91 (0.88) 0.84 (0.80) −7 % (−9 %) 295 617
AN(10) 0 % (0 %) 16 % (19 %) 0.90 (0.86) 0.78 (0.73) −13 % (−15 %) 295 617
KF(RMSE) 0 % (−0 %) 15 % (18 %) 0.91 (0.88) 0.85 (0.80) −7 % (−9 %) 295 617
QM 3 % (2 %) 20 % (22 %) 0.86 (0.84) 0.91 (0.87) 5 % (4 %) 295 617
MA(1) −0 % (−1 %) 16 % (22 %) 0.91 (0.82) 0.92 (0.81) 1 % (−2 %) 295 617
PERS(1) 0 % (0 %) 20 % (29 %) 0.85 (0.70) 0.85 (0.70) −0 % (−0 %) 295 617
RAW 18 % (17 %) 30 % (30 %) 0.76 (0.74) 0.55 (0.52) −28 % (−29 %) 295 617

d1max GBM −8 % (−8 %) 16 % (18 %) 0.86 (0.83) 0.80 (0.75) −8 % (−10 %) 295 617
AN(10) −4 % (−4 %) 15 % (17 %) 0.86 (0.82) 0.74 (0.70) −14 % (−15 %) 295 617
KF(RMSE) −3 % (−4 %) 13 % (15 %) 0.89 (0.85) 0.81 (0.77) −8 % (−10 %) 295 617
QM −1 % (−1 %) 17 % (18 %) 0.82 (0.80) 0.83 (0.80) 1 % (−0 %) 295 617
MA(1) 3 % (2 %) 15 % (18 %) 0.86 (0.79) 0.87 (0.77) 1 % (−2 %) 295 617
PERS(1) 0 % (0 %) 17 % (23 %) 0.82 (0.67) 0.82 (0.67) −0 % (−1 %) 295 617
RAW 2 % (2 %) 19 % (19 %) 0.76 (0.74) 0.55 (0.52) −28 % (−29 %) 295 617

d8max GBM −4 % (−5 %) 15 % (17 %) 0.89 (0.86) 0.83 (0.79) −7 % (−8 %) 295 617
AN(10) −1 % (−2 %) 15 % (17 %) 0.88 (0.85) 0.78 (0.73) −12 % (−14 %) 295 617
KF(RMSE) −1 % (−2 %) 13 % (15 %) 0.91 (0.88) 0.85 (0.81) −7 % (−8 %) 295 617
QM 1 % (2 %) 17 % (19 %) 0.85 (0.83) 0.88 (0.84) 3 % (1 %) 295 617
MA(1) 1 % (0 %) 15 % (18 %) 0.89 (0.83) 0.89 (0.81) 0 % (−2 %) 295 617
PERS(1) 0 % (0 %) 18 % (24 %) 0.84 (0.70) 0.84 (0.70) −0 % (−1 %) 295 617
RAW 7 % (7 %) 21 % (22 %) 0.79 (0.76) 0.57 (0.54) −27 % (−29 %) 295 617

spectively) and slope (skills tend to progressively decrease
from D+ 1 to D+ 4, although slightly).

The QM method shows quite similar results to the MA(1)
method, but usually with worse (better) performance at short
(long) lead time. Thus, the deterioration of the performance
with lead time tends to be slower in QM than in MA(1). Bi-
ases in O3 concentrations and O3 variability are often slightly
higher with QM but remain relatively low (below ±5 %).
The strongest improvements in QM compared to MA(1) are
found at the hourly scale for the longest lead times. On these
continuous metrics, the skills of the QM method are only
slightly positive or even negative at D+ 1 (except at the
hourly scale, where skill scores are always positive) but are
much higher betweenD+2 andD+4 and often slightly bet-
ter than MA(1).

Compared to the previous MOS methods, the KF method
provides a substantial improvement on both nRMSE and
PCC, leading to skill scores of 0.3–0.4 and 0.4–0.6, respec-
tively. However, this comes at the cost of an underestimation
of the variability (nMSDB around −10 %, still much bet-
ter than the −30 % of nMSDB found in RAW). As for the

previous methods, some small biases appear at d1max scale
and to a lesser extent at d8max scale, but applying this MOS
method directly on d1max or d8max O3 mixing ratios rather
than hourly data (i.e., dd1max and dd8max scales) mitigates
the issue.

Overall, comparable results are found with AN and GBM
methods, but the aforementioned issues are typically exacer-
bated. The negative biases at d1max and d8max timescales
are much higher, especially for GBM, but can be removed at
dd1max and dd8max scales. Similarly, the underestimation
of the variability is much more pronounced, with nMSDB
values around −15 % and −10 % for AN and GBM, respec-
tively. These two MOS methods thus show a good perfor-
mance for predicting the central part of the distribution of
O3 mixing ratios but have more difficulty in capturing the
lowest and highest O3 concentrations observed on the tails
of this distribution. Besides the negative nMSDB, this typi-
cally leads to lower slopes compared to the other MOS meth-
ods. Skill scores on nRMSE and PCC span over a relatively
large range of values depending on the timescale and the lead
time. They are typically the lowest at short lead times and/or
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Figure 3. Statistical performance of RAW and MOS-corrected CAMS O3 forecasts for continuous metrics (top panels) and categorical
metrics related to the exceedance of the target (intermediate panels) and information threshold (bottom panels). The different symbols depict
results obtained at different timescales (h: hourly; d: daily mean; d1max/dd1max: daily 1 h maximum; d8max/dd8max: daily 8 h maximum).
In each panel, results are shown for the different methods (each with a given color). The overlaying symbols of decreasing transparency show
the results at the different lead days from D+ 1 (most transparent) to D+ 4 (most opaque). Metrics: normalized mean bias (nMB in %),
normalized root mean square error (nRMSE in percent), Pearson correlation coefficient (PCC), slope (unitless), normalized mean standard
deviation bias (nMSDB in percent), hit rate (H ), false alarm rate (F ), frequency bias (FB), success ratio (SR), critical success index (CSI),
Peirce skill score (PSS), area under the ROC curve (AUC). See Sect. 2.4 and 2.5 for details on timescales and metrics, respectively.

at specific timescales (e.g., d1max) but can reach among the
highest values (although slightly lower than KF), for instance
with GBM, at the hourly and daily scale at D+2, D+3 and
D+ 4. Concerning the slope, the aforementioned issues are
illustrated here by the typically low skills of both AN and (to
a slightly lesser extent) GBM methods, often worse than the
other MOS methods.

Therefore, on this set of continuous metrics, the impact of
the MOS corrections on the performance strongly varies with
the method considered. Among the different MOS meth-

ods, KF seems to give the most balanced improvement with
biases mostly removed, errors and correlation substantially
improved, and variability not too strongly underestimated.
However, it is worth noting that since some MOS methods
(namely QM, AN and GBM) can ingest increasing quantities
of input data over time, we can expect their performance to
change (increase) between the beginning of the period, when
very limited past data are available, and the end of the pe-
riod, when more past data have been accumulated. Investi-
gating this aspect would ideally require a proper analysis,
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Figure 4. Similar to Fig. 3 for skill scores (see Sect. 2.5 for details on the calculation of these skill scores). For clarity, the highest negative
values (mostly obtained on RAW and/or shortest lead times) are cut but can be seen in Fig. S1 in the Supplement.

comparing the performance obtained over a given period us-
ing a variable number of past input data. Here, we simply
provide some insights by comparing the relative difference in
performance of these MOS methods against RAW (1) when
evaluated over the entire 2018–2019 period (i.e., including
the beginning of the period of study when MOS methods can
only rely on limited past data) and (2) when evaluated only
over the year 2019 (i.e., when the first year is discarded). In
the first case (evaluation over 2018–2019), the QM, AN and
GBM show nRMSE 31 %, 41 % and 44 % lower than RAW,
respectively. In the second case (evaluation over 2019), these
MOS methods give nRMSE 33 %, 44 % and 49 % lower than
RAW. Therefore, this basic comparison suggests that these
MOS methods can indeed benefit from a larger number of
past data. Here, the change is more pronounced for GBM,
which suggests that this MOS method is the one benefiting
the most from more past training data. For GBM, this im-

provement is mainly due to the relatively poor predictions
made during the very first months of 2018, when the training
dataset was the most limited (see time series in Fig. F1 in
Appendix F).

3.3 Performance on categorical forecasts

3.3.1 RAW forecasts

Focusing now on the performance for detecting target and
information thresholds, Fig. 3 (middle and bottom panels)
shows a comprehensive set of metrics, where the most inter-
esting ones are probably CSI and PSS, followed by SR and
AUC.

The RAW forecast shows lowH and F (very few true pos-
itives and false negatives). With an intermediate SR (0.45;
i.e., only 45 % of the exceedances predicted by RAW in-
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deed occur), it can be seen as a moderately “conservative”
forecast for target thresholds (d8max O3 above 60 ppbv); the
term “conservative” here refers to forecasting systems that
predict exceedances only with strong evidence (it thus pre-
dicts very few exceedances but with a moderate confidence).
Despite showing a reasonably good AUC, the RAW forecast
strongly fails at reproducing high O3 mixing ratios, as illus-
trated by the low FB (0.25; i.e., RAW predicts 4 times fewer
exceedances than the observations), and finally shows the
worst performance in terms of CSI (0.10) or PSS (0.15). In
comparison, the PERS(1) reference forecast provides better
detection skills regarding target thresholds. This is especially
true at short lead days, but the performance then quickly de-
creases with the lead time, with CSI and PSS reduced from
about 0.27 and 0.42 atD+1 to about 0.14 and 0.23 atD+4.
Except FB, all categorical metrics show a similarly strong
sensitivity to the lead time. With PERS(1) taken as a refer-
ence, the skill scores of RAW clearly show negative and pos-
itive values for H and F , respectively (i.e., it predicts fewer
true exceedances but produces fewer false alarms). The con-
sequence in terms of SR skills is positive but only beyond
D+ 1. With positive skills on AUC, RAW is able to dis-
criminate exceedances and non-exceedances slightly better
than PERS(1), but only beyond D+ 2. However, its skills
on the important CSI and PSS metrics are strongly negative
at all lead times, which highlights its overall deficiency for
correctly predicting the exceedances of the target threshold
(i.e., without too many false alarms).

Exceedances of the information threshold (d1max O3
above 90 ppbv) appear even more difficult to capture for the
RAW forecast, with CSI and PSS typically below 0.02. How-
ever, given that it is also more difficult for PERS(1) to cap-
ture these exceedances, the skills of RAW on these two met-
rics are substantially better (although still negative) on this
information threshold compared to the target threshold. Re-
sults also show much better SR, especially at the longest
lead times (i.e., most of the predicted exceedances indeed
occur), but this apparently good result has to be put in front
of the extremely low H (i.e., RAW almost never predict ex-
ceedances).

3.3.2 MOS-corrected forecasts

Although the RAW forecast alone shows quite limited skills
for predicting high O3 exceedances, its potential usefulness is
nicely illustrated by the results obtained when it is combined
with observations, such as in MA(1), QM or KF(RMSE).
When considering the target threshold exceedances, CSI and
PSS are indeed greatly improved with these last MOS meth-
ods and to a lesser extent by the two other methods, AN(10)
and GBM. KF(RMSE), AN(10) and GBM clearly appear
as the most “conservative” MOS approaches here, with rel-
atively low H and F but strong SR. In other terms, they
predict fewer exceedances but with a higher reliability. In
terms of skill scores, all these MOS-corrected forecasts al-

Figure 5. Similar to Fig. 1 but for observations and D+4 O3 fore-
casts corrected with MA(1) and QM methods.

ways have better skills than RAW. However, only MA(1) al-
ways beats PERS(1) at all lead times, while the other MOS
methods provide positive skills only beyondD+1 andD+2.
This MA(1) method thus clearly outperforms the other meth-
ods at D+ 1, while differences in performance are reduced
when considering longer lead times. At longer lead times, the
ranking between these different MOS methods varies sub-
stantially depending on the considered metric, with MA(1),
KF(RMSE) and GBM showing the best skills on CSI and
MA(1) and QM showing the best skills on PSS.

However, when considering the detection of the informa-
tion threshold, the KF(RMSE), AN(10) and GBM methods
still benefit from a strong SR but are missing too many of
the observed exceedances, which leads to a dramatic deteri-
oration of both CSI and PSS. As for RAW, this means that
there is a high chance that an exceedance predicted by these
methods indeed occurs, but such exceedances are too rarely
predicted. Most of their skill scores on PSI are found to be
negative, while only a few positive skills are obtained on CSI
for specific timescales in KF and GBM methods. For detect-
ing such high O3 values, the best methods are finally MA(1)
for the shortest lead times. At longer lead times, the skills
of MA(1) quickly deteriorate, and the best skills are finally
obtained for QM. Both methods reproduce fairly well the ge-
ographical distribution of high-O3 episodes (PERS(1) repro-
duces it perfectly, by construction), as shown in Fig. 5, but
still with very low SR (below 0.25 for exceedances of the
information threshold).

3.4 Sensitivity tests

Each of the forecast methods considered in this study relies
on a specific configuration, e.g., the time window of PERS or
MA methods, the metric used internally in KF for optimizing
the variance ratio, the number of analogs taken into account
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Table 2. Evaluation of the different forecast methods on categorical metrics, at D+ 1 (and D+ 4 in parentheses), for both target and
information thresholds.

Timescale Forecast H F SR CSI PSS AUC N

and threshold

d8max> 60 GBM 0.30 (0.23) 0.01 (0.01) 0.72 (0.67) 0.27 (0.21) 0.29 (0.23) 0.95 (0.93) 295 617
AN(10) 0.31 (0.24) 0.01 (0.01) 0.73 (0.66) 0.28 (0.22) 0.30 (0.24) 0.95 (0.94) 295 617
KF(RMSE) 0.40 (0.30) 0.01 (0.01) 0.74 (0.67) 0.35 (0.26) 0.39 (0.29) 0.97 (0.95) 295 617
QM 0.47 (0.40) 0.02 (0.02) 0.47 (0.43) 0.31 (0.26) 0.44 (0.37) 0.94 (0.92) 295 617
MA(1) 0.62 (0.39) 0.02 (0.02) 0.57 (0.44) 0.42 (0.26) 0.59 (0.36) 0.96 (0.92) 295 617
PERS(1) 0.51 (0.27) 0.02 (0.03) 0.51 (0.27) 0.34 (0.15) 0.49 (0.23) 0.95 (0.84) 295 617
RAW 0.17 (0.13) 0.01 (0.01) 0.45 (0.41) 0.14 (0.11) 0.16 (0.12) 0.90 (0.88) 295 617

dd8max> 60 GBM 0.39 (0.33) 0.01 (0.01) 0.65 (0.60) 0.32 (0.27) 0.38 (0.32) 0.95 (0.94) 286 803
AN(10) 0.36 (0.29) 0.01 (0.01) 0.69 (0.62) 0.31 (0.25) 0.35 (0.28) 0.96 (0.94) 286 803
KF(RMSE) 0.46 (0.34) 0.01 (0.01) 0.71 (0.62) 0.39 (0.28) 0.46 (0.33) 0.97 (0.95) 286 803
QM 0.44 (0.38) 0.02 (0.02) 0.47 (0.43) 0.29 (0.25) 0.42 (0.35) 0.94 (0.92) 286 803
MA(1) 0.60 (0.38) 0.02 (0.02) 0.59 (0.46) 0.42 (0.26) 0.58 (0.36) 0.97 (0.92) 286 803
PERS(1) 0.51 (0.27) 0.02 (0.04) 0.50 (0.27) 0.34 (0.16) 0.49 (0.24) 0.95 (0.84) 286 803
RAW 0.14 (0.11) 0.01 (0.01) 0.45 (0.42) 0.12 (0.09) 0.14 (0.10) 0.89 (0.88) 286 803

d1max> 90 GBM 0.00 (0.00) 0.00 (0.00) 1.00 (nan) 0.00 (0.00) 0.00 (0.00) 0.93 (0.92) 295 617
AN(10) 0.00 (0.00) 0.00 (0.00) 0.50 (1.00) 0.00 (0.00) 0.00 (0.00) 0.95 (0.91) 295 617
KF(RMSE) 0.02 (0.01) 0.00 (0.00) 0.50 (1.00) 0.01 (0.01) 0.02 (0.01) 0.96 (0.95) 295 617
QM 0.13 (0.11) 0.00 (0.00) 0.19 (0.19) 0.09 (0.08) 0.13 (0.11) 0.94 (0.93) 295 617
MA(1) 0.24 (0.08) 0.00 (0.00) 0.21 (0.13) 0.12 (0.05) 0.24 (0.07) 0.96 (0.94) 295 617
PERS(1) 0.12 (0.06) 0.00 (0.00) 0.12 (0.06) 0.07 (0.03) 0.12 (0.06) 0.95 (0.82) 295 617
RAW 0.00 (0.00) 0.00 (0.00) 0.00 (1.00) 0.00 (0.00) −0.00 (0.00) 0.93 (0.92) 295 617

dd1max> 90 GBM 0.07 (0.02) 0.00 (0.00) 0.57 (0.67) 0.06 (0.02) 0.07 (0.02) 0.96 (0.95) 288 980
AN(10) 0.02 (0.01) 0.00 (0.00) 0.67 (1.00) 0.02 (0.01) 0.02 (0.01) 0.96 (0.93) 288 980
KF(RMSE) 0.09 (0.02) 0.00 (0.00) 0.68 (0.50) 0.09 (0.02) 0.09 (0.02) 0.96 (0.95) 288 980
QM 0.17 (0.14) 0.00 (0.00) 0.19 (0.18) 0.10 (0.08) 0.17 (0.14) 0.93 (0.92) 288 980
MA(1) 0.25 (0.06) 0.00 (0.00) 0.24 (0.11) 0.14 (0.04) 0.25 (0.06) 0.96 (0.94) 288 980
PERS(1) 0.13 (0.06) 0.00 (0.00) 0.12 (0.06) 0.07 (0.03) 0.13 (0.06) 0.95 (0.84) 288 980
RAW 0.00 (0.00) 0.00 (0.00) nan (nan) 0.00 (0.00) 0.00 (0.00) 0.92 (0.91) 288 980

nan: not a number.

in AN, the choice of input features, or metrics used internally
for fitting the ML model in GBM. This configuration can
substantially influence their general performance, although
in a different way depending on the metric used. In the previ-
ous sections, we evaluated the performance of these different
methods considering a relatively simple baseline configura-
tion. In this section, we discuss some of these choices and
investigate their impact on the performance through different
sensitivity tests. Corresponding statistical results on contin-
uous and categorical metrics are given in the tables in the
Supplement.

3.4.1 Persistence method

The persistence method with a 1 d time window (PERS(1))
provides a reference forecast for assessing the skill scores on
the different RAW and MOS-corrected forecasts. Here we
explore how the time window, from 1 to 10 d (hereafter re-
ferred to as PERS(n), with n the window in days), impacts

the performance of this PERS forecast. Results are shown in
Fig. G1 in Appendix G.

Increasing the window leads to a growing negative bias on
d1max and d8max scales that can be substantially reduced
when working at dd1max and dd8max scales, i.e., when ap-
plying the PERS approach directly on daily 1 and 8 h max-
ima rather than on the hourly time series. The differences
between the two approaches originate from the day-to-day
variability in the hour of the day when O3 mixing ratios peak.
For illustration purposes, let us assume that O3 peaks be-
tween 15 and 17 h; on a given day, O3 mixing ratios at 15, 16
and 17 h reach 50, 60 and 50 ppbv and on the following day
70, 70 and 80 ppbv. Then, the PERS(2)dd1max O3 would be
70 ppbv (mean of 60 and 80 ppbv), while the PERS(2)d1max
O3 would be only 65 ppbv (maximum of the mean diurnal
profile of these 2 d, in this case 60, 65 and 65 ppbv). Con-
versely, both nRMSE and PCC can be slightly improved with
longer windows, but at the cost of a growing underestima-
tion of the variability. As a consequence, both H and F are
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slightly reduced, which means that PERS forecasts become
more “conservative” with longer windows. The impact on SR
for detecting exceedances of the target threshold is low for
short lead times but positive for the longest ones. Interest-
ingly, for information thresholds, the best SRs are obtained
around 4–7 d. However and more importantly, using longer
windows deteriorates the general performance of the fore-
cast, as shown by the decrease in both CSI and PSS, espe-
cially at short lead times. Interestingly, there are also impor-
tant differences in terms of AUC for detecting exceedances
of the target threshold depending on the lead day, ranging
from a decrease in AUC with longer windows at D+ 1 to an
increase at D+ 4.

Therefore, for detecting exceedances, considering PSS
and/or CSI as the most relevant metrics, the PERS method
shows its best performance for a time window of 1 d. How-
ever, it gives very “liberal” O3 forecasts with rather poor SR.
The term “liberal” is borrowed here from Fawcett (2006) to
designate forecasting systems that predict exceedances with
weak evidence, in opposition with the aforementioned term
“conservative”. Longer time windows can improve SR but
result in an important deterioration of CSI and PSS, particu-
larly for the shorter lead times (D+ 1 and D+ 2).

3.4.2 Moving average method

Here, a sensitivity test is performed on MA with windows
ranging between 1 and 10 d (hereafter referred to as MA(n),
with n the window in days). Results are shown in Fig. G2
in Appendix G. Increasing the window length impacts the
MA performance in a very similar way to PERS, especially
for continuous metrics. Regarding the detection of the target
threshold, the main noticeable difference is the absence of
strong deterioration of some metrics like AUC, SR or CSI
for shorter lead times. Regarding the detection of the infor-
mation threshold, the clearest difference with PERS concerns
the SR that substantially improves when considering longer
windows. However, the deterioration of both CSI and PSS
persists.

Therefore, the detection of O3 exceedances with the MA
method shows its best performance with the shortest win-
dows (1 d). As for PERS, the corresponding forecasts are
quite liberal with low SR. However, in contrast to PERS, the
SR associated with high thresholds can be substantially im-
proved when using longer windows, which may be an inter-
esting option if the corresponding deterioration of CSI and
PSS is seen as acceptable.

3.4.3 Kalman filter method

As explained in Sect. 2.3.3 (and Appendix B), the behavior
of the KF intrinsically depends on the σ 2

η /σ
2
ε ratio chosen.

So far, this parameter has been adjusted dynamically (and
updated regularly) to optimize the RMSE of past data. Here,
a sensitivity test is performed with alternative strategies in

which the variance ratio is chosen to optimize the SR, CSI,
PSS or AUC with threshold values of 60 or 90 ppbv (here-
after referred to as SR-60, SR-90, CSI-60, CSI-90, PSS-60,
PSS-90, AUC-60 and AUC-90). The objective is to investi-
gate the extent to which tuning the KF algorithm with appro-
priate categorical metrics allows improving the exceedance
detection skills.

Results (Fig. G3 in Appendix G) show that this tuning
strategy barely impacts the performance obtained on con-
tinuous metrics, except for CSI-60 and PSS-60 that show
slightly deteriorated RMSE and PCC. Only small differences
are also found on target threshold exceedances, except again
with these two methods that show slightly improved CSI and
PSS at short lead time. Results on information threshold ex-
ceedances show more variability depending on the timescale,
but both CSI and PSS can typically be improved when used
internally in the KF procedure, although often only at short
lead times. The choice of the threshold in this optimizing
metric leads to more ambiguous results. For instance, be-
sides giving the best PSS on the target threshold, KF(PSS-
60) also gives better results than KF(PSS-90) on the informa-
tion threshold. Reasons behind this behavior are not clear but
may be due to some instabilities brought into PSS-90 by the
rareness of such exceedances. Indeed, a common and well-
known issue of PSS (as well as CSI and most other categori-
cal metrics) is that it degenerates to trivial values (either 0 or
1) for rare events: as the frequency of the event decreases,
the numbers of hits (a), false alarms (b) and missed ex-
ceedances (c) all decay toward zero but typically at different
rates, which causes the metric to take meaningless values (ei-
ther 0 or 1 in the case of PSS) (Jolliffe and Stephenson, 2011;
Ferro and Stephenson, 2011). All in all, the performance for
detecting such high O3 concentrations remains very poor, es-
pecially far in time, but this sensitivity test demonstrates that
choosing an appropriate tuning strategy can help to slightly
improve the detection skills at a potential cost in terms of
continuous metrics.

3.4.4 Analog method

The AN method identifies the closest analog days to estimate
the corresponding prediction and thus depends on the number
of analog days taken into account. We performed a sensitivity
test with 1, 5, 10, 15, 20, 25 and 30 analog days (hereafter re-
ferred to as AN(N ), with N the number of analogs). Results
are shown in Fig. G4 in Appendix G.

Although the best slopes are found with the smallest num-
ber of analogs, the best nRMSE and PCC are obtained using
around 5–15 analogs. Using too many analogs increases the
underestimation of the variability and deteriorates the slope.
Regarding the detection of target thresholds, increasing the
number of analogs makes the forecast more “conservative”
(lower H and F , higher SR) and deteriorates the CSI and
PSS. When focusing on information threshold exceedances,
the AN forecasts based on 10 analogs or more never reach
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such high O3 values. The highest CSI and PSS are finally
obtained with one single analog.

Therefore, similarly to PERS and MA methods that
reached their best skills for the shortest time windows, with
AN the best CSI and PSS skills are obtained when using the
lowest number of analogs (with a cost in the continuous met-
rics, as for PERS and MA). Computing the AN-corrected
O3 mixing ratios based on a larger number of analogs gives
smoother predictions, and our choice to weight the average
by the distance to the different analogs is unable to substan-
tially mitigate this issue.

3.4.5 Gradient boosting machine method

Although GBM gives among the best RMSE and PCC, it
strongly underestimates the variability in O3 mixing ratios,
with critical consequences in terms of detection skills, es-
pecially for the highest thresholds (e.g., d1max> 90 ppbv).
This is at least partly due to the low frequency of occurrence
of such episodes and their corresponding low weight in the
entire population of points used for the training. One way of
mitigating this issue consists of specifying different weights
to the different training instances. This aims at forcing the
GBM model to better predict the instances of higher weight,
at the cost of a potential deterioration of the performance on
the instances of lower weight.

In order to assess the extent to which it may improve the
performance of the GBM MOS method, we test here differ-
ent weighting strategies. At each training phase, we compute
the absolute distance D between all observed O3 mixing ra-
tio instances and the mean O3 mixing ratio (averaged over
the entire training dataset). Then several sensitivity tests are
performed, weighting the training data byD,D2 andD3, re-
spectively (hereafter referred to as GBM(W), GBM(W2) and
GBM(W3), respectively). Using such weights, we want the
GBM model to better predict the lower and upper tails of the
O3 distribution in order to better represent the variability in
the O3 mixing ratios. Given that the O3 mixing ratio distri-
bution is typically positively skewed, the highest weights are
put on the strongest positive deviations from the mean.

As a parallel sensitivity test, we explore the performance
of these different ML models but remove the input feature
corresponding to the previous (1 d before) observed O3 mix-
ing ratio (hereafter referred to as GBM(noO), GBM(noO,W),
GBM(noO,W2) and GBM(noO,W3)). This additional test is
of interest for operational purposes since O3 observations are
not always available in near real time. Results are shown in
Fig. G5 in Appendix G.

As expected, the results highlight a deterioration of the
RMSE and PCC combined with an improvement in the slope
and nMSDB. The negative bias affecting the variability with
the unweighted GBM is substantially reduced when using
weights, although too-strong weights (as in GBM(W3) for
instance) can lead to a slight overestimation of the variability
at specific timescales.

Regarding the skills for detecting target threshold ex-
ceedances, stronger weights typically increase both H and
F and improve the (underestimated) FB but deteriorate the
SR and AUC (the forecasts become more liberal). Regarding
the more balanced metrics (of strongest interest here), adding
more weights on the tails of the O3 distribution typically has
a positive although small impact on CSI and PSS. Regard-
ing the detection of information threshold exceedances, both
CSI and PSS can also be slightly improved by adding some
weight into the GBM, but the performance for detecting such
high O3 values remains relatively low. The interest of using
the O3 concentration observed 1 d before is found here to be
limited.

Therefore, adopting an appropriate weighting strategy is
simple yet effective for achieving slightly better O3 ex-
ceedance detection skills in exchange for a reasonable dete-
rioration in RMSE and PCC. Overall, the improvements are
relatively small, but still valuable given the initially very low
detection skills for the strongest O3 episodes.

3.4.6 Influence of the meteorological input data in AN
and GBM methods

In the previous sections, O3 corrections with AN and GBM
methods relied on HRES meteorological forecasts. Here, we
investigate the impact of using alternative meteorological
data, namely the ERA5 meteorological reanalysis. For both
AN and GBM methods, the MOS-corrected O3 mixing ra-
tios obtained with these two meteorological datasets are very
similar, with PCC above 0.95. The results obtained against
observations are shown in Fig. G6 in Appendix G, for the
AN(1), AN(5), AN(10) and GBM methods. Since O3 pre-
dictions are close, the statistical performance against obser-
vations is also very consistent between both meteorological
datasets. For both continuous and categorical metrics, the
performance obtained with HRES data is found to be slightly
lower than with ERA5. Discrepancies between both meteo-
rological datasets tend to increase with lead time, with GBM
being slightly more sensitive to the meteorological input data
than AN.

Therefore, this experiment highlights a relatively low sen-
sitivity of both AN and GBM methods to the two meteoro-
logical datasets tested here. The very similar results obtained
with IFS and ERA5 meteorological input data are likely not
explained by the fact that both datasets give very similar val-
ues for the different meteorological variables, but rather by
the intrinsic characteristics of both AN and GBM methods.
The AN method makes use of the meteorological data only
to identify past days with more or less similar meteorological
conditions and can thus handle to some extent the presence of
biases in meteorological variables as far as they are system-
atic (and thus do not impact the identification of the analogs).
On the other hand, the GBM method uses past information
to learn the complex relationship between O3 mixing ratios
and the other ancillary features. Although the better the in-
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put data, the higher the chances are to fit a reliable model for
predicting O3, the GBM models can also indirectly learn at
least part of the potential errors affecting some meteorologi-
cal variables and how they relate to O3 mixing ratios. There-
fore, the presence of biases in some of the ancillary features
is not expected to strongly impact the performance of the
predictions.

4 Discussion and conclusions

We demonstrated the strong impact of MOS methods to en-
hance raw CAMS O3 forecasts, not only by removing po-
tential systematic biases but also by correcting other issues
related to the distribution of and/or variability in O3 mixing
ratios. All MOS approaches were indeed able to substantially
improve at least some aspects of the RAW O3 forecasts, first
and foremost the RMSE and PCC, for which the strongest
improvements are obtained with the most sophisticated MOS
methods like KF, AN or GBM. However, although all MOS
methods were able to increase the underestimated variabil-
ity in O3 mixing ratios of RAW, the strongest improvements
in slope and nMSDB were obtained with more simple MOS
methods like MA or QM. O3 mixing ratios corrected with
AN, GBM and to a lesser extent KF remained too smooth,
and such a deficiency has a major impact on the detection
skills for high O3 thresholds. All in all, the best PSS and CSI
are usually obtained with the more simple MOS methods.
Therefore, there is a clear trade-off between the continuous
and categorical skills scores, as also shown by the different
sensitivity tests. The quality of a MOS-corrected forecast as-
sessed solely based on metrics like RMSE or PCC thus tells
little about the forecast value, here understood as information
a user can benefit from to make better decisions, notably for
mitigating O3 short-term episodes.

More generally, our study highlights the complexity of
identifying the “best” MOS method given the multiple di-
mensions of the problem. The relative performance of the
MOS methods can vary depending on the metric used, the
threshold considered in the case of categorical metrics (or
more specifically the base rate), the timescale at which MOS
corrections are computed and/or evaluated, or the lead time.
Other dimensions not covered by this study, like the season-
ality of the performance, are also susceptible to shedding a
different light on the intercomparison.

Among the continuous metrics, both RMSE and PCC pro-
vide initial valuable information on the performance of a
MOS method. However, a MOS method can give the best
RMSE and PCC, yet the poorest high O3 detection skills.
This was the case of the unweighted GBM method. Contin-
uous metrics like the model-versus-observation linear slope
or nMSDB provide important complementary information,
potentially less misleading, especially in a context where the
final objective is to predict episodes of strong O3. Among
the categorical metrics, although results were presented on

a relatively large set of metrics, not all metrics benefit from
the same properties. PSS may be considered to be one of the
most valuable, notably due to its independence from the base
rate, in contrast to CSI. Such a property is particularly use-
ful when comparing scores over different regions and/or time
periods where the frequency of observed exceedances might
vary, for instance due to different emission forcing and/or
meteorological conditions. In an operational context where
statistical metrics are continuously monitored, the indepen-
dence from the base rate is an interesting property because
it may change with time, which prevents a consistent com-
parison between different periods. However, a well-known
issue of both PSS and CSI (as well as many other categori-
cal metrics) is that they degenerate to trivial values (either 0
or 1) as events become rarer (Jolliffe and Stephenson, 2011;
Ferro and Stephenson, 2011), which should restrict their use
to the detection of not-too-rare (and therefore not-too-high)
O3 episodes. In this study, the base rate of the target threshold
was likely sufficiently high (s around 5 %), but we were prob-
ably already at the limit regarding the information thresh-
old (s around 0.1 %). All in all, the selection of the evalua-
tion metrics depends on the subjective choices and intended
use and is fundamentally a cost–loss problem where the user
should arbitrate between the cost of missing exceedances and
predicting false alarms.

The performance of the RAW forecasts was found to be
only slightly sensitive to the lead day, but this sensitivity was
substantially stronger with some MOS methods (although
lower than for the persistence method). This aspect is im-
portant, although different users may have different needs
in terms of lead time, depending on the intended use of
the AQ forecast. Forecasts at D+ 1 may already be useful
for some applications like warning the vulnerable population
in advance so that they could adapt their outdoor activities.
However, implementing short-term emission reduction mea-
sures at the local scale usually goes through decisions taken
at different administrative and political levels and thus typ-
ically requires forecasts at least at D+ 2. If such measures
would have to be taken at a larger scale, the occurrence of O3
episodes would probably need to be forecasted even more in
advance.

We saw that some forecast methods like PERS or MA can
provide a reasonable performance atD+1 but quickly deteri-
orate when looking further in the future (while other methods
like GBM, AN or QM were less impacted by the lead time).
Actually, the performance of our PERS(1) reference forecast
obviously depends on the typical duration of O3 episodes
over the region of study; one (single) episode is defined here
as a suite of successive days showing an exceedance of a
given threshold at a given station. Over the Iberian Penin-
sula domain in 2018–2019, considering the target threshold
(d8max> 60 ppbv), a total of 6540 such O3 episodes were
observed in the O3 monitoring network with min, mean and
max duration of 1, 2 and 27 d (and 5th, 25th, 50th, 75th
and 95th percentiles of 1.0, 1.0, 1.0, 2.0 and 5.0 d). Note the
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27 d long O3 exceedance occurred in June–July 2019 about
30 km north of Madrid (station code ES1802A). Consider-
ing the information threshold, 240 episodes were observed,
with min, mean and max duration of 1, 1.1 and 5 d (and 5th,
25th, 50th, 75th and 95th percentiles of 1.0, 1.0, 1.0, 1.0 and
2.0 d). This may partly explain why the deterioration of per-
formance with lead time was stronger for target thresholds
compared to information thresholds.

For operational purposes, several important aspects are
to be taken into account. A first aspect concerns the input
data required by the MOS method. Does the MOS method
rely on observations, models or a combination of both?
When the method relies on observations, are they needed
in near real time? How many historical data are required?
When the method relies on historical data, to which extent
does the length of the historical dataset impact the perfor-
mance? Related to this last point, another essential aspect
concerns the ability of the MOS method to handle progres-
sive and/or abrupt changes in the AQ forecasting system
(e.g., configuration, parameterizations, input data like emis-
sions) and/or in the Earth’s atmosphere (long-term trends,
anomalous events like the COVID-19-related emission re-
duction, climate change). In this framework, the year 2020
obviously offers a unique large-scale case study to investi-
gate the behavior of the different MOS methods.

MOS methods relying only on very recent data (namely
MA and KF methods) are evidently more adaptable to rapid
changes, which is a clear asset under changing atmospheric
conditions or modeling system configurations. On the other
hand, they naturally discard all the potentially useful infor-
mation available within the historical dataset. Methods like
QM, AN or GBM aim at extracting such information to pro-
duce better forecasts but implicitly rely on the assumption
that these historical data are still up to date and thus repre-
sentative of the current conditions, which can be too strong
a hypothesis when the historical dataset is long, or the emis-
sion forcing and/or meteorological conditions are changing
rapidly. In this study, we considered a relatively short 2-year
dataset, but using a longer training dataset would likely re-
quire building specific methodologies to tackle this issue, ei-
ther by identifying and discarding the potentially outdated
data or by giving them a lower weight in the procedure.

In this study, we implemented a relatively simple ML-
based MOS method. Although the performance on categori-
cal metrics was found to be limited despite encouraging re-
sults on continuous metrics, there is likely room for improve-
ments in near-future developments. In order to improve the
high O3 detection skills, potential interesting aspects to ex-
plore include testing other types of ML models, customizing
loss function and/or cross-validation scores, designing spe-
cific weighting strategies and/or re-sampling approaches, or
comparing regression and classification ML models for the
detection of exceedances. Along the preparation of this study,
some of them have been investigated, but more efforts are
required to draw firm conclusions regarding their potential

for better predicting O3 episodes. Finally, we focused here
on the CAMS regional ensemble, but including the individ-
ual CAMS models in the set of ML input features may help
to achieve better performance if the ML model is somehow
able to learn the variability (in time and space or during spe-
cific meteorological conditions) in strengths and weaknesses
of each model and build its predictions based on the most
appropriate subset of individual models. More generally, the
performance of the different MOS methods is expected to
vary from one raw model to another. Investigating the per-
formance and behavior of these methods on the different in-
dividual models might shed an interesting light on the results
obtained here with the ensemble and eventually allow some
of our conclusions to be generalized.

Appendix A: Quality assurance with GHOST

Using the metadata available in GHOST (Globally Har-
monised Observational Surface Treatment), a quality as-
surance screening is applied to O3 hourly observations, in
which the following data are removed: missing measure-
ments (GHOST’s flag 0), infinite values (flag 1), negative
measurements (flag 2), zero measurements (flag 4), measure-
ments associated with data quality flags given by the data
provider which have been decreed by the GHOST project ar-
chitects to suggest the measurements are associated with sub-
stantial uncertainty or bias (flag 6), measurements for which
no valid data remain to average in temporal window after
screening by key QA flags (flag 8), measurements showing
persistently recurring values (rolling seven out of nine data
points; flag 10), concentrations greater than a scientifically
feasible limit (above 5000 ppbv) (flag 12), measurements de-
tected as distributional outliers using adjusted boxplot analy-
sis (flag 13), measurements manually flagged as too extreme
(flag 14), data with too coarse reported measurement reso-
lution (above 1.0 ppbv) (flag 17), data with too coarse em-
pirically derived measurement resolution (above 1.0 ppbv)
(flag 18), measurements below the reported lower limit of
detection (flag 22), measurements above the reported upper
limit of detection (flag 25), measurements with inappropriate
primary sampling for preparing NO2 for subsequent mea-
surement (flag 40), measurements with inappropriate sam-
ple preparation for preparing NO2 for subsequent measure-
ment (flag 41) and measurements with erroneous measure-
ment methodology (flag 42).

Appendix B: Kalman filter

In this section, we briefly describe the application of the
Kalman filter as a MOS correction method. More details can
be found for instance in Delle Monache et al. (2006), while
Pei et al. (2017) provide a clear general introduction to the
Kalman filter. CAMS forecasts are available over 4 lead days,
from D+ 1 to D+ 4. We define here the time t as the day D
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at a given hour of the day (t+1 thus corresponds to D+1 at
this specific hour of the day). In an operational context, ob-
servations at this hour of the day are available only until time
t (included). In this framework, our primary objective in this
MOS approach is to estimate xt+1|t , the true (unknown) fore-
cast bias at time t + 1 using the information available until t
(included), which can then be used to correct the raw CAMS
forecast. Here, xt+1|t can be referred to as the a priori forecast
bias at time t + 1, while xt+1|t+1 can be referred to as the a
posteriori forecast bias at time t+1 as it takes advantage from
the information obtained at t + 1. We distinguish estimated
values from true values using a hat ( ˆ ) (x̂t+1|t therefore cor-
responds to the estimated value of xt+1|t ). In its application
as a MOS method, the Kalman filter considers the following
process equations for describing the time evolution of the
forecast bias:

xt+1|t = xt |t + ηt+1 ; (x̂t+1|t = x̂t |t ) (B1)

pt+1|t = pt |t + σ
2
η , (B2)

where ηt+1 represents the process noise and is assumed to
be a white noise term with normal distribution, zero mean,
variance σ 2

η and uncorrelated in time, and pt+1|t is the a pri-
ori expected error variance of the forecast bias estimate. Our
process equations here are thus quite simple as we assume
that the a priori forecast bias at time t + 1, xt+1|t , is similar
to the previous a posteriori forecast bias xt |t but with some
uncertainty ηt+1.

At time t + 1, an observation of the forecast bias xt+1,
denoted zt+1, is available but with some uncertainty (since
the measurement of the pollutant concentration necessarily
comes with some uncertainty):

zt+1 = xt+1+ εt+1, (B3)

where εt+1 represents the measurement noise and is assumed
to be a white noise term with normal distribution, zero mean,
variance σ 2

ε , uncorrelated in time and independent of the pro-
cess noise ηt+1. Then, the Kalman filter allows this observa-
tion zt+1 and the a priori estimate of the forecast bias xt+1|t
to be fused in order to obtain an a posteriori estimate of the
forecast bias xt+1|t+1:

Kt+1 = (pt+1|t + σ
2
η )/(pt+1|t + σ

2
η + σ

2
ε ) (B4)

x̂t+1|t+1 = x̂t+1|t +Kt+1(zt+1− x̂t+1|t ) (B5)

pt+1|t+1 = (pt+1|t + σ
2
η )(1−Kt+1), (B6)

whereKt+1 corresponds to the so-called Kalman gain used to
weight the respective importance of the a priori forecast bias
estimate (x̂t+1|t ) and its observed value (zt+1), and pt+1|t
corresponds to the expected error in the forecast bias esti-
mate (i.e., the variance of the forecast bias error: pt+1|t =

V ar(xt+1|t − x̂t+1|t )).
In practice, the KF algorithm first requires initialization

of the x̂0|0 and p0|0 values (any reasonable value can be

Figure B1. Workflow of the Kalman filter method.

chosen, given that the KF quickly converges). Then the al-
gorithm starts its first iteration. As a first step, the a-priori-
estimated value of the forecast bias x̂1|0 is obtained from x̂0|0
(in our problem, we simply have x̂t+1|t = x̂t |t ) and used to
correct the raw forecast of CAMS. As a second step, after ob-
taining the observed pollutant concentration, one can deduce
z1 and fuse it with x̂1|0 using the Kalman filter equations,
which gives us the a-posteriori-estimated value of the fore-
cast bias x̂1|1 that will be available for the second iteration.
An overview of this workflow is given in Fig. B1.

Solving these equations requires values to be assigned to
both variances σ 2

η and σ 2
ε . It can be demonstrated that, once

σ 2
ε is set to a fixed value (any reasonable value can be cho-

sen, for instance σ 2
ε = 1), the KF results mainly depend on

the σ 2
η /σ

2
ε variance ratio. Various strategies can be used to

choose an appropriate value for this variance ratio. This as-
pect is discussed in Sect. 2.3.3.

Appendix C: Analogs norm

The analogs (AN) method requires identification of which
past forecast days are the most similar to the current one.
Given a set of features to take into account, this similarity is
computed using the norm introduced by Delle Monache et al.
(2006):

‖Ft ,At ′‖ =

N∑
i=1

wi

σi

√√√√ T∑
t=−T

(
Fi,t+k −Ai,t ′+k

)2
, (C1)

with Ft the raw forecast at time t , At ′ an analog forecast at
time t ′, N the number of features taken into account, wi the
weight of the feature i, σi its standard deviation calculated
over past forecasts and T the half-width of the time window
over which to compute the metric (i.e., a value T = 2 means
that the squared difference between the forecast and the ana-
log will be computed over a±2 h time window). In our study,
we used weights of 1 for all features (wind speed, wind di-
rection, temperature, surface pressure) and T = 1.
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Appendix D: Tuning of the GBM models

The GBM models are tuned using a so-called randomized
search in which a range of values is given for each hyper-
parameter of interest and a total number of hyperparameters
combinations to test. After fixing the learning rate to 0.05
(learning_rate in the scikit-learn Python package), the tun-
ing of the GBM model was done over the following set of
hyperparameters: the tree maximum depth (max_depth: from
1 to 5 by 1), the subsample (subsample: from 0.3 to 1.0 by
0.1), the number of trees (n_estimators: from 50 to 1000 by
50) and the minimum number of samples required to be at a
leaf node (min_samples_leaf: from 1 to 50). As we are deal-
ing here with time series, this tuning is conducted through
a rolling-origin cross-validation in which validation data are
always posterior to train data.

Appendix E: Evaluation metrics

The continuous metrics used in this study are defined as fol-
lows:

MB=
1
N

N∑
i=1

mi − oi (E1a)

nMB=
MB
o

(E1b)

RMSE=

√∑N
i=1(mi − oi)2

N
(E1c)

nRMSE=
RMSE
o

(E1d)

PCC=
1

N − 1

N∑
i=1

(mi −m)(oi − o)
σmσo

(E1e)

nMSDB=
1
N

N∑
i=1

σi − σi, (E1f)

with mi and oi the predicted and observed mixing ratios,
m and m their corresponding mean, σm and σm their corre-
sponding standard deviation, and N the number of points.

The performance of the categorical forecasts of ex-
ceedances beyond a certain threshold can primarily be de-
scribed through a contingency table (Table E1). Based on
these individual numbers a (hits), b (false alarms), c (misses)
and d (correct rejections), a wide number of verification met-
rics have been proposed in the literature, often with incon-
sistent nomenclature. In order to avoid confusion, all met-
rics used in this paper systematically follow the nomencla-
ture given in the reference book of Jolliffe and Stephenson
(2011).

For a given total number of data n (= a+ b+ c+ d), the
2× 2 contingency table can be fully described by three in-
dependent measures, namely the base rate s independent
of the forecasting system (total proportion of observed ex-
ceedances, also known as the climatological probability of an
exceedance), the hit rate H (proportion of the observed ex-
ceedances that are correctly detected) and the false alarm rate
F (proportion of the observed non-exceedances erroneously
forecast as exceedances, to be distinguished from the false
alarm ratio). These metrics as well as the other categorical
metrics used in this study – frequency bias (FB), success ratio
(SR), critical success index (CSI) or Peirce skill score (PSS)
– are defined as follows:

s = (a+ c)/n (E2a)
H = a/(a+ c) (E2b)
F = b/(b+ d) (E2c)
PC= (a+ d)/n= (1− s)(1−F )+ sH (E2d)
FB= (a+ b)/(a+ c)= (1− s)F/s+H (E2e)

SR= (a)/(a+ b)= 1−
[

1+
(

s

1− s

)
H

F

]−1

(E2f)

CSI= a/(a+ b+ c)=
H

1+F (1− s)s
(E2g)

PSS=
ad − bc

(b+ d)(a+ c)
=H −F. (E2h)

Note that as shown in these formulas, any categorical met-
ric that is initially a function of a, b, c and d can be ex-
pressed in terms of s, H and F . One interest of considering
this s–H–F framework (so-called likelihood–base rate fac-
torization; see chapter 3 of Jolliffe and Stephenson, 2011,
for a detailed description) lies in the fact that, since the fore-
caster does not have any influence on s, the tri-dimensional
problem is reduced to a bi-dimensional problem (H and F ).
Since it is easily possible to maximize H (by always pre-
dicting an exceedance) or F (by always predicting a non-
exceedance), none of these two metrics taken individually
is a good and balanced metric for assessing the quality of a
forecasting system; only some combinations of both (possi-
bly with s) can eventually provide a good way to assess these
detection skills, such as those used in this study.
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Table E1. Schematic contingency table for deterministic forecasts of binary exceedances of the regulatory limit values.

Exceedance observed

Exceedance forecast Yes No Total

Yes a (hits) b (false alarms) a+ b

No c (misses) d (correct rejections) c+ d

Total a+ c b+ d a+ b+ c+ d = n

Appendix F: Time series

Figure F1. Time series of the mean O3 mixing ratios over the Iberian Peninsula, as observed by monitoring stations (in black) and as
simulated by CAMS D+ 1 forecasts corrected with the GBM MOS method (in yellow). Time series are shown at the hourly (h), daily mean
(d), daily 1 h maximum (d1max) and daily 8 h maximum (d8max) timescales. O3 mixing ratios are averaged over all surface stations of the
domain.
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Appendix G: Sensitivity tests

Figure G1. Similar to Fig. 3 for sensitivity tests on the PERS method.
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Figure G2. Similar to Fig. 3 for sensitivity tests on the MA method.
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Figure G3. Similar to Fig. 3 for sensitivity tests on the KF method.
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Figure G4. Similar to Fig. 3 for sensitivity tests on the AN method.
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Figure G5. Similar to Fig. 3 for sensitivity tests on the GBM method.
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Figure G6. Similar to Fig. 3 for sensitivity tests on the meteorological data (HRES versus ERA5) used in the AN and GBM methods.
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