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Abstract. Fine particulate matter (PM2.5) remains a major air pollutant of significant public health concern in
urban areas. Long-term monitoring data of PM2.5 chemical composition and source-specific tracers provide es-
sential information for the identification of major sources as well as evaluation and planning of control measures.
In this study, we present and analyze a 10-year dataset of PM2.5 major components and source-specific tracers
(e.g., levoglucosan, hopanes, K+, Ni, V, Al, and Si) collected over the period of 2008–2017 in an urban site in
Hong Kong, China. The time series of pollutants were analyzed by the seasonal and trend decomposition using
the locally estimated scatter plot smoothing (LOESS) method and general least squares with the autoregressive
moving average method. Bulk PM2.5 and all its major components displayed a significant decline of varying
degrees over the decade. PM2.5 was reduced by 40 % at −1.5 µgm−3 yr−1. PM2.5 components that are predom-
inantly influenced by local vehicular emissions showed the steepest decline, with nitrate decreasing by −66 %,
elemental carbon by −60 %, and hopanes by −75 %, confirming effective control of local vehicular emissions.
For components that are significantly impacted by regional transport and secondary formation, they had a notably
lower percentage reduction, with sulfate declining by −40 % and organic carbon by −23 %, reflecting complex-
ity in their region-wide contributing sources and formation chemistry. Levoglucosan and K+, two tracers for
biomass burning, differed in their reduction extent, with K+ at −60 % and levoglucosan at −47 %, indicating
they likely track different biomass burning types. Dust components in PM2.5 also decreased, by −37 % for Al
and −46 % for Si. The year of 2011 was an anomaly in the overall trend in having higher concentrations of
PM2.5 and components than its adjacent years, and the long time series analysis attributed the anomaly to un-
usually lower rainfall associated with strong La Niña events. This 10-year trend analysis based on measurements
exemplifies the utility of chemical composition data in support of an evidence-based approach for control policy
formulation.
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1 Introduction

Air pollution controls are of both local and global impor-
tance. Their effectiveness needs to be periodically reviewed
for optimizing options to improve air quality and minimize
environmental impacts. Particulate matter with aerodynamic
diameter less than 2.5 µm, namely fine particulate matter
(PM2.5), is a major air pollutant. It is a significant contrib-
utor to visibility reduction and climate change and has detri-
mental effects on human health (Yang et al., 2018; Zhao et
al., 2013; Lippmann and Chen, 2009; Ko et al., 2007; Kim
et al., 2006; Cheung et al., 2005). Hong Kong, located in the
southern coastal part of China, is an important part of the
Guangdong–Hong Kong–Macau Greater Bay Area (GBA),
which includes the Pearl River Delta (PRD) region in Guang-
dong plus Hong Kong and Macao. The Hong Kong govern-
ment has been assiduous in controlling the local emission
via the Air Pollution Control Ordinance, in addition to coop-
erating with the neighboring Guangdong and Macao govern-
ments on formulating control policies to reduce air pollution
emissions in the area (HKEPD, 2021a). Ambient monitoring
of criteria air pollutants plays an important role in verifying
the effectiveness of control policies. For example, from 2006
to 2018, large reductions were documented for sulfur diox-
ide (−81 %), nitrogen dioxide (−28 %), and PM10 (−36 %)
in terms of annual average concentrations (HKEPD, 2019,
2020), reflecting the benefits from a series of SO2, NO2, and
PM reduction measures (Table S8 in the Supplement).

PM2.5 was introduced as a criteria pollutant in Hong Kong
in 2004, while its online monitoring preceded 5 years ear-
lier at three sites (Tap Mun, Tung Chung, Tsuen Wan) in
1999. PM2.5 mass was added as a monitoring parameter in
2015 to the PRD Regional Air Quality Monitoring Network,
which has included 23 sites in the GBA since 2015. The
monitoring data indicate that while substantial progress has
been made in lowering the pollution level of PM2.5, from
38 µgm−3 in 1999 to 15 µgm−3 in 2020 (Fig. 1a), the cur-
rent level still notably exceeds the most updated air quality
guideline of an annual average of 5 µgm−3 as recommended
by the World Health Organization (World Health Organiza-
tion, 2021). This reality highlights the need for continued ef-
forts to further identify specific emission sources such that
effective management strategies can be formulated. Different
from criteria gaseous pollutants, PM2.5 is a complex mixture
containing inorganic components (e.g., sulfate, nitrate, and
ammonium), elemental carbon (EC), organic carbon (OC)
(consisting of tens of thousands of individual organic com-
pounds), and metal oxides. The accumulation of PM2.5 pol-
lution could come from direct emissions from human activi-
ties and biogenic sources and/or atmospheric formation pro-
cesses. Additionally, changes in air quality could be masked
by variations in atmospheric dispersion conditions on daily,
seasonal, and annual bases. The multiple layers of complex-
ity mean that PM2.5 mass concentration alone is insufficient
to identify contributing sources or to attribute a reduction in

PM2.5 to a particular control measure. This is evident from
Fig. 1b, which shows the percentage changes vary signifi-
cantly among PM2.5 components, using the dataset to be dis-
cussed in this work as an illustration.

The speciated analysis of PM2.5, in particular the mea-
surement of source-specific marker species, provides valu-
able information for understanding the sources, formation,
and evolution of the PM pollution. Long time series of such
chemically specific data would, on the other hand, poten-
tially allow for the discernment of meaningful trends that
are not apparent in one-time field projects as well as es-
tablish long-term knowledge about representative urban/re-
gional aerosol chemistry. However, long-term measurements
of PM2.5 species in China are very limited, more so for
the source-specific markers. Our research team launched a
filter-based PM2.5 monitoring program in mid-2007 at Tsuen
Wan (TW), an urban location, and has maintained the op-
eration since then. Our monitoring program adopts a regu-
lar sampling schedule of one 24 h sample every 6 d to ensure
temporal representativeness. High-volume samples were also
collected to allow for sufficient aerosol materials for anal-
ysis of organic source markers (e.g., hopanes for vehicular
emissions and levoglucosan for biomass burning emissions).
Starting from 2011, Hong Kong Environmental Protection
Department (HKEPD) established a regular PM2.5 chemical
speciation monitoring network, with TW as one of its moni-
toring stations and adopting a 1-in-6 d sampling schedule as
well (e.g., Yu et al., 2012). The field sampling, laboratory
analyses, quality check/quality assurance, and data valida-
tion were conducted according to the same set of standard
operating procedures which are in reference to those recom-
mended by the US Environmental Protection Agency (Chow
and Watson, 1998; USEPA, 2016). The laboratory analyses
of PM2.5 mass and major components (water-soluble ions,
OC, EC, and elements) were performed by our research team
except for samples from the year of 2015, which were ana-
lyzed by the Desert Research Institute (Chow et al., 2016).
This set of filter samples allows us to observe the long-term
trend of PM2.5 major components and source tracers and to
examine variations in aerosol sources affecting Hong Kong
urban atmosphere for the 10-year period of 2008–2017.

Studies of PM2.5 speciation data derived using a consistent
sampling and analysis methodology over a period of as long
as a decade and as early as 2008 are few and far between in
China and elsewhere in Asia. A few multi-year studies were
documented in the literature. One study covered a rural site
(Wanqinsha) in the GBA in the fall and winter seasons over
6 years (2007–2012) (Fu et al., 2014). In the second study,
PM2.5 speciation covered six sites in Foshan, a populated
city in the GBA, in winter and summer seasons over 7 years
(2008–2014) (Tan et al., 2016). In the third study, PM2.5 sam-
ples were collected in urban Beijing from 2011 to 2015 (Lang
et al., 2017). Unfortunately, these long-term studies did not
follow regular sampling schedules throughout the annual cy-
cle. Some months of the year were not sampled, biasing their
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Figure 1. (a) Trend of annual average PM2.5 in Hong Kong for the period of 1999–2020 and the PRD regionwide average PM2.5 during
2015–2020. The regionwide annual PM2.5 is the average of 23 monitoring stations in the PRD Regional Air Quality Monitoring Network,
including three stations located in Hong Kong. The shaded period (2008–2017) has available PM2.5 major components and select source
tracers at Tsuen Wan (TW), an urban site in Hong Kong, with the yellow dots representing gravimetrically determined PM2.5 concentrations
from the collected filter samples at TW. (b) The percentage changes of PM2.5 and its major composition at TW using 2008 as the base year.

temporal representativeness in tracking long-term trends of
PM2.5 composition. Recently, the Chinese Central Govern-
ment set up the National Aerosol Composition Monitoring
Network in 2017 with a view to evaluating the effectiveness
of its “2+26” strategy for improving air quality (Chen et al.,
2019; Dao et al., 2019). This nationwide monitoring program
is expected to generate high-quality PM2.5 composition data
in the long run. Yet, a long-term dataset is not available due
to the limited operating period.

In this work, we analyzed the trends of PM2.5 and its ma-
jor components and individual source marker molecules/ele-
ments by the seasonal and trend decomposition with locally
estimated scatter plot smoothing (LOESS), a robust method
for extracting trend components from concentration time se-
ries (Cleveland et al., 1990), and cross-compared the re-
sults with the non-parametric Mann–Kendall test and Sen’s
slope. The objectives are to quantify the 10-year variations
in PM2.5 chemical composition and to characterize how ma-
jor local and regional sources impacting PM2.5 pollution in
Hong Kong have varied in the decade. The aim of this work
is to provide a well-scrutinized long-term dataset of PM2.5
chemical composition and a sound analysis of source impli-
cations for an urban location in southern China to support
studies of control measure evaluation and formulation.

2 Data and method

2.1 PM2.5 chemical speciation data

PM2.5 filter samples were collected on a 24 h basis (mid-
night to midnight) once every 6 d from 2008 to 2017 at
Tsuen Wan (TW, 22◦22′18 N, 114◦6′52 E), an urban air qual-
ity monitoring station (AQMS) in Hong Kong. TW is a
station surrounded by residential and commercial buildings

and located about 3.3 km north of the city’s international
shipping port (Kwai Chung and Tsing Yi Container Ter-
minals). Both high-volume and mid-volume samplers were
equipped at the station. The high-volume sampler (Ander-
sen Instrument, Smyrna, GA, USA) was loaded with a pre-
baked 20cm× 25 cm quartz fiber filter and operated at a
flow of 1.13 m3 min−1. Two types of mid-volume samplers
were used in the course of 10 years. From 2008 to 2010,
a RAAS four-channel mid-volume sampler (Andersen In-
strument, Smyrna, GA, USA) was operated, and the con-
figuration of the four channels was as below: Channels 1
and 4 sampling at 16.7 Lmin−1 and loaded with one 47 mm
Teflon filter and one 47 mm quartz filter and Channels 2 and
3 sampling at a flow rate of 7.3 Lmin−1 and loaded with one
47 mm nylon filter and one 47 mm quartz filter. From 2011
to 2017, two mid-volume samplers (Partisol R&P, Model
2025, Albany, NY, USA) were operated side by side to col-
lect one Teflon and one quartz fiber filter at 16.7 Lmin−1.
After the collections, the 47 mm Teflon filters were stored
in Petri dishes, and the 47 mm quartz filters were stored in
the dishes lined with aluminum foil. The dishes were sealed
with parafilm, while the 20cm× 25 cm quartz filters were
folded in half and stored in aluminum foil. All the filters were
packed in a thermal bag for transportation to the laboratory
and refrigerated under 4 ◦C before chemical analysis. Field
blanks were collected at a frequency of 10 % of a sampler’s
routine operating frequency. They were used to monitor con-
tamination throughout the process from sampling to analysis
and for background correction. The field blank filters were
stored and analyzed following the same procedures as those
of PM2.5 sample filters for quality assurance purposes. A to-
tal of 592 sets of filter samples were collected, each set con-
sisting of one 20cm× 25 cm filter and multiple 47 mm filter
samples for a sampling day.
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A suite of chemical speciation analysis was conducted on
the collected sample filters (Table 1). Specifically, the 47 mm
Teflon filters were used to determine the PM2.5 mass concen-
trations by gravimetric analysis and the trace element con-
centrations by energy-dispersive X-ray fluorescence spec-
trometry (XRF). The Nylon filters from 2008–2010 and the
quartz filters from 2011–2017 were used to quantify the
concentrations of major ions (SO4

2−, NO3
−, Cl−, NH4

+,
Na+, K+, Ca2+, and Mg2+) by ion chromatography (IC).
OC and EC were measured by a thermal–optical transmit-
tance (TOT) method. Concentrations of saccharides were an-
alyzed by high-performance anion-exchange chromatogra-
phy coupled with pulsed amperometric detection (HPAEC-
PAD) (Kuang et al., 2015). Non-polar organic compounds,
including alkanes, polycyclic aromatic hydrocarbons, and
hopanes, were quantified by a method coupling in-injection
port thermal desorption gas chromatography with mass spec-
trometry (TD-GC/MS) (Ho and Yu, 2004; Ho et al., 2008).

Data validation on the PM2.5 speciation was carried out
at three levels according to the publication “Guideline on
Speciated Particulate Monitoring” prepared for the USEPA
by Chow and Watson (1998). Level I validation mainly
consists of flagging measurements that deviate from proce-
dures through reviewing sampling log sheets and field quality
check records and identifying invalid values. Level II valida-
tion checks the internal consistency among data from differ-
ent analyses, involving the following: (1) comparing a sum of
measured chemical species vs. PM2.5 mass concentrations,
(2) comparing total sulfur by XRF vs. sulfate by IC, (3) com-
paring total potassium by XRF and soluble potassium by IC),
(4) calculating anion/cation balances, and (5) examining time
series data to identify and investigate outliers. Level III val-
idation is part of the data interpretation process, mainly fo-
cusing on identification of unusual values through parallel
consistency tests with other independent datasets.

Details of analytical procedures and data validation
are documented in our previous studies (Huang et al.,
2014; Chow et al., 2022) and in a series of project re-
ports (Yu et al., 2012, 2013, 2014, 2015; Yu and Zhang,
2017, 2018; Chow et al., 2016), which are available
at http://www.epd.gov.hk/epd/english/environmentinhk/air/
studyrpts/pm25_study.html (last access: 3 February 2022).
See Yu et al. (2022) for dataset access details.

2.2 Gaseous pollutant and meteorological parameter
data

Criteria gaseous pollutant data (CO, SO2, O3, and NOx)
and meteorological parameters at TW are from the network
of air quality monitoring station operated by the HKEPD.
The criteria gaseous pollutant data are available from the
HKEPD Environmental Protection Interactive Centre (https:
//cd.epic.epd.gov.hk/EPICDI/air/download/, last access: 17
June 2021), while the meteorological parameters can be re-
trieved from the Atmospheric and Environmental database

provided by the Environmental Central Facility from the
Hong Kong University of Science and Technology (HKUST
ENVF, http://envf.ust.hk/dataview/gts/current/, last access:
20 June 2021). The temporal variations of gaseous pollutants
serve as additional data valuable for exploring the effects of
changes in precursor gases on the secondary formed PM2.5
constituents (e.g., sulfate and/or nitrate). The decadal time
series of temperature, relative humidity (RH), wind speed
and direction, and precipitation at the site are summarized
in Sect. S1 in the Supplement.

2.3 Seasonal and trend decomposition with the LOESS
method (STL)

For the evaluation of the overall trend of time series indepen-
dently of seasonal influence, the season and trend decompo-
sition was adopted to decompose a time series (Yv) into three
components: the trend component (Tv), the seasonal compo-
nent (Sv), and the remainder (Rv) in an additive or a multi-
plicative manner, as per Eq. (1a) and (1b) (Cleveland et al.,
1990).

Yv = Tv + Sv +Rv (1a)
Yv = Tv × Sv ×Rv (1b)

The STL algorithm is performed via LOESS under two iter-
ative loops. In comparison with other time series decompo-
sition techniques, such as the simplest moving average (MA)
method (Molugaram and Rao, 2017), the STL method has
more flexibility in parameter tuning, as well as higher robust-
ness to counterpart the influences from outliers. A detailed
description about its algorithm is provided in Sect. S2 in the
Supplement. The STL method has been readily implemented
and widely tested in most programming languages such as R
and Python. In this study, we utilized the STL function in the
stlplus package in R for the following calculation.

Before applying the STL method, we manually inspected
the data and removed data points exceeding the upper quar-
tile by 3 times the interquartile range (i.e.,X75 %+3(X75 %−

X25 %)) to avoid the influence of extreme concentrations on
the trend slope (Singh et al., 2021; Bigi and Ghermandi,
2014). The concentration data were found lognormally dis-
tributed in Q–Q plots as shown in Figs. S5 and S6 in the
Supplement. Thus, log-transformation and monthly averag-
ing were applied to create a normally distributed time series
with even time intervals to cope with the assumptions of the
STL model.

2.4 Generalized least squares–autoregressive moving
average (GLS-ARMA) model

The trend curves from the STL method are often too irreg-
ular to be described verbally or quantitatively. This prompts
us to seek a method that allows for calculation of an over-
all changing rate for the trend component for further anal-
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Table 1. PM2.5 and list of components targeted for trend analysis and their measurement methods.

Species Source characteristics Measurement method

PM2.5 Gravimetry1

OC Primary emissions and secondary formation with volatile
organic compounds (VOCs)
as direct precursors

Thermal–optical analysis2

EC Combustion sources

Sulfate Secondary with SO2 as direct precursor Ion chromatographic analysis of aerosol water
Nitrate Secondary with NOx as direct precursor extracts3

Ammonium Secondary, particle presence in close association with
sulfate and nitrate

K+ Biomass burning, sea salt, dust

Al, Si Soil dust Energy-dispersive X-ray fluorescence
Ni, V Residual oil combustion spectrometry3,4

Pb, Cu, Zn Coal combustion, metal industries

Hopanes Fossil fuel uses such as vehicular emission, residual
oil burning

Thermal desorption GC/MS5,6

Levoglucosan Biomass burning High-performance anion-exchange chromatography
coupled with pulsed amperometric detection7

1 USEPA (2016). 2 Chow et al. (2007). 3 Huang et al. (2014). 4 Watson et al. (1999). 5 Ho and Yu (2004). 6 Ho et al. (2008). 7 Kuang et al. (2015).

ysis. When dealing with time series data with autocorrela-
tion (i.e., the current value (Yv) depends on its lagged values
(Yv−h)), generalized least squares (GLS), instead of ordinary
least squares (OLS), is more suitable for the quantification of
the changing rate of the time series. In GLS, the covariance
matrix (and so the residuals) can be estimated by an autore-
gressive moving average (ARMA(p,q)) model. Specifically,
the ARMA(p,q) model assumes that the current value (Xt )
is influenced by its p-order of lagged values (Xt−h) and q-
order of lagged residuals (εt−i) with the corresponding coef-
ficients φh and θi as shown in Eq. (2).

Xt =

p∑
h=1

φhXt−h+ εt +

q∑
i=1

θiεt−i (2)

The determination of p and q in an ARMA(p,q) model
is achieved by minimizing model selection criteria such as
Akaike’s Information Criterion (AIC) and Bayesian Informa-
tion Criterion (BIC). A model with a smaller AIC or BIC
value is deemed more likely to generate the data that we
obtain, while taking both probability likelihood and model
simplicity into consideration. Despite the differences in as-
sumptions, theoretically AIC and BIC give similar results in
most cases (Shumway and Stoffer, 2017). In our study, we
calculated AIC, AICc (a bias-corrected AIC), and BIC. As
tabulated in Table S1 in the Supplement, these criteria indi-
cators show no significant difference in terms of the param-
eter selection outcomes. Thus, hereafter only BIC values are
reported when determining the slope of each GLS-ARMA
model analysis. The details of the methodology of this hy-

brid STL–GLS-ARMA method are provided in Sect. S3 in
the Supplement.

2.5 Comparison with other trend analysis methods

Additional trend analysis methods were explored to cross-
validate the results from the GLS-ARMA method. First,
Sen’s slope method (Wilcox, 2017), a non-parametric
method, was performed on the same dataset to calculate the
changing rate. In Sen’s slope method, we first run a Mann–
Kendall test to see whether the overall trend of the annual
averages is monotonic. Then the median of the slopes for all
pairwise data points is computed and defined as Sen’s slope.
Second, an exponential trend estimation was computed using
the compound annual growth rate (CAGR) for each pairwise
combination of annually averaged values using Eq. (3).

CAGR(%)=
(
Xtn

Xt0

) 1
tn−t0
× 100%, (3)

whereXtn andXt0 are the annual averaged time series at time
tn and t0, respectively. Like Sen’s slope method, the overall
trend of a species is represented by the median value of all
the CAGR results. Testing the agreement between the linear
and nonlinear approaches helps in validating the overall trend
analysis results. Details of the CAGR results are provided in
Sect. S7 in the Supplement.
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3 Results and discussion

3.1 PM2.5 composition

PM2.5 and its major components collected over the decade
are displayed in time series of monthly averages in Fig. 2a
and annual averages in Fig. 2b. The time series of individual
samples are provided in Fig. S3 in the Supplement. Under
influence of the monsoon winds, the four seasons in Hong
Kong are well distinguished in their meteorological charac-
teristics, with summer and winter being the two longest sea-
sons and each lasting approximately 4 months. The four sea-
sons are approximately spring from 16 March to 14 May,
summer from 15 May to 15 September, fall from 16 Septem-
ber to 15 November, and winter from 16 November to 15
March (Chin, 1986). Under the influence of the Asian mon-
soon, the northerly prevailing winds carry dry and polluted
northern continental air masses to Hong Kong in winter-
time, whereas prevailing southerly and southeasterly mon-
soon winds in summertime bring largely clean marine air
masses from the South China Sea or the northwestern Pa-
cific Ocean. As a result, PM2.5 and other pollutants show
distinct winter–summer contrast in their source origins and
in concentration levels (Yu et al., 2004). In summer, lo-
cal emissions have a dominant influence, while in winter,
the regional/super-regional pollution significantly elevated
air pollutant levels. We thus show separate time series for
summer and winter seasonal average PM2.5 chemical com-
position in Fig. 2c and d, and a discussion of the source
trend according to seasons of summer and winter provides
a more direct understanding of source variations over the
years. Spring and fall, being two short and transient seasons,
display more variable and mixed influences from both local
and regional/super-regional sources (Fig. S4 in the Supple-
ment). Their time series are less useful for tracking decadal
source variations and are therefore not discussed in this pa-
per.

As shown in Fig. 2, an overall decline trend is clearly seen
in both bulk PM2.5 and its major components over the decade
of 2008–2017. Sulfate and organic matter (OM) remain to
be the top two dominant PM2.5 components throughout the
decade and for both winter and summer seasons. Significant
monthly variations are also evident, with highest concentra-
tions in the winter months and the lowest in the summer
months. The highest winter month average could be more
than double the lowest summer average concentration in a
same year, clearly indicating the significant contribution of
regional/super-regional pollution to PM2.5 in Hong Kong.
Comparing Fig. 2c and d, we see that the mass reductions in
the summer season over the decade are much less in compar-
ison with those seen for the winter; however, a continuous
decline in EC is clear in the decade-long time series of the
summer averages, indicating success in controlling local EC
sources (i.e., vehicular emissions). A quantitative description

of the 10-year trends for PM2.5, its major components and
source tracers will be provided in the ensuing sections.

For a simple illustration of the 10-year change in PM2.5
chemical composition, the average chemical compositions in
the starting and the ending year of the decade are compared
in Fig. 3. On the annual average basis, the top four major
components remain to be the same, i.e., OM, sulfate, am-
monium, and nitrate, collectively accounting for a compa-
rably ∼ 84 % of PM2.5 in 2008 and 2017, despite 10 years
apart. Among the four top contributors, OM has gained a
few percent, while nitrate has been reduced by a few per-
cent in proportional importance. The 10-year compositional
changes are more prominent in the seasonal averages. For
winter PM2.5, the relative importance of OM increased (up
from 35 % in 2008 % to 39 % in 2017), while the relative
abundance of nitrate decreased (down from 9.1 % to 6.6 %),
as well as EC (down from 6.1 % to 4.4 %). For summer
PM2.5, the most significant compositional changes are also
OM (up from 32 % to 44 %), EC (down from 17 % to 8.5 %),
and nitrate (down from 4.3 % to 1.7 %). The proportional de-
crease of EC was most notable, reflecting the effectiveness
of local vehicular emissions control measures. “Salt”, con-
sisting of Na+ and Cl−, was a very minor part of PM2.5, ac-
counting for less than 4 % in all years.

3.2 Annual trend analysis

Previous studies that examined the annual trend of pollu-
tants for evaluation of pollutants reduction in Hong Kong
adopted a simple method of comparing annual average val-
ues (HKEPD, 2020; Zhang et al., 2018; Lu et al., 2013; Yuan
et al., 2013). While this approach avoids the autocorrela-
tion issue – the lag value of variables (Yt−h) influences the
current value (Yt ) in time series – it would suffer increased
bias due to the sacrifice of the sample size for estimation.
In comparison, STL is a more robust method for extracting
trend components from concentration time series (Cleveland
et al., 1990), with the autocorrelation issue accounted for by
GLS-ARMA (Shumway and Stoffer, 2017). The STL–GLS-
ARMA method has been adopted in a few studies analyzing
air pollutant trends (e.g., Anttila and Tuovinen, 2010; Bigi
and Ghermandi, 2014). It is found that STL–GLS-ARMA
has the advantage of retaining more degrees of freedom on
sample population and thus producing a more accurate esti-
mate than the ordinary least-squares method.

We applied STL–GLS-ARMA to the monthly average
concentrations of PM2.5 mass and individual species, includ-
ing major components (SO4

2−, NO3
−, NH4

+, OC, and EC)
and source-specific molecular or elemental tracers (i.e., K+,
Al, Si, V, Ni, Pb, Zn, Cu, hopanes, and levoglucosan), as
well as the routinely monitored criteria gaseous pollutants
(CO, SO2, NOx , and O3) (Fig. 4). Table 2 summarizes the
slopes obtained from the GLS-ARMA, Sen’s slope method,
and percentage change of each species over 2008–2017, to-
gether with the annual average concentration data in 2008
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Figure 2. Time series of PM2.5 chemical composition from 2008 to 2017 in the form of (a) monthly averages, (b) annual average, (c) winter
seasonal averages, and (d) summer seasonal averages. In the legends, “Salts” includes Na+ and Cl−; “Crustal” represents crustal materials,
computed to be 1.89 ·Al+ 2.14 ·Si+ 1.4 ·Ca+ 1.43 ·Fe; and “Tracers” includes elements other than Na, Cl, S, K, Al, Si, Ca, and Fe. OM
refers to organic matter and is computed as 1.4 ·OC.

and 2017. The results from both the slope-determining meth-
ods were in good agreement for all the PM2.5 species. The
GLS-ARMA trend slopes are significantly less than zero at a
p level of < 0.001 for all PM2.5 measurement parameters,
except for V and levoglucosan, which are significant at a
higher p level (0.01 and 0.05, respectively). For Sen’s slopes,
they are less than zero at a lower p level of 0.01 for most
species and at p = 0.05 for levoglucosan and are not signifi-
cant at p > 0.05 for V and hopanes. Such differences reflect
the superiority of the GLS-ARMA method arising from re-
taining more degrees of freedom on the sample population.
Thus, we will adopt the GLS-ARMA slopes in commenting
the 10-year changing rate in later discussion.

From the results of the STL–GLS-ARMA method, a de-
clining rate of 1.5 µgm−3 yr−1 was estimated for the PM2.5
mass. This decline was significantly attributed by the top
two major components, namely sulfate accounting for 24 %
(Slope: −0.36 µgm−3 yr−1) and OM 17 % (−0.18 · 1.4=
−0.25 µgm−3 yr−1), respectively. Ammonium, nitrate, and
EC decreased in a similar rate in mass concentration unit

(NH4
+, NO3

−, EC:−0.12,−0.17,−0.17 µgm−3 yr−1); they
accounted for a similar percentage at around 8.0 %–11 %
each and a combined 31 % of the overall PM2.5 reduc-
tion. Meanwhile, other components such as biomass burning
markers (K+ and levoglucosan), industrial and coal combus-
tion tracers (Zn and Pb), and crustal materials (Al, Si, and
Ca) altogether explain the remaining 28 % of PM2.5 deple-
tion. Note that the tracer species only account for a minute
amount of mass; however, they are indicative of other un-
measured PM2.5 components co-emitted with these sources.

The percentage changes during the decade are calculated
using the annual average in 2008 and 2017 and are listed
in Table 2. With the GLS-ARMA model fitted data, we can
also calculate the percentage changes. Comparing the two
approaches, the GLS-ARMA method yields higher percent-
age drops in K+, NO3

−, Al, Si, Pb, and Cu than those
calculated using annually averaged data. This could be ex-
plained by the different concentration levels fitted by the
GLS-ARMA model. The underestimated concentration in
2017 by GLS-ARMA results from the flattened variation in
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Figure 3. Comparison of average PM2.5 compositions between the starting year (2008) and the ending year (2017) of the decade. In each
year, three averages are shown, corresponding to annual, winter, and summer, and the donut size is proportional to the PM2.5 concentration.

the later years (Fig. 4), hence the higher percentage changes
in these species. This problem was less obvious for species
with smoother declines such as SO2, NOx , OC, EC, V, Ni,
and hopanes. Therefore, the differences in percentage change
between the two methods helped on identifying the different
changing characteristics along the time series.

The annual percent change rates computed using CAGR,
summarized in Fig. S13 and Table S5 in the Supplement,
show a good agreement with those from the linear ap-
proaches (i.e., GLS-ARMA and Sen’s slope). In general, the
exponential approach of the CAGR method estimates a larger
decline than the GLS-ARMA method. The maximum differ-
ence occurs with NO3

− (−10 %). The relative constant con-
centration levels in the later years were particularly observed
in NO3

−, which would imply a faster reduction in an expo-
nential variation model and thus result in a larger discrep-
ancy. The absolute differences for all the other species are
less than 5 %. For simplicity, we confine the trend discussion
to results from the linear approaches.

The 10-year percentage change in PM2.5 is −40 %. Sul-
fate and ammonium, with nearly identical decrease trajec-
tories due to their close chemical linkage, have percentage
drops that closely match the drop of bulk PM2.5 (Fig. 1b and
Table 2). Other major components, however, differ in their
percentage reductions from the reduction of bulk PM2.5, with
the reduction in nitrate (−66 %) and EC (−60 %) exceeding
that of bulk PM2.5, while OC (−23 %) falls below that of
bulk PM2.5. Such results reveal the effectiveness of control
measures in lowering EC and sulfate and the increasing im-
portance of OC in addressing PM2.5 pollution in the coming
years.

3.3 Trend analysis of winter and summer data

As discussed in Sect. 3.1, PM2.5 levels and dominant sources
are distinctly different in winter and summer. The two sea-
sons merit separate analysis of their 10-year trends. This is
further supported by correlation and hierarchical clustering
analysis of year-by-year data, the results of which are shown
in Fig. 5 using 2008 and 2017 as examples. Figure 5 reveals
that the measurement variables segregate into two clusters
marked in black and pink linkage lines, respectively, and they
broadly correspond to one group of pollutants known to be
significantly influenced by regional/super-regional sources
(e.g., OC, sulfate, nitrate, NH4

+, K+, Pb, Zn, and Cu) and
a second group of species with dominant contributions from
local sources (i.e., NOx , EC, hopanes, Ni, and V). The re-
gional sources have strong seasonality under the influence of
the monsoon winds. It is of interest to note that SO2 shifted
from the local cluster to the regional cluster over the decade,
reflecting the changing relative importance of local vs. re-
gional emission sources of SO2 over the years (see Sect. S3
for more details).

Figure 6 shows the 10-year variations of the seasonal av-
erage concentrations of PM2.5 and selected components for
winter and summer. Season-specific values for Sen’s slopes
are listed in Table 3, expressed in both mass concentration
change rate per year and percent change rate per year. The
latter unit allows for a direct comparison of relative source
strength changes of local and regional sources by removing
the impact of meteorological factors (e.g., boundary layer
height) on ambient concentrations. Seen in Table 3, Sen’s
slope for bulk PM2.5 is significantly different seasonally, at
−2.0 µgm−3 yr−1 in winter vs. −0.67 µgm−3 yr−1 in sum-
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Figure 4. (a) Gaseous and (b) PM2.5 pollutant data over 2008–2017: monthly concentrations (yellow), trend component (blue), and the
slope line of trend determined by GLS-ARMA method (red). Note that the concentrations of hopanes and levoglucosan are in nanograms per
cubic meter (ngm−3), while the others are in micrograms per cubic meter (µgm−3).
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Figure 5. Correlation matrix of gaseous and particulate pollutants with hierarchical clustering results at 2008 (a) and at 2017 (b). Clusters:
pink – local sources; black – regional sources.

mer, while the percentage decline rates are comparable, at
−3.9 %yr−1 in winter and −3.7 %yr−1 in summer. In align-
ment with the species segregation revealed in Fig. 5, the
group of regional species shows significantly larger decrease
rates in mass concentration in winter than in summer, but the
group of local species (EC, V, and Ni) displays a compara-
ble value for Sen’s slope in both seasons. It is worth noting
that summer OC does not show a discernable increase or de-
crease trend over the decade, but winter OC shows a decreas-
ing trend with a slope of −0.45 µgCm−3 yr−1 (Fig. 6). Such
a stark contrast indicates a significant seasonal difference in
OC sources and their underlying driving factors. This also
implies that measures to lower the OC contribution in PM2.5
must consider the strong seasonality of its sources.

Considering the diverged seasonality among major com-
ponents and source tracers, we individually examine in the
subsequent sections the trend characteristics of the major
PM2.5 constituents and important sources that have effective
tracer data.

3.4 Secondary inorganic aerosol components

The three secondary inorganic aerosol components, namely
sulfate, nitrate, and ammonium, are constantly prominent
components of the PM2.5 and make up 43 %–47 % of
PM2.5 mass over the decade. Their ambient abundances
exhibit a strong seasonality, with the winter concentra-
tions more than double the summer concentrations. Sea-
sonally, the wintertime levels changed by −0.50, −0.38,
and −0.16 µgm−3 yr−1 in mass concentration change rate
and at −3.8 %, −8.4 %, and −3.2 %yr−1 in percentage
change rate for sulfate, nitrate, and ammonium, respec-
tively. The summertime level changed by −0.17, −0.05, and
−0.02 µgm−3 yr−1 in mass concentration change rate and at

−3.5 %, −6.3 %, and −1.4 %yr−1 in percentage change rate
for sulfate, nitrate, and ammonium, respectively (Table 3).
They are significant drivers of PM2.5 decline.

While the direct precursor for sulfate is SO2, the reduction
of SO2 does not necessarily translate to proportional reduc-
tion in sulfate, as various oxidants (e.g., hydroxyl radical, hy-
drogen peroxide, and ozone) participate in the oxidation for-
mation of sulfate from SO2, and the role of each oxidant is
highly dynamic in both temporal and spatial scale (e.g., Xue
et al., 2019). Nevertheless, it is informative to compare the
changing rates of SO2 and sulfate. As a criteria gaseous pol-
lutant, SO2 has been extensively studied, and its emission in-
ventories for Hong Kong and Guangdong province are avail-
able (HKEPD, 2021b; Li et al., 2017; Zheng et al., 2018).
The SO2 emission inventory data for our study decade are
shown in Sect. S3. The top two sources for SO2 emissions in
Hong Kong are power plants and marine vessels, while the
major SO2 sources in Guangdong are power plants and in-
dustries (Fig. S8 in the Supplement). The emission and am-
bient concentration trends of SO2, normalized to 2018, are
examined in Fig. S8c, showing that the yearly variation of
ambient SO2 concentrations at TW was similar to the total
SO2 emission trend from Hong Kong and SO2 emission from
power plants in Guangdong. Overall, the changes in ambient
SO2 concentrations at TW during the 10-year period are con-
sistent with the SO2 emissions estimated for the GBA.

Over the decade, sulfate dropped by 40 % in annual av-
erage concentration, lagging behind the 62 % drop recorded
for SO2 (Table 2). A close examination of the 10-year time
series of monthly concentrations of SO2 and sulfate side by
side (Fig. 7) shows temporally uneven reduction. The steep-
est drop in ambient SO2 occurred in 2008–2009 (from 28.4
to 15.6 µgm−3, a reduction of 45 %), corresponding to the
significant SO2 emission resulting from the mandated switch

https://doi.org/10.5194/acp-22-11557-2022 Atmos. Chem. Phys., 22, 11557–11577, 2022
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Table 3. Summary of the seasonal variation estimated by Sen’s slope.

Species Sen’s slope (mass concentration)1 Sen’s slope (percent change)2

Unit Winter Summer Winter Summer

Gaseous pollutants
CO µgm−3 yr−1

+8.9 +21 +1.1 % +4.4 %
SO2 µgm−3 yr−1

−1.0∗ −0.98∗∗∗ −3.9 %∗ −2.8 %∗∗∗

NOx µgm−3 yr−1
−4.4∗∗ −3.7∗∗ −3.3 %∗∗ −3.1 %∗∗

O3 µgm−3 yr−1
+1.6∗ +0.56 +4.9 %∗ +2.6 %

PM2.5 and its components
PM2.5 µgm−3 yr−1

−2.0∗ −0.67∗ −3.9 %∗ −3.7 %∗

SO4
2− µgm−3 yr−1

−0.50 −0.17 −3.8 % −3.5 %
NO3

− µgm−3 yr−1
−0.38∗∗ −0.049∗ −8.4 %∗∗ −6.3 %∗

NH4
+ µgm−3 yr−1

−0.16∗ −0.019 −3.2 %∗ −1.4 %
OC3 µgCm−3 yr−1

−0.45 0.0067 −3.6 % +0.16%
EC µgCm−3 yr−1

−0.19∗∗ −0.18∗∗ −6.2 %∗∗ −5.8 %∗∗

Al ngm−3 yr−1
−15∗∗ −5.1 −5.3 %∗∗ −4.8 %

Si ngm−3 yr−1
−35∗∗ −8.5∗ −7.0 %∗∗ −4.1 %∗

V ngm−3 yr−1
−1.2∗ −1.1∗ −7.0 %∗ −3.4 %∗

Ni ngm−3 yr−1
−0.37∗ −0.42∗ −5.9 %∗ −4.7 %∗

Pb ngm−3 yr−1
−7.0∗∗ −0.91∗ −7.7 %∗∗ −7.8 %∗

Zn ngm−3 yr−1
−18∗∗ +2.6 −6.6 %∗∗ +4.4%

Cu ngm−3 yr−1
−1.6 −0.17 −5.8 % −2.3 %

K+ ngm−3 yr−1
−62∗∗ −11 −7.5 %∗∗ −5.5 %

Hopanes ngm−3 yr−1
−0.067∗∗ −0.041∗∗ −6.4 %∗∗ −8.1 %∗∗

Levoglucosan ngm−3 yr−1
−4.7 −1.8 −3.9 % −10 %

1 Asterisks in the table denote that the slope significantly differs from zero: ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001.
2 Sen’s slopes in these two columns are obtained on normalized concentrations against those in 2008, thus providing
percentage change rates relative to 2008, with the unit of percentage per year (% yr−1). 3 Sen’s slope for wintertime OC is
significant at a p level of 0.11.

to ultra-low S (< 0.005 wt %) for all commercial and indus-
trial processes in 2008 (Fig. S9 in the Supplement). During
the same period, sulfate dropped by 22 % from 11.0 µgm−3

in 2008 to 8.6 µgm−3 in 2009. Between 2009–2014, both
ambient SO2 and sulfate dropped by the same small percent
(∼ 4 %) and varied in a narrow range of 14.6–16.2 µgm−3 for
SO2 and 8.66–9.03 µgm−3 for sulfate. Between 2015–2017,
the introduction of SO2 reduction measures targeting power
plants and shipping industry (Fig. S9) led to a decrease of
SO2 by 22 % (from 13.8 to 10.7 µgm−3), while sulfate only
dropped by 11 % (from 7.45 to 6.60 µgm−3) (Fig. 7). Ev-
idently, the discrepant changing rates of ambient SO2 and
sulfate confirm that sulfate reduction is generally not pro-
portional to local SO2 reduction because of nonlinear for-
mation chemistry of sulfate and a significant contribution to
sulfate from regional transport (Chen et al., 2021; Chow et
al., 2022).

The very origin of PM2.5 NH4
+, i.e., reaction of ammonia

with sulfate aerosol, dictates its close association with sul-
fate. This relationship is expectedly confirmed in the excel-
lent correlation of NH4

+ with sulfate in all the years (Fig. 5).
As NH3 is generally abundantly supplied, the variation of

NH4
+ closely tracks that of sulfate, as confirmed in our

dataset.
It is well established that PM2.5 nitrate is a secondarily

formed product from NOx oxidation (e.g., Griffith et al.,
2015). Like the formation of sulfate, the involvement of mul-
tiple oxidants (e.g., hydroxy radical, O3) creates significant
complexity so that a proportional relationship is not expected
between variations of NOx and nitrate (Xue et al., 2014b).
Additionally, atmospheric physical conditions, such as tem-
perature and RH, also strongly influence the partitioning of
nitrate between gas and particle phase. Comparing the reduc-
tion rates of NOx and nitrate, we note that over the decade
nitrate dropped by 66 %, higher than the reduction rate of
36 % for NOx (Table 2). While the deviation from propor-
tionality reflects the nonlinear formation chemistry of nitrate,
the higher reduction rate in nitrate is seemingly counterintu-
itive. Unlike sulfate, which predominantly exists in the par-
ticle phase, nitrate could be either present as nitric acid in
the gas phase or as ammonium nitrate partitioning between
gas–particle phases. Additionally, nitrate could significantly
partition to coarse particles (PM2.5−10) (Xue et al., 2014a).
Thus, PM2.5 nitrate, mainly existing in the form of ammo-
nium nitrate, only represents a fraction of the total nitrate.

Atmos. Chem. Phys., 22, 11557–11577, 2022 https://doi.org/10.5194/acp-22-11557-2022
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Figure 6. The 10-year variations of seasonal average concentrations of PM2.5 and selected components for the winter (blue) and summer
(orange) from 2008 to 2017. Red lines indicate Sen’s slope, and dashed blue lines indicate the 95 % confidence intervals.

This provides possibility for a higher PM2.5 nitrate reduction
rate than its precursor NOx . Zhang et al. (2018) examined
the PM10 chemical speciation data in Hong Kong that spans
18 years (1998–2015) and found nitrate in PM10 increased
from 2002 to 2011 then decreased afterwards. Such an ob-
servation indirectly indicates that the significant presence of
nitrate in coarse PM could lead to divergent trends of nitrate
in PM10 and PM2.5. A more detailed consideration with the
aid of modeling would be needed in order to reveal the vari-
ation extent of total nitrate and the distribution of different
nitrate forms. Such an exploration requires efforts going be-
yond the current project, and it is therefore not pursued.

3.5 Components dominated by local emissions –
vehicular and shipping emissions

It has been recognized that on-road vehicles and marine ves-
sels are two major local emission sources for ambient PM2.5
in Hong Kong (Guo et al., 2009; Li et al., 2012; Cheng et
al., 2015; Chow et al., 2022). A steadily decreasing trend
was observed in the concentration levels of typical vehicular
emission tracers: EC and hopanes. Over the 10-year period,
annual average EC and hopanes decreased by 60 % and 75 %
in mass concentration and at a rate of −0.17 µgCm−3 yr−1

and −0.052 ngm−3 yr−1, respectively. These significant re-

ductions indicate the effectiveness of an array of control mea-
sures that have been implemented by the government since
2008 (Fig. 8). Most notably, they include (1) replacing pre-
Euro IV diesel commercial vehicles with higher Euro stan-
dards vehicles since 2007, (2) implementing the Statutory
Ban against idling of motor vehicle engines in 2011, and (3)
the imposition of the emission control for petrol and LPG
vehicles in 2014. It is worth noting that the vehicular traffic
local to the sampling site has increased by ∼ 20 % over the
decade if we use the traffic flow count through Shing Mun
Tunnel, a tunnel less than 5 km away from the site, as an in-
dicator (Fig. S2 in the Supplement). Despite the increase of
vehicles on the road, the decrease of ambient EC and hopanes
is unambiguous, which serves as strong evidence for the ef-
fectiveness of vehicular emission controls. On a separate yet
relevant note, Wang et al. (2018) sampled and compared both
gaseous and particulate pollutants from fresh vehicular emis-
sions in the Shing Mun Tunnel in 2003 and 2015 and found
that OM and EC decreased by −70 % and −80 % from 2003
to 2015, respectively. This adds more measurement-based
evidence for the overall decrease in PM2.5 burden from lo-
cal vehicular emissions.

The concentration levels of shipping emission tracers (V
and Ni) were reduced by 34 % and 36 % by mass concentra-
tion and at a rate of −0.60 and −0.29 ngm−3 yr−1 (Table 2),
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Figure 7. The 10-year variation of monthly SO2 and sulfate concentration. The significant SO2 emission control measures implemented in
Hong Kong are indicated in the top plot. The unit of concentration is micrograms per cubic meter (µgm−3).

respectively. The percent reduction of V and Ni is less than
that of vehicular emission tracers because their decreasing
trends were not obvious until 2015 (Sect. S5 in the Supple-
ment) when shipping emission control policy was first in-
troduced in Hong Kong to reduce SO2 emission (HKEPD,
2021a).

3.6 Species significantly influenced by regional
emission sources – biomass burning, industrial/coal
combustion, and dust sources

Biomass burning, industrial/coal combustion, and dust are
well-recognized regional sources that influence PM pollu-
tion in Hong Kong (e.g., Zhang et al., 2018; Chow et al.,
2022). Our source apportionment study of PM2.5 at six sites
in Hong Kong in 2015 shows that combined industrial and
coal combustion accounted for 12 %–20 %, biomass burning

2 %–13 %, and dust 4 %–8 % of PM2.5 (Chow et al., 2022).
The marker chemicals for these sources are among the chem-
ical composition data monitored, allowing us to track the
long-term trend of these sources.

Levoglucosan, an abundant primary product formed dur-
ing pyrolysis of cellulose, is a highly specific tracer of
biomass burning emissions (Simoneit et al., 1999). K+ is also
abundantly emitted from biomass burning, especially crop
residue burning. In studies without levoglucosan data, K+ is
frequently used as a biomass burning tracer. However, K+ is
a less specific tracer, due to contributions from other sources
such as coal combustion, dust, and sea salt (e.g., Yu et al.,
2018; Chow et al., 2022). The clustering analysis results
show K+ and levoglucosan were moderately correlated and
fell into two different clusters in the same group of regional
origin (Fig. 5). Comparing the 10-year variations of these
two tracers, we found that their reduction extents differed
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Figure 8. The 10-year variation of monthly EC concentration. The significant vehicular emission control measures implemented in Hong
Kong are indicated in the plot.

significantly, with K+ at −60 % and levoglucosan at −47 %
over the decade. When examined seasonally (Fig. 6 and Ta-
ble 3), they showed more distinct differences. Specifically,
wintertime K+ showed a definitive decline trend at a rate of
−7.5 %yr−1 (p < 0.01), while the decline of wintertime lev-
oglucosan (−3.9 % yr−1) could not be discerned from zero
according to the statistical test at p < 0.05 (Table 3). The
lack of a clear declining trend of wintertime levoglucosan
could be visually verified in Fig. 6. Further, both summer-
time K+ and levoglucosan did not show a clear decreasing
trend either (Fig. 6 or Table 3). The inconsistency between
K+ and levoglucosan could be explained if one considers
that they track different types of biomass burning. Specifi-
cally, K+ is a better marker for emissions from burning crop
residues, which are typically enriched in K+, while levoglu-
cosan, a thermal pyrolysis product of cellulose, is commonly
found in burning of all types of vegetative biomass including
hill fires. The inconsistent trends between winter and summer
could also be rationalized considering their different source
regions, i.e., the PRD region and northern China during the
winter vs. South Asia in the summertime. Overall, the chem-
ical tracer data indicate crop residue burning has been re-
duced over the decade, perhaps indicating some success in
measures such as prohibiting crop burning and crop straw
utilization recently implemented in China (Ren et al., 2019).
The lack of a consistent declining trend in levoglucosan, on
the other hand, implies that biomass burning remains largely
uncontrolled and will continue to be a significant PM pol-
lution source. We also acknowledge that the 10-year trend in
an organic tracer like levoglucosan could be affected by long-

term change in atmospheric oxidation capacity, which would
exert its impact through atmospheric degradation kinetics.

The three metal species, Pb, Zn and Cu, have been consis-
tently detected in the PM2.5 samples over the decade, provid-
ing opportunities to probe their associated sources. The three
display a strong seasonal contrast, with wintertime concen-
tration levels more than twice those in the summer for Cu
and Zn and 5 times for Pb. The strong seasonality is a char-
acteristic indication for their regional/super-regional origin,
consistent with the cluster analysis results (Fig. 5).

Cu and Zn are associated with metal processing indus-
tries. Over the decade, the Zn level in the winter has been
dropping steadily, at a rate of −6.6 %yr−1, while the winter-
time Cu dropped at a rate of−5.8 %yr−1. On the other hand,
their summertime change rates were indiscernible from zero
(Fig. 6 and Table 3). Cumulatively, from 2008 to 2017, ap-
proximately 40 % reduction was realized for these two metals
(Table 2). The significant reductions were likely indicators of
benefits from industrial upgrading following the promulga-
tion and implementation of the Guangdong “double transfer”
policy (industry and labor transfer away from primary indus-
tries) since 2009 (Zhong et al., 2013; Yang and Zhu, 2017).

Pb is likely dominated by coal combustion. This source
deduction is derived from data collected from a different
project, in which we deployed an online XRF spectrometer
to monitor hourly concentrations of As, Se, and Pb in Hong
Kong from August 2019 to February 2021. The data show
strong correlations of Pb with As and Se (R > 0.80) (Fig. S7
in the Supplement), two well-known tracers for coal combus-
tion (Tian et al., 2010), providing compelling supporting evi-
dence for coal combustion as a dominant source for Pb. Over
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the decade, wintertime Pb has displayed a continuous drop-
ping trend at a rate of−7.7 %yr−1, implying effectiveness in
reducing coal combustion emissions in the PRD region and
in northern China. It is also worth noting that in the last 3
years (2015–2017) of the study decade, the reduction of the
three metals stalled, suggesting that more stringent actions
are needed for further reduction in the upcoming years.

Al and Si are classical marker elements for dust particles.
They have also decreased over the decade, by −37 % for Al
and −46 % for Si. The two elements are highly correlated
(R: 0.54 in 2015 and 0.87–0.97 in the other years), reflecting
their common material sources and spatial origins. They dis-
play a distinct seasonality common to the regional sources;
i.e., wintertime abundance is notably higher than the sum-
mertime. The decreasing rates for wintertime concentrations
(−5.3 %yr−1 for Al and −7.0 %yr−1 for Si) are more sig-
nificant than the summertime in terms of both mass concen-
tration and percentage change (Table 3). The decline became
flat in 2016–2017 (Sect. S5), indicating that the current poli-
cies started to be less sufficient in reducing the dust contribu-
tion.

3.7 El Niño–Southern Oscillation events

A closer examination reveals that in the overall monotonic
trend component (blue dotted line in Fig. 4) of most PM
species (PM2.5, SO4

2−, NO3
−, etc.), 2011 is an anomaly

year showing higher concentrations than the preceding and
the succeeding years. This resemblance in patterns across the
various PM2.5 components implies that a macro-factor, for
example, sporadic meteorological El Niño/La Niña events,
might be at play in influencing the temporal variation.

El Niño–Southern Oscillation (ENSO) events randomly
occur during the irregular changes of oceanic temperature
among the tropical Pacific Ocean, with El Niño events as-
sociated with increase in ocean temperature and La Niña
events associated with decrease in ocean temperature. Dur-
ing the events, atmospheric pressure above the Pacific Ocean
changes and thus causes the shift of the Walker circulation
as well as the distortion of pollutant airflow towards Hong
Kong (Yim et al., 2019). The El Niño effect typically leads
to a rise in rainfall, less northerly/northeasterly winds, and
higher wind speed in Hong Kong (Wang et al., 2019; Yim et
al., 2019), thus enhancing the dispersion of regional pollu-
tants. The La Niña effect is associated with opposite changes
in rainfall and wind, thus impeding the dispersion of air pol-
lutants. Over the decade, there were two El Niño and three
La Niña events that lasted for at least 2 months. The strength
of ENSO can be classified by the Niño 3.4 index based on the
averaged sea surface temperature (SST) anomalies in the Pa-
cific Ocean region. This classification scheme results in five
broad groups (Table S6 in the Supplement), that is, neutral
(0–0.49), weak (0.5–0.99), moderate (1–1.49), strong (1.5–
1.99), and very strong (≥ 2) (the numbers in the parentheses
indicate the SST anomaly). The rainfall, wind direction, and

wind speed at TW under each level of ENSO events were
compared with those on the normal days (i.e., neutral event)
and are summarized in Figs. 9 and S14 in the Supplement.
The rainfall during all El Niño events was close to that dur-
ing neutral conditions in Hong Kong, but there was a notable
reduction of rainfall during strong La Niña events. In terms
of wind conditions, more westerly air masses (wind direc-
tion > 180◦) were transported during very strong El Niño
and moderate to strong La Niña events, while the elevated
wind speed generally occurred during weak to moderate El
Niño events.

The changes in meteorological conditions were hard to
be visualized and quantified. To better investigate the ef-
fect of ENSO in Hong Kong, a multiple linear regression
(MLR) was established between the observed concentrations
and a list of meteorological variables including tempera-
ture (Temp), RH, seasonal components, and ENSO events,
as shown in Eq. (4). For simplicity, the definitions of sea-
sons here are based on calendar months, with spring corre-
sponding to March–April, summer to May–August, fall to
September–October, and winter to November–February.

Xm = β1Yearm+ δ1Seasonm+β2Tempm+β3RH

+ δ2ENSO, (4)

where Xm is the monthly averaged time series, β’s are the
coefficients of parametric variables (i.e., Year, Temperature,
RH), and δ’s are the coefficients of two dummy variables
(i.e., season and ENSO event).

This MLR equation explains additional variance by
the ENSO variables (0.63 %–11.7 %) without any multi-
collinearity issue (i.e., generalized variance inflation factor
< 5). The prediction from this model is reasonable, produc-
ing a slope of ∼ 0.8 and R values of 0.58–0.86. Briefly, the
coefficients for the year (β1’s) capture the decline of species
and approximately match the GLS-ARMA results. Seasonal
variations were successfully reflected by the coefficients for
season (δ1’s), temperature (β2), or RH (β3) (Table S7 in the
Supplement). For example, positive summer coefficients in
V/Ni indicate higher in summer, negative spring coefficients
in levoglucosan indicate higher in winter, and negative tem-
perature coefficients in NO3

−/hopanes indicate stronger gas-
particle partition or degradation (Table S7).

The random ENSO events impose different impacts on
gaseous and particle pollutants. Significant enhancement
of SO2 and NOx (i.e., p value of δ2,La Niña < 0.05) was
found to be owing to the La Niña effect, while no changes
were observed for O3 (Fig. S15 in the Supplement). Con-
versely, significant and positive coefficients of the strong La
Niña effect were obtained for all PM2.5 pollutants except
V and Ni. The coefficient was particularly high and posi-
tive for some (SO4

2−, NO3
−, NH4

+, OC, and levoglucosan,
δ2, strong La Niña from 1.6 to 61) but less for some regional
source species (Pb, Cu, δ2, strong La Niña from 0.0089 to 0.029)
(Fig. S15). In other words, the concentration of these species
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Figure 9. The temporal variation in strength of ENSO events in the 2008–2017 period (a) and the changes of rainfall (b) under different
strength levels of ENSO events.

was typically high under strong La Niña events in compari-
son with neutral days. This could be explained by the signif-
icantly suppressed rainfall during the strong La Niña event
(Fig. 9), where the highly water-soluble ions and levoglu-
cosan were removed to a lesser extent via wet deposition and
thus maintained higher concentrations than the normal days.
Regardless of the significant level of coefficients, the El Niño
effects are generally opposite to the La Niña effect, imply-
ing that the enhancement of pollution dispersion/deposition
could happen during El Niño events (Table S7).

4 Conclusions

In this study, we analyzed the 10-year (2008–2017) time se-
ries of PM2.5, its major components, and selected source
markers in an urban site in Hong Kong by the STL–GLS-
ARMA method. The dataset was obtained by following a reg-
ular 1-in-6 d sampling schedule that ensures temporal repre-
sentativeness and adheres to well-established chemical spe-
ciation analysis protocols adopted by the USEPA. In addi-
tion, organic molecule marker compounds (i.e., levoglucosan
and hopanes) were also measured for this 10-year sample set.
Such a long time series of PM2.5 chemical composition data
derived using a consistent sampling and analysis methodol-
ogy is rare in China and elsewhere in Asia, thus providing
uniquely valuable data to support studies of control measure
evaluation and formulation for the region and offering a use-
ful reference for other provinces in China in evaluating emis-
sion control policies.

All PM2.5 components were found reduced, with the
overall PM2.5 mass dropping at −1.5 µgm−3 yr−1 and by
a cumulative rate of 40 % (from 37.5 to 22.4 µgm−3).
The individual contributors to the PM2.5 reduction are
sulfate (−0.36 µgm−3 yr−1), OM (−0.25 µgm−3 yr−1), ni-
trate and EC (each at −0.17 µgm−3 yr−1), ammonium
(−0.12 µgm−3 yr−1), and others (−0.39 µgm−3 yr−1). A dis-
proportional reduction was noted between the precursor
gases SO2 (−62 %) and NOx (−36 %) and their secondary
products SO4

2− (−40 %) and NO3
− (−66 %) because of

the complexity in their formation chemistry and formation
process spatial scale not confined locally to Hong Kong. A
steadily declining trend in EC and hopanes was recorded,
achieving a cumulative decrease of 60 % and 75 %, respec-
tively, in their ambient concentrations. These reductions ver-
ify the effectiveness of a series of control measures to re-
duce vehicular emissions by the Hong Kong government. In
comparison, the reduction of OC was more modest, at 23 %,
which reflects the many more contributing sources as well as
important secondary formation contribution to OC.

Two biomass burning tracers, K+ and levoglucosan, dis-
played strong seasonality in both ambient abundance and 10-
year variation trend, the PRD and northern China being the
source region in the wintertime and South Asia being the
source region in the summertime. Wintertime K+ showed a
definitive decline trend at a rate of −7.5 %yr−1 and a cumu-
lative −60 % reduction, while the decline of wintertime lev-
oglucosan was hardly discernable from zero. In the summer-
time, neither K+ nor levoglucosan showed a clear decreasing
trend. The two tracers track different types of biomass burn-
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ing, with K+ more representative of crop residue burning and
levoglucosan tracking the burning of cellulose. Collectively,
the biomass burning tracers indicate that crop straw burning
has been reduced over the decade but that biomass burning
remains a largely uncontrolled regional/super-regional PM2.5
source for Hong Kong.

The 10-year data of Zn, Cu, and Pb showed a cumula-
tive reduction of −40 %, −43 %, and −67 %, respectively.
All three metals had strong seasonality, with winter concen-
trations much higher than the summertime, the metal pro-
cessing industries/coal combustion from the GBA region and
northern China being the source regions. Their significant re-
ductions in wintertime (−6.6 %, −5.8 %, and −7.7 % yr−1

for Zn, Cu, and Pb, respectively) suggested benefits from
measures such as industrial upgrading and coal combustion
emission reduction that were implemented over the decade.
The reduction for all three metals in the last 3 years (2015–
2017) had stalled, signaling new measures are needed for
their further reduction. Dust in Hong Kong’s PM2.5 mainly
comes from a regional contribution. The dust components in
PM2.5 decreased, by −37 % for Al and −46 % for Si, over
the decade, indicating success in controlling dust generation
activities in the region.

Finally, the long time series reveals that 2011 is an
anomaly year in that most PM2.5 components were elevated
above the adjacent years. By establishing a multiple linear re-
gression model, we show that the heightened strong La Niña
events in 2011 resulted in unusually low rainfall, which in
turn reduced the removal via wet deposition of aerosol con-
stituents. In conclusion, the long-term chemical speciation
data of PM2.5 starting as early as 2008 in Hong Kong, one of
the important cities in the Great Bay Area, could be useful
for a multitude of purposes related to understanding decadal-
scale atmospheric composition change and evaluating signif-
icant control policies for the region and the nation.
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