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Abstract. An advanced approach of conditional non-linear optimal perturbation (CNOP) was adopted to iden-
tify the sensitive area for targeted observations of meteorological fields associated with PM2.5 concentration fore-
casts of a heavy haze event that occurred in the Beijing–Tianjin–Hebei (BTH) region, China, from 30 November
to 4 December 2017. The results show that a few specific regions in the southern and northwestern directions
close to the BTH region represent the sensitive areas. Numerically, when predetermined artificial observing ar-
rays (i.e. possible “targeted observations”) in the sensitive areas were assimilated, the forecast errors of PM2.5
during the accumulation and dissipation processes were aggressively reduced; specifically, these assimilations,
compared with those in other areas that have been thought of as being important for the PM2.5 forecasts in the
BTH region in previous studies, exhibited a more obvious decrease in the forecast errors of PM2.5. Physically,
the reason why these possible targeted observations can significantly improve the forecasting skill of PM2.5 was
interpreted by comparing relevant meteorological fields before and after assimilation. Therefore, we conclude
that preferentially deploying additional observations in the sensitive areas identified by the CNOP approach
can greatly improve the forecasting skill of PM2.5, which provides, beyond all doubt, theoretical guidance for
practical field observations of meteorological fields associated with PM2.5 forecasts.

1 Introduction

Air pollution is one of the most severe environmental prob-
lems that China is facing. Among various air pollutants,
fine particulate matter (PM2.5) has been considered as the
most serious pollutant, frequently engulfing northern China,
including the Beijing–Tianjin–Hebei (BTH) region. Expo-
sure to heavy PM2.5 episodes not only increases the risks of
various respiratory diseases but also induces the possibility
of diabetes and other metabolic-dysfunction-related diseases
(Guan et al., 2016; Lim and Thurston, 2019). Accurate PM2.5
concentration forecasts are essential since they can remind

people to reduce exposure during haze days and can assist
policy-makers in making effective emission reduction mea-
sure decisions. The atmospheric chemical transport model
(CTM) is one of the most widely used and effective ways to
forecast PM2.5 concentrations. However, relevant chemical
and physical processes are complex, and associated parame-
terization schemes of turbulent processes and meteorological
and emission conditions cannot describe the real world ex-
actly, causing model forecasts to have great uncertainty, es-
pecially on heavy haze days (Hu et al., 2010; Kong et al.,
2021).
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The uncertainties of CTM output, as mentioned above,
are primarily attributed to the uncertainties of meteorologi-
cal and emission inputs, in addition to those occurring in the
chemical model formulation (Romano et al., 2004; Gilliam et
al., 2015). Meteorological conditions, including wind, tem-
perature and relative humidity, which are crucial for the
transformation, formation, diffusion and removal of pollu-
tants in the atmosphere, have a great impact on PM2.5 fore-
casts of the BTH region in CTMs (Godowitch et al., 2011;
Chen et al., 2020). Using an artificial neural network model
combined with wavelet transformation, He et al. (2017)
demonstrated that meteorological conditions explained more
than 70 % of the variance in daily PM2.5 concentrations over
the major cities in China. Therefore, regional PM2.5 concen-
trations rely on meteorological variations to a large extent.
Thus, to improve the PM2.5 forecasting skill, it is necessary
to understand the sensitivity of the CTM results to the in-
putted meteorological fields and to reduce meteorological
uncertainty. It has been demonstrated that uncertainties in
the meteorological initial field substantially influence pollu-
tion simulations, including their temporal variations and peak
time concentrations (Zhang et al., 2007; Bei et al., 2017; Liu
et al., 2018). Thus, increasing the accuracy of the meteoro-
logical initial conditions is an effective way to improve the
PM2.5 forecasting skill.

Data assimilation is recognized as a useful technique for
improving the accuracy of initial conditions. To obtain reli-
able initial meteorological conditions, sufficient and effec-
tive observations are essential. However, conventional ob-
servations, which are distributed at a low resolution in both
oceans and islands, have a limitation in improving the ac-
curacy of initial conditions (Li et al., 2015). Assimilating
additional field observations has been proven to be an ef-
fective way to obtain a reliable initial field (Snyder, 1996;
Mu et al., 2015). Since field observations are costly and
never sufficiently dense, one can consider placing a prefer-
entially limited number of observations in key areas to have
the most positive impacts on improving forecast skill. This
idea is just one of the new observational strategies of “tar-
get observation”, also called “adaptive observation”, which
has been developed over the past 2 decades (Snyder, 1996;
Palmer et al., 1998; Majumdar, 2016). The target observa-
tion mainly serves the demand of forecasts on observations.
The idea is as follows. To better predict an event at a future
time t2 (i.e. verification time) in a focused area (i.e. verifi-
cation area), additional observations are deployed at a future
time t1 (i.e. target time; t1 < t2) in some key areas (i.e. sen-
sitive areas) where additional observations are expected to
have a large contribution in reducing the prediction errors in
the verification area. These additional observations are as-
similated by a data assimilation system to provide a more
reliable initial state, which would be supplied to the model
to obtain a more accurate prediction. Targeted observations
have become a hot topic in atmospheric science due to their
successful applications in improving the prediction skills of

extreme weather events, such as typhoons (Wu et al., 2009;
Mu et al., 2009) and winter storms (Kren et al., 2020) and
high-impact climatic events, such as the El Niño–Southern
Oscillation (ENSO; Kramer and Dijkstra, 2013; Duan et al.,
2018) and Indian Ocean Dipole (IOD; Feng et al., 2017; Beal
et al., 2020). As we stated above, the meteorological ini-
tial fields have great impacts on the PM2.5 forecasts of the
BTH region (Bei et al., 2017; Liu et al., 2018); meanwhile,
our results also showed that the PM2.5 forecasts are sensitive
to the uncertainties of meteorological initial conditions (see
Sect. 3.1). Based on these findings, we would propose the fol-
lowing question: can we apply the targeted observation strat-
egy to improve the meteorological condition forecasts, which
then further improve the PM2.5 forecasts of BTH region? It
has also been argued that sufficient satellite observations can
be used to yield the meteorological initial field by using a
data assimilation approach. However, assimilating more ob-
servations may not lead to higher forecast benefits. There-
fore, even if there are sufficient observations, one should also
consider which areas of observations and how many obser-
vations should be preferentially assimilated to improve the
PM2.5 forecast skill to a larger degree. When the observa-
tions in the area with high sensitivity are assimilated to the
initial values of the forecast, the forecasting skills will be
greatly increased; conversely, if the observations in the area
where the forecast is not sensitive to the initial values are
assimilated, the forecasting skills will be improved slightly
or even become worse (Yu et al., 2012; Janjić et al., 2018;
Zhang et al., 2018). Thus, the present study will explore
the relevant sensitive area and examine the role of possible
targeted observations on meteorological fields in improving
the PM2.5 forecast skill during a heavy haze event that oc-
curred from 30 November to 4 December 2017 in the BTH
region, eventually suggesting the usefulness of implementing
targeted observations on meteorological fields for improving
air quality forecasts.

The key for the targeted observation is the determination
of sensitive areas mentioned above and the design of the ob-
servation network. That is, when implementing the targeted
observations, one should first make clear where to preferen-
tially implement targeted observations and how to display
these additional observations. To obtain the sensitive areas
of meteorological fields for PM2.5 forecasting, an advanced
optimization method, conditional non-linear optimal pertur-
bation (CNOP), is used (Mu et al., 2003; Mu and Zhang,
2006), which overcomes the linear limitation of the tradi-
tional singular-vector approach (Lorenz, 1965). The CNOP
represents the initial perturbation that causes the largest er-
ror growth at a given future time over the verification area.
The CNOP is therefore the most sensitive initial perturbation;
therefore, it would have potential for providing the sensitive
area for targeting observations. In fact, the CNOP has been
adopted to identify sensitive areas for targeting observations
in both observations system simulation experiments (OSSEs)
and/or practical observation tasks associated with typhoons,
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ENSO, Kuroshio and marine environments over the coast of
China (Mu et al., 2015; Da et al., 2019) and has gained great
success in improving the forecasting skills of the concerned
high-impact weather or climatic events.

In the present study, we would consider the importance
of the meteorological initial conditions on PM2.5 forecasting
and apply the targeted observation strategy of meteorological
fields with the CNOP approach to study the PM2.5 forecast of
a heavy haze episode. As mentioned above, during the period
from 30 November to 4 December 2017, a heavy air pollu-
tion event occurred in the BTH region, with hourly maximum
PM2.5 concentrations greater than 250 µg m−3, exceeding the
standard of severe pollution (Feng et al., 2016). However, the
Beijing Municipal Ecological and Environmental Monitor-
ing Center did not provide a warning of this event in time (see
the link http://www.bjmemc.com.cn/, last access: 30 August
2022). We utilize this event as an example to explore the pos-
sible targeted observations of meteorological fields and to in-
vestigate whether they can help improve the PM2.5 forecast-
ing skill. Specifically, the following questions are addressed.

a. Which area represents the sensitive area of initial me-
teorological fields for targeted observations associated
with the PM2.5 forecast of the concerned event?

b. What is the optimal observation array for targeted ob-
servations in meteorological fields (in terms of locations
and coverage density)?

c. Why can the targeted observations in the sensitive areas
lead to a larger improvement in the PM2.5 forecasting
skill of the event?

The paper is organized as follows. The model, methodology
and data used in the study are introduced in the next section.
Then, the CNOP-type errors of the meteorological field fore-
casting of the haze event are calculated in Sect. 3. In Sect. 4,
the sensitive areas of the meteorological field for the PM2.5
forecasts are identified, and relevant OSSEs are designed to
verify the validity of the targeted observation in improving
the forecasting skill of PM2.5 in the haze event. In Sect. 5, the
reasons why the targeted observations can result in a larger
improvement in PM2.5 forecasts are interpreted. Finally, a
summary and discussion are presented in Sect. 6.

2 Model, methodology and data

In this study, we adopt a nested air quality prediction mod-
elling system (NAQPMS) and a weather research and fore-
casting (WRF) model to explore the role of targeted obser-
vations on meteorological fields in improving the surface air
concentrations of PM2.5 forecasts by building an optimiza-
tion problem associated with the CNOP approach.

2.1 Models

The NAQPMS is a three-dimensional regional Eulerian
chemical transport model developed by the Institute of At-
mospheric Physics, Chinese Academy of Sciences (Wang et
al., 1997, 2006). It includes modules that address horizon-
tal and vertical advection and diffusion, dry–wet deposition,
gaseous phases, aqueous phases, aerosols, and heterogeneous
chemical reactions. The NAQPMS has been widely applied
to forecast air pollutants and to study the source apportion-
ment of pollutants (Yang et al., 2020). The anthropogenic
emissions of PM2.5 and other pollutants are from Multi-
resolution Emission Inventory for China in 2017 (MEIC
2017) (Li et al., 2014) (http://meicmodel.org/, last access: 30
August 2022). The model integration is conducted in a sin-
gle model domain of 95× 95 grids at a resolution of 30 km
with 20 vertical levels. The components of PM2.5 simulation
include black carbon (BC), organic carbon (OC), secondary
inorganic aerosol (sulfate, nitrate, ammonium) and primary
PM2.5 emitted directly from various sources. The mass of
aerosol liquid water is not included in the simulated PM2.5
mass concentrations so that the PM2.5 simulations are dry
mass concentrations.

The NAQPMS is driven by the meteorological field gener-
ated through WRFV3.6.1 (https://www2.mmm.ucar.edu/wrf/
users/, last access: 30 August 2022). The WRF model used in
the present study adopts the Lin microphysics scheme (Lin
et al., 1983), the Rapid Radiative Transfer Model for Gen-
eral circulation (RRTMG) longwave radiation scheme (Ia-
cono et al., 2008), the Dudhia shortwave radiation scheme
(Dudhia, 1989) and the Yonsei University planetary bound-
ary layer parameterization scheme (Hong et al., 2006). These
parameterization schemes are also adopted in the adjoint
model of the WRF, which is used to calculate the CNOP (see
Sect. 2.2). To enhance the computing efficiency of the CNOP,
a horizonal resolution of 30 km is used in the present study
for an initial attempt. The model domain of the WRF and its
adjoint model are the same as in the NAQPMS. The assimi-
lation system we used is a 3-D variational data assimilation
system of the WRF, which has been proven to be an efficient
assimilation tool for PM2.5 simulations (Kumar et al., 2019;
Zhang et al., 2021).

2.2 Conditional non-linear optimal perturbation (CNOP)

The CNOP represents the initial perturbation (or error) that
can lead to the largest forecast error in the focused area
(verification area) at verification time. Suppose a non-linear
model is expressed as Eq. (1),{

∂x
∂t
+F (x)= 0

x|t=0 = x0
, (1)

where x is the state vector with an initial value x0 and F
is a non-linear partial differential operator. The solution of
Eq. (1) can be described as x(t)=M(x0), in which M is
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the non-linear propagator. If x(t) is a reference state and an
initial perturbation δx0 is added to its initial state x0, a fore-
cast will be made with x(t)+ δx(t)=M (x0+ δx0), where
δx (t)=M (x0+ δx0)−M (x0) represents the evolution of
the initial perturbation δx0. Thus, an initial perturbation is
CNOP (δx∗0) if and only if

J
(
δx∗0

)
= max
δxT0 C1δxo≤β

[M (x0+ δx0)−M (x0) ]T

C2 [M (x0+ δx0)−M (x0)] , (2)

where δxT
0C1δx0 ≤ β is the constraint condition that the ini-

tial perturbation should satisfy and β is a positive value that
is comparable to the initial analysis error variance of the con-
sidered variables. C1 and C2 are coefficient matrices, which
define the amplitudes of initial perturbations δx0 and its evo-
lutionM (x0+ δx0)−M (x0), with x consisting of zonal and
meridional wind (U and V , respectively), temperature (T ),
water vapour mixing ratio (Q), and pressure (P ) compo-
nents in the present study, and they play their role by calcu-
lating the total perturbation energy from surface to top (i.e.
100 hPa), as in Eq. (3) (Ehrendorfer et al., 1999; Chen et al.,
2020).

Total energy=
1
D

1∫
0

∫
D

[
U ′2+V ′2+

Cp

Tr
T ′2+

L2

CpTr
Q′2

+RaTr

(
P ′

Pr

)2
]

dηdD

(3)

Here, Cp (= 1005.7 J kg−1 K−1), Ra (= 287.04 J kg−1 K−1),
Tr (= 270 K), L (= 2.5105×106 J kg−1), and Pr (=
1000 hPa) are constant values and U ′, V ′ T ′, Q′, and P ′ de-
note the perturbations superimposed on meteorological fields
of zonal and meridional wind, temperature, water vapour
mixing ratio, and pressure, respectively. D denotes the ver-
ification area, which is the BTH region in this study and η
signifies the vertical coordinate.

The optimization problem in Eq. (2) is solved by using
the spectral projected gradient 2 (SPG2) method (Birgin et
al., 2001) in the present study. A first guess is assigned to
the initial perturbation δx0. The WRF model is integrated
forward with the initial state x0+ δx0 to obtain the fore-
cast M (x0+ δx0). The cost function J is calculated by us-
ingM (x0+ δx0) andM (x0). The adjoint model of the WRF
is integrated backward to calculate the gradient of the cost
function with respect to the initial perturbation δx0. The gra-
dient represents the fastest descending direction of the cost
function J in Eq. (2). Based on the iteratively forward and
backward integration governed by the SPG2 algorithm, the
initial perturbation δx0 is optimized and updated until the
convergence condition of the algorithm is satisfied. Here, the
convergence condition is ‖P (δx0− g(δx0))− δx0‖2 ≤ ε1,

where ε1 is an extremely small positive number, P (δx0)
projects the δx0 outside the constraint to the boundary of the
constraint condition and g(δx0) represents the gradient of the
cost function J with respect to δx0. Thus, the resultant ini-
tial perturbation δx∗0 is the CNOP. The details for the SPG2
algorithm can be seen in Birgin et al. (2001).

2.3 Data

Surface PM2.5 observation datasets for verification are ob-
tained from national environmental monitoring stations.
There are 1287 national stations across China, 80 of which
are located in the BTH region. The distribution of the 80
observation sites within the BTH region is shown in Fig. 1.
We retrieved the hourly measurements of PM2.5 from 80 air
quality monitoring stations from 30 November to 4 Decem-
ber 2017, where the PM2.5 observations are for dry mass con-
centrations and there are no missing values during the time
period we considered.

The fifth-generation ECMWF reanalysis for the global
climate and weather (ERA5) (https://www.ecmwf.int/en/
forecasts/datasets/reanalysis-datasets/era5, last access: 30
August 2022) and National Centers for Environmental Pre-
diction (NCEP) Global Forecasting System (GFS) histori-
cal archive forecast data (GFS, https://rda.ucar.edu/datasets/
ds084.1/, last access: 30 August 2022) are both used to pro-
duce the initial and boundary meteorological conditions for
the WRF simulations. Both the ERA5 and GFS data have a
0.25◦ spatial resolution (approximately 25 km) and 6 h tem-
poral resolution.

3 The CNOP of the PM2.5 forecasting

In this section, we use the CNOP approach to identify the
sensitive areas for targeted observations associated with the
PM2.5 forecast in the heavy haze event in BTH that occurred
from 30 November to 4 December 2017. Figure 2a and b
plot the time series of the PM2.5 concentration observed at
the Baoding (in Hebei) and Dongsi (in Beijing) environmen-
tal monitoring stations. The haze started to develop at ap-
proximately 02:00 BJT (Beijing time, UTC+ 8 h) on 1 De-
cember and dispersed at 14:00 BJT on 3 December. Specif-
ically, the PM2.5 concentrations of most cities in the BTH
region exceeded 250 µg m−3 at 12:00 BJT on 2 December.
Following this, starting from 01:00 BJT on 3 December, the
PM2.5 dissipated rapidly within several hours. In Beijing,
from 00:00 BJT on 1 December, it took almost 1 d to accu-
mulate PM2.5 from 77 o 160 µg m−3 according to the Dongsi
station. Finally, from 01:00 BJT on 3 December, the PM2.5
concentration decreased from 256 to 19 µg m−3 over 7 h.
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Figure 1. Map of the current environmental monitoring stations
(hollow circles) within the BTH domain. The thin black lines show
the boundaries of the surrounding Chinese provinces, and the thick
black lines show the coastline. The boundaries of Beijing, Tianjin
and Hebei Province are marked in red.

3.1 Simulations of the PM2.5 variability in the heavy
haze event

After a 10 d spin-up of the WRF-NAQPMS, the ERA5 and
GFS meteorological data are separately adopted to initialize
the WRF at 00:00 BJT on 30 November 2017, and the sim-
ulations of PM2.5 concentrations at the Baoding and Dongsi
stations are plotted in Fig. 2. Since the two simulations are
generated by the same model using the same emission inven-
tory, the PM2.5 forecast uncertainties are only attributed to
the uncertainties of meteorological initial fields. The simu-
lation initialized by ERA5 can better reproduce the pollution
event. During the period between 00:00 BJT on 30 November
and 23:00 BJT on 1 December, the simulations initialized by
ERA5 almost overlap with the observations. In the remain-
ing time period, although the highest PM2.5 concentration
simulated by ERA5 occurs approximately 12 h earlier and
more than 50 µg m−3 lower than those in the observations,
the simulation can represent the accumulation and dissipa-
tion processes of PM2.5 well.

The simulations initialized by the GFS do not perform well
in representing the episode of PM2.5. They underestimate the
PM2.5 concentrations during the accumulation process, and

Table 1. The RMSE (µg m−3) and correlation coefficient (CC) of
PM2.5 concentrations between simulations initialized by ERA5 and
GFS and observations averaged over 80 stations.

Measurements ERA5 GFS

RMSE 60.09 74.99
CC 0.47 0.39

the simulated highest PM2.5 concentration (176 µg m−3) oc-
curs at approximately 21:00 BJT on 3 December in Baoding,
which is exactly in the dissipation process of the observed
event. The simulation of Beijing PM2.5 also shows a large
deviation from the observational PM2.5 concentration, espe-
cially during the dissipation process.

To quantify the differences between simulations and ob-
servations, mean root-mean-square errors (RMSEs) and cor-
relations of the 80 grids during the whole event (from
00:00 BJT on 30 November to 00:00 BJT on 4 Decem-
ber 2017) are calculated against the observations. As shown
in Table 1, the mean RMSE of the simulations initialized by
ERA5 is 60.09 µg m−3 for the PM2.5 concentration, which
is 19.87 % lower than that of the GFS simulations (i.e.
74.99 µg m−3). The correlation between the ERA5 simula-
tion and the observation is 0.47, which is 20.51 % higher than
the correlation between the observation and GFS simulation
(i.e. 0.39). More specifically, we select two time points to
show the PM2.5 differences between simulations and obser-
vations, which are at 02:00 BJT on 2 December (hereafter
defined as accumulation time; AT) and 14:00 BJT on 3 De-
cember (hereafter defined as dissipation time; DT). Almost
all GFS simulations show an underestimation of the PM2.5 at
the AT and an overestimation at the DT. The mean deviations
are −47.88 µg m−3 at the AT and 55.02 µg m−3 at the DT.
The ERA5 simulation performs much better at the two time
points, with mean deviations of −30.57 and 41.58 µg m−3,
respectively, although it also shows an underestimation at the
AT and an overestimation at the DT.

It is known that a bad forecast made by a numerical model
is attributed to errors in both models and initial conditions.
The study of targeted observations aims to improve the fore-
cast by reducing the errors in the initial conditions, which
is usually implemented with perfect model assumptions (Mu
et al., 2015). A perfect model is assumed to limit forecast
errors that result only from errors in the initial conditions,
thus simplifying the complexity of problems. However, there
are no perfect models in reality. Thus, when implementing
the targeted observation tasks, we choose the model that ex-
hibits relatively small model errors and is able to present
good simulations to determine where (i.e. the sensitive area)
to deploy the targeted observations by calculating the CNOP.
The WRF is one of the most advanced weather forecast-
ing models currently and exhibits small model errors (Liu
et al., 2012). Therefore, we apply the WRF, together with the
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Figure 2. Time series of the dry PM2.5 concentrations at (a) Baoding station (Hebei Province) and (b) Dongsi station (Beijing) of observa-
tions and simulations initialized by ERA5 and GFS meteorological data during the period between 30 November and 4 December 2017. The
accumulation time (AT) and dissipation time (DT) are marked by dashed lines.

NAQPMS model, to explore the role of targeted observations
in PM2.5 forecasts. When we use different initial conditions
to simulate PM2.5, a better simulation is taken as the “truth
run”, and the CNOP is calculated based on that. As shown
above, the simulations initialized by ERA5 have better per-
formances in presenting the PM2.5 variability; specifically,
they show the best simulation at the AT for the accumulation
process of PM2.5 and at the DT for the dissipation process.
Thus, the simulations initialized by ERA5, especially at AT
and DT, are taken as the truth run to determine the sensitive
area for targeted observations by calculating the CNOP, even
though the calculated sensitive area is actually an approxi-
mation of the real sensitive area. If such approximation is
valid, then preferentially assimilating additional observations
in the sensitive area will help improve the PM2.5 forecasting
skill greatly for any forecast. The validity of the above ap-
proximate sensitive area is often tested by prescribing a good
simulation to the observations (for example, the simulation
initialized by ERA5) and then assimilating the simulated ob-
servations located in the sensitive area to a bad forecast (for
example, the control forecast) to examine whether the assim-
ilation forecast will be much closer to the good simulation,
which is actually a kind of OSSE (see Masutani et al., 2010;
Qin et al., 2013). In our study, to verify the validity of the
sensitive area, the simulated targeted observations are assim-
ilated to the GFS forecasts to improve their PM2.5 forecasts,
where the GFS forecasts are taken as the “control run” and
those after assimilating targeted observations are regarded as
the “assimilation run”. If the sensitive area is valid, the PM2.5
forecasts in the assimilation run will be much closer to the
truth run. It can also be inferred that if the real observations
are available, assimilating the real targeted observations to
the initial field of the meteorology of the control forecast
would improve the PM2.5 forecast skill greatly against the
observations. In the present study, we will adopt assimilating
simulated observations to verify the validity of the sensitive
area due to the lack of available observations.

3.2 CNOP-type errors of meteorological field forecasting

We select the AT and DT as verification times separately to
determine the sensitive areas by calculating the CNOP-type
errors. When the AT is taken as the verification time, we
explore the forecast starting from 02:00 BJT on 1 Decem-
ber, with a lead time of 24 h, and the forecast starting from
14:00 BJT on 1 December, with a lead time of 12 h. When
the DT is taken as the verification time, the forecasts starting
from 14:00 BJT on 2 December and 02:00 BJT on 3 Decem-
ber, with lead times of 24 and 12 h, respectively, are inves-
tigated. Thus, there are a total of four PM2.5 forecasts used
here for the heavy haze event that occurred in the BTH re-
gion from 30 November to 4 December 2017, and these are
all initialized by ERA5.

As we described in Sect. 2.2, the CNOP-type initial er-
rors, which include the variables of wind, temperature, pres-
sure and water vapour mixing ratio, cause the largest fore-
cast error in the studied meteorological fields when measured
by the total energy at the verification time in the verifica-
tion area, which may perturb the PM2.5 forecast to the great-
est extent when considering the combined effect of different
meteorological components and thus represent the most dis-
turbing initial error in the meteorological field. The CNOP-
type errors are calculated separately for these four forecasts.
Figures 3–6 plot the horizontal structures of the CNOP-type
errors (including wind, temperature and water vapour per-
turbations) at ground level (approximately 1000 hPa), low-
pressure level (approximately 850 and 750 hPa), middle-
pressure level (approximately 500 hPa) and upper-pressure
level (approximately 200 hPa) for the four forecasts. All
wind, temperature and water vapour components of the
CNOP-type errors, whether for the AT or DT, are mainly
concentrated at ground and low-pressure levels, with large
errors lying at the low-pressure levels for a lead time of 24 h
and ground level for a lead time of 12 h.

Regarding the CNOP-type errors for the AT, their dom-
inant anomalies, as mentioned above, occur at the low-
pressure level (i.e. 850 hPa) for the forecast, with a lead time
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of 24 h. Furthermore, the horizontal pattern mainly presents
two areas that cover the large CNOP-type errors, despite
small position differences among the respective large-error
areas of wind, temperature and water vapour components at
the 850 hPa level (see Fig. 3). One area is near the southern
part of the BTH region, with southerly wind bias and pos-
itive temperature and water vapour biases, while the other
area is in central Mongolia, with southerly wind, positive
temperature and negative water vapour biases. However, at
ground level, the horizontal patterns present different areas
with large errors for the three meteorological components:
the wind presents large errors in the southern and western
parts of the BTH region, while the temperature and water
vapour components present large errors in the western part of
the BTH region. For the forecast with a lead time of 12 h, the
CNOP-type errors are dominant at ground level but mainly
confined to Beijing, with large northerly wind bias and posi-
tive temperature and water vapour biases (see Fig. 4). In ad-
dition, the wind and water vapour also present large errors in
Shandong Province. At the low-pressure level (i.e. 850 hPa),
the maximum errors of wind and temperature are located in
the northwestern part of the BTH region, near Baotou city,
but the maximum error of water vapour is found in Shandong
Province in the southeastern part of the BTH region.

When the DT is the verification time, it can be seen that
the CNOP-type errors mainly occur at low-pressure levels
(i.e. 850 and 750 hPa), for a lead time of 24 h, where a
large northerly wind bias and negative temperature and wa-
ter vapour biases occur in southern Mongolia. Despite their
specific positions only having small differences, the location
of large water vapour errors is further west than those of the
large errors of wind and temperature (see Fig. 5). For a lead
time of 12 h, the large northwesterly wind errors are con-
centrated at the ground level, while the large positive tem-
perature and water vapour errors occur at low-pressure lev-
els. Furthermore, there are also large temperature and water
vapour errors occurring at the low- and middle-pressure lev-
els (see Fig. 6).

It is clear that the CNOP-type errors peak at different verti-
cal levels for the four forecasts. For the meteorological fields
of wind, temperature and water vapour, even at the same ver-
tical level, the areas with large errors in different variables
are somewhat different. The errors in the areas where the
CNOP-type errors are concentrated could make the largest
contribution to the forecast errors of the verification area
at the verification time, and therefore they can be regarded
as a sensitive area for targeted observations associated with
PM2.5 forecasts. However, from the above CNOP-type er-
rors, it is known that such areas are dependent on different
meteorological variables and are located at different vertical
levels and regions, which makes it unclear which meteoro-
logical variables, levels and areas should be identified for
preferential treatment and provides challenges to real field
campaigns. Thus, in this situation, how do we address the
problems related to targeted observations for the meteoro-

logical fields associated with PM2.5 forecasting? We will ad-
dress this question in the next section.

4 The sensitive area for targeted observations and
associated validity verification on improving the
PM2.5 forecasts

In this section, we propose an approach to measure the com-
prehensive sensitivity of initial errors occurring in different
vertical levels and horizontal areas for different meteorolog-
ical variables. Following this, the sensitive areas for targeted
observations can be identified by this comprehensive sen-
sitivity that considers the information of all meteorological
variables at all pressure levels.

4.1 The sensitive areas for targeted observations
associated with PM2.5 forecasts

To evaluate the comprehensive sensitivity of the CNOP-type
initial errors occurring at different vertical levels and areas
for different meteorological fields, a vertical integral (VI) of
the CNOP-type errors, as shown in Eq. (4), is calculated.

VI=

1∫
0

1
2

(
U ′2+V ′′2+

Cp

Tr
T ′′2+
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CpTr
Q′2

+RaTr

(
P ′

Pr

)2
)

dη (4)

The VI consists of all concerned meteorological variables
and their vertical distributions and measures the comprehen-
sive sensitivity of forecasting uncertainties on initial errors
of different meteorological variables. In this situation, the
PM2.5 forecast could be very sensitive to the combined ef-
fect of initial errors of the meteorological fields in the area of
a larger VI, and preferentially reducing the meteorological
initial errors in these sensitive areas will lead to much larger
improvements of the meteorological forecasts over the BTH
region, which then significantly improves the regional PM2.5
forecasts.

Figure 7 shows the horizontal distribution of the VI for
the four forecasts. When the AT is the verification time, two
areas are identified to have large VIs for the forecast start-
ing from 02:00 BJT on 1 December, with a lead time of 24 h.
One area is near Dezhou, which lies to the southeast of Hebei
Province, and the other area is located in central Inner Mon-
golia and extends to Mongolia. We regard these two areas as
the sensitive areas for meteorological field forecasting, and
we then regard the PM2.5 forecast of the BTH region at the
AT, with a lead time of 24 h. Similarly, we identify the sen-
sitive area for the forecast with a lead time of 12 h in Beijing
and Tianjin. For the verification time DT, the sensitive areas
are determined as the region from Hohhot in Inner Mongolia
to the Altai Mountains in Mongolia for a lead time of 24 h.
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Figure 3. The horizontal distribution of the CNOP-type errors, including the wind component (vector, left column, m s−1), temperature
component (shaded, middle column, ◦) and water vapour mixing ratio component (shaded, right column, kg kg−1) at an upper-pressure
level (approximately 200 hPa), middle-pressure level (approximately 500 hPa), low-pressure level (approximately 850 hPa) and ground level
(approximately 1000 hPa) for the forecast starting from 02:00 BJT on 1 December, with a lead time of 24 h.
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Figure 4. The same as in Fig. 3 but for the forecast starting from 14:00 BJT on 1 December, with a lead time of 12 h.
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Figure 5. The same as in Fig. 3 but for the forecast starting from 14:00 BJT on 2 December, with a lead time of 24 h.
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Figure 6. The same as in Fig. 3 but for the forecast starting from 02:00 BJT on 3 December, with a lead time of 12 h.
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For a lead time of 12 h, the sensitive areas are mainly located
in Zhangjiakou and Chengde, which lie in the northern part
of the BTH region.

4.2 Validity of targeted observations in improving PM2.5-
forecasting skill

According to the definition of targeted observations, deploy-
ing additional observations in the sensitive areas and assim-
ilating them to the initial field will improve the forecasting
skill of the meteorological field and then the PM2.5. If such
improvement is significantly larger than those of assimilat-
ing the additional observations in other areas, the sensitivity
of the targeted observations in the sensitive area determined
by the CNOP is confirmed numerically. With the above ar-
gument, the better simulation of PM2.5 with the meteorolog-
ical field forecast by ERA5 is assumed to be the truth run,
and thus the worse simulation initialized by the GFS is the
control run (see Sect. 3.1); thus, the differences between the
PM2.5 concentrations in the control and truth runs can be re-
garded as forecast errors of the control run with respect to the
truth run. Figure 8 shows the spatial distributions of forecast
errors of PM2.5 at the AT and DT. This shows that the control
run has an obvious underestimation of the PM2.5 concentra-
tions over the whole BTH region at the AT and an overesti-
mation at the DT. If taking the absolute value of the biases,
then the mean biases of the whole BTH region are 34.22 and
64.13 µg m−3 at the AT and DT, respectively. To verify the
validity of the targeted observations in the sensitive areas, we
take relevant meteorological fields in the truth run but confine
them to the identified sensitive areas as “additional obser-
vations” (i.e. artificial targeted observations) and assimilate
them to the initial fields of the control run by the 3D-Var as-
similation system of the WRF (see Sect. 2.1), finally obtain-
ing an updated forecast of the PM2.5 concentration, which, as
defined in Sect. 3.1, is called the assimilation run. The valid-
ity of targeted observations for improving PM2.5 forecasts of
the control run is quantified by two indices defined by Eqs.
(5) and (6),

AEV =
(
|PC−PT| − |PA−PT|

|PC−PT|

)
t=T

× 100%, (5)

AEM =
1
T

i=T∑
i=t0

(
|PC−PT| − |PA−PT|

|PC−PT|

)
t=i

× 100%, (6)

where AEV and AEM are the percent change of the fore-
cast errors at verification times (see Eq. 5) and that during
the whole forecast period (see Eq. 6) after assimilating the
control forecast, respectively, and PC, PT and PA denote the
PM2.5 concentration in the control run, truth run and assimi-
lation run, respectively. The sign | q| measures the amplitude
of forecast errors averaged over the BTH region, T represents
the verification time and t0 is the initial time of the forecast.
A positive value of AEV and AEM indicates an improvement
in forecast skills, and the larger the positive values are, the

more significant the improvements. A negative value of AEV
and AEM indicates a decline in forecast skills.

We take the artificial additional observations of meteoro-
logical fields located at a fixed number of 15 horizonal ob-
servation positions, which are located through the vertical
950, 850, 750 and 500 hPa levels (60 observations at the four
pressure levels in total) and include horizontal wind, temper-
ature and relative humidity. These observation positions are
considered to be covered by the sensitive areas identified by
the VI of the CNOP-type errors. To determine the optimal
observation array in the sensitive areas, additional observa-
tions are experimentally distributed every 30, 60, 90, 120
and 150 km. Specifically, we take the observation distance
of 150 km as an example. The grid point with the largest VI
is taken as the first observation position. Following this, we
exclude the grids that are no further than 150 km away from
the first observation position and determine one of the largest
VIs among the remaining grids as the second observation po-
sition. After the second observation position is fixed, we ex-
clude the grids that are no further than 150 km away from
the second observation position, and the grid of the largest
VI among the remaining grids is determined as the third ob-
servation position. The other 12 observation positions can be
similarly determined. Note that the fixed number of the ob-
servation positions (15) is experimentally selected, and one
can choose other numbers to conduct experiments. In accor-
dance with the above approach, we can obtain 5 observation
arrays with 15 predetermined observation positions.

By assimilating the five observation arrays to the initial
fields of control runs, new forecasts (i.e. the assimilation
runs) of PM2.5 are obtained. The improvements in the fore-
casting skill against the truth runs are shown in Tables 2 and
3. For a 24 h lead time of the forecast at the AT, assimilat-
ing the five observation arrays can improve the PM2.5 fore-
cast skill by reducing the forecast errors ranging from 4.29
to 6.91 µg m−3, accounting for 12.54 % to 20.20 % of the
forecast errors in control runs measured by AEV at the AT;
the mean forecast errors during the whole forecast period
can decrease from 19.79 % to 29.20 % measured by AEM
(from exactly 3.58 to 5.28 µg m−3) (Table 2). Of the five ob-
servation arrays, the array with observation positions every
90 km shows the largest improvement measured by AEV and
AEM . When the 15 observation positions are deployed ev-
ery 90 km, approximately 68 % of the grids over the BTH
region show positive AEV values, and the largest improve-
ment in PM2.5 forecasts reaches 73.80 µg m−3, located in
Cangzhou in southeastern Hebei Province (Fig. 9a). When
the observation arrays are deployed 12 h before the AT, a
larger improvement in forecasting skills can be found (Ta-
ble 2). Of the five observation arrays, the improvements in
forecasting skills at the AT measured by AEV range from
24.53 % to 43.26 %, and the mean improvement during the
whole forecast period measured by the AEM ranges from
32.84 % to 50.81 %, where the observation array deployed
at a distance of 150 km shows the largest improvements in
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Figure 7. The horizontal distribution of the VI (J kg−1) for the forecasts at the AT with lead times of (a) 24 h and (c) 12 h and for the
forecasts at the DT with lead times of (b) 24 h and (d) 12 h. The black rectangle is the verification area.

terms of both AEV and AEM despite the observations being
relatively sparse in this array. Overall, the observations de-
ployed 12 h before the AT in the sensitive areas identified by
the CNOP-type errors measured by the VI show better per-
formances than those deployed 24 h before the AT. Thus, if
we care about improving the PM2.5 forecast at the AT and
the number of observation positions is fixed at 15 (only ac-
counting for 0.17 % of the grids over the domain), the obser-
vation array with an observation position distance of 150 km
deployed in the sensitive areas (i.e. locations in Beijing and
Tianjin) at 12 h before the AT might be the optimal choice for
targeted observations; in this case, the forecast error of PM2.5
could decrease by as much as 43.26 % at the AT in terms of
the AEV and 50.81 % during the whole forecast period in
terms of the AEM (see also Table 2).

To improve the PM2.5 forecast at the DT, five observa-
tion arrays in the corresponding sensitive areas can be simi-
larly obtained, and of these arrays, their assimilation runs im-

prove the PM2.5 forecast skills, with the AEV varying from
20.87 % to 44.72 % (from exactly 13.39 to 28.77 µg m−3)
and AEM from 27.31 % to 40.83 % (from exactly 8.27 to
11.90 µg m−3; Table 3) for a lead time of 24 h. The assim-
ilation run with the observation array of the observation po-
sitions every 150 km shows the largest improvement in both
AEV and AEM . Specifically, when the observation arrays are
deployed every 150 km, an area of approximately 81 % of
the grids over the BTH region shows positive AEV values,
and the largest improvement in the PM2.5 forecast, reaching
202.64 µg m−3, occurs in Tianjin (Fig. 9b). However, when
the lead time is reduced to 12 h, the mean improvements
are less than the forecast with a lead time of 24 h, with the
AEV varying from 20.92 % to 31.01 % (from exactly 11.24 to
16.66 µg m−3) and AEM from 27.81 % to 40.00 % (from ex-
actly 6.95 to 10.00 µg m−3, Table 3). Among the five obser-
vation arrays, the observations with an observation position
distance of 90 km show the largest improvement in both AEV
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Figure 8. The spatial distributions of PM2.5 forecast errors (µg m3) in the control run at the (a) AT and (b) DT. The black rectangle is the
verification area.

Table 2. The AEV /AEM of the forecasts at the AT, with lead times of 24 and 12 h, when the additional observations in the sensitive region
(CNOP), Region-W and Region-N are assimilated (%). The respective optimal observation array is marked in bold.

Lead times Region 30 km 60 km 90 km 120 km 150 km

24 h CNOP 12.54/19.79 17.52/24.83 20.20/29.20 17.12/26.60 15.02/25.44
Region-W 3.16/5.12 6.51/8.61 7.60/11.30 5.46/9.42 5.13/8.22
Region-N −2.03/0.78 −0.76/2.45 −0.79/2.34 −1.73/1.09 −5.70/−3.83

12 h CNOP 24.53/32.84 32.48/37.43 38.79/46.31 42.66/50.73 43.26/50.81
Region-W 15.14/18.39 11.52/13.11 11.18/13.42 14.95/16.13 17.61/18.71
Region-N 3.67/7.32 −2.88/−0.30 0.37/2.82 −0.95/1.73 −1.84/0.46

and AEM , which is different from the optimal observation
array of observation positions every 150 km deployed 24 h
before the DT. In contrast, the last array has the worst perfor-
mance. Overall, if we care about improving the PM2.5 fore-
cast skills at the DT, the optimal observation arrays should be
deployed over the sensitive areas (i.e. locations in Mongolia)
with an observation position distance of 150 km at 24 h be-
fore the DT, and assimilating the observations could reduce
the forecast errors by as much as 44.72 % at the DT measured
by AEV and 40.83 % during the forecast period measured by
the AEM . All of these results are also summarized in Table 3.

Through a series of OSSEs, the effectiveness of targeted
observation is conducted by deploying a fixed number of ob-
servations (15 horizonal grids through 4 pressure levels), and
observations deployed at different distances are evaluated to
determine the optimal observation array. The results show
that when the observation number is fixed, an appropriate ob-
serving distance (not necessarily a large observing distance)
is essential to obtain the largest improvement in PM2.5 fore-
cast skills. To further examine the role of appropriate observ-

ing distance, we also conducted the following experiments
that observations are deployed within a limited area with dif-
ferent observing distances (which corresponds to different
observation numbers in the limited area). Specifically, we
first select a the 120 most sensitive grids to define the sen-
sitive area in each of the four forecasts according to the VI
value. Within the given size of the sensitive area, the observ-
ing arrays with a distance of 30, 60, 90, 120 and 150 km are
determined using the same method as the experiments de-
scribed above. The additional observations are assimilated
to the control run, and the improvements of PM2.5 forecast
skills are shown in Fig. 10. For the two forecasts at the AT
and the forecast at the DT with a lead time of 24 h, the ob-
servation arrays with a distance of 30 km show the largest
improvement in both AEV and AEM . This implies that in the
given sensitive area size, denser observation sites can bet-
ter resolve the synoptic initial conditions within the sensitive
area, which in turn enhance the forecasting skills more effec-
tively. However, for the forecast at the DT with a lead time
of 12 h, the observations with the distance of 90 km show the
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Figure 9. The spatial distributions of the improvement in PM2.5 forecasts (µg m3) at the (a) AT and (b) DT, with a lead time of 24 h. The
black rectangle is the verification area.

Table 3. The same as in Table 2 but for the forecast at the DT.

Lead times Region 30 km 60 km 90 km 120 km 150 km

24 h CNOP 20.87/27.31 30.69/34.28 34.90/35.79 36.89/37.20 44.72/40.83
Region-W 20.49/14.75 22.01/16.93 18.18/11.23 17.00/10.94 15.74/9.54
Region-N −0.60/–0.49 −0.92/−0.80 −0.25/−0.91 −0.50/−3.43 –0.15/−2.48

12 h CNOP 26.78/35.44 23.62/31.72 31.01/40.00 23.49/32.60 20.92/27.81
Region-W −0.45/−1.16 −1.49/−2.86 4.83/2.62 1.09/−0.71 1.81/0.73
Region-N 15.07/16.64 13.77/15.00 14.11/15.74 14.68/16.39 12.52/15.51

largest improvement. This implies that in this forecast it is
not necessarily the use of much denser observation locations
but instead the choice of an appropriate location that is most
important for improving the PM2.5 forecasts. Thus, here we
emphasize that the observations deployed at a large distance
or a high density will not necessarily result in the largest im-
provement in PM2.5 forecast skills. This suggests that the ob-
servations should be deployed carefully with an appropriate
distance to get the largest benefits when implementing the
field campaigns.

4.3 A comparison between targeted observations and
other additional observations in improving PM2.5
forecasts

The results in Sect. 3.2 show that assimilating targeted ob-
servations in the sensitive areas determined by the CNOP-
type errors can largely improve the PM2.5 forecasting skills
(hereafter referred to as CNOP-EXPs). To further illustrate

the usefulness of CNOP in identifying the sensitive area for
targeted observations, here we compare the sensitive areas
and other areas surrounding the BTH region.

Apart from the sensitive areas identified by CNOP-type er-
rors, other areas surrounding the BTH region are mainly lo-
cated in the southwestern, southeastern, eastern and northern
parts of the BTH region. Previous studies demonstrated that
the PM2.5 concentrations in the BTH region are continuously
influenced by weather conditions (especially wind anoma-
lies) in the southwestern and northern parts of the BTH re-
gion (Sun et al., 2019; Zhang et al., 2018). Specifically, they
showed that southwesterly wind anomalies tend to transport
the polluted air from the southwestern part of the BTH re-
gion and that northerly wind anomalies blow away BTH pol-
lution. It therefore seems that the PM2.5 forecasts are more
sensitive to the meteorological conditions along the south-
western (i.e. Shanxi Province) and northern (i.e. Inner Mon-
golia) directions of the BTH region. To examine this sensitiv-
ity, we select two areas in these two directions that are simi-
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Figure 10. The bar plots of (a) AEV and (b) AEM values of the four forecasts, when the additional observations are deployed within a
limited size of area with different observing distances.

lar to the sensitive areas identified by the CNOP-type errors
and surround the BTH region. Specifically, we refer to these
two areas as Region-W (29.5–36.0◦ N, 100.5–113.5◦ E) and
Region-N (42.5–51.0◦ N, 115.5–126.0◦ E), whose area sizes
are approximately the same as those of the sensitive areas
identified by the CNOP-type errors. In each region, we cal-
culate the initial errors of meteorological conditions that lead
to the largest forecast error at the verification time in the BTH
region, which represent the most sensitive initial errors in this
area to PM2.5 forecasts. The algorithms are the same as those
used for calculating the CNOP-type errors, but the initial per-
turbations are restricted to only Region-W and Region-N. We
also use the vertical integral of the errors (VI) to determine
the observation arrays and evaluate the sensitivity of PM2.5
forecasting uncertainties to the meteorological initial errors
over these two regions. Specifically, the observation arrays in
these two areas are constructed with the same configuration
as in the area identified by CNOP-type errors. Following this,
five observation arrays are similarly obtained for Region-W
and Region-N. Two groups of experiments are implemented
separately for the aforementioned four forecasts, i.e. the fore-
casts aimed at the AT with lead times of 12 and 24 h and those
aimed at DT with lead times of 12 and 24 h.

The results are shown in Tables 2 and 3. For the 24 h lead
time forecast at the AT, the five observation arrays in Region-
W are assimilated, and they can improve the PM2.5 forecast
skill of the BTH region, with improved AEV and AEM rang-
ing from 3.16 % to 7.60 % 5.12 % to 11.30 %, respectively
(see Table 2). These improvements measured by AEV and
AEM are approximately one-third of those in CNOP-EXPs
on average for the five observation array assimilations, with
the former being 5.57 % and 16.48 % and the latter being
8.53 % and 25.17 % for AEV and AEM, respectively. Al-
though the observation array with a distance of 90 km has
the best performance for the improvements in the PM2.5 fore-
casts in Region-W, this improvement is still lower than that
of the worst example among the forecasts with the five ob-
servation arrays in CNOP-EXPs. When the five observation
arrays are deployed over Region-N and assimilated to fore-

cast the PM2.5 in the control run, the AEV values at the AT
are all negative for a lead time of 24 h, which indicates a
decline in the forecasting skills for the PM2.5 at the AT com-
pared with the control run, regardless of which observation
array is assimilated. For the mean of the forecast skill during
the whole forecast period (as measured by AEM ), the ob-
servation array with an adjacent distance of 150 km presents
a negative value of AEM when it is assimilated to forecast
PM2.5, while the other four observation arrays present a pos-
itive value of AEM, but with a mean improvement of only
1.67 %, far less than the 25.17 % seen in CNOP-EXPs. It
is reasonable that assimilating observations in the Region-
N may result in a worse forecast. Theoretically, if the ob-
servations in the area where the forecast is not sensitive to
the initial values are assimilated, the forecasting skills will
be improved slightly or will remain neutral. However, when
implementing the realistic prediction, the imperfect proce-
dure of data assimilation, the observation errors, model er-
rors, the unresolved scales and processes in the model, and
other combined effects may induce additional errors (Janjić
et al., 2018), which may be the reason that assimilating ob-
servations in the unsensitive area results in a worse forecast.
That also indicates that Region-N is not the sensitive area for
the forecast at the AT. For the 12 h lead time PM2.5 forecast
at the AT, we also show that the five observation arrays in
Region-W and Region-N present far fewer improvements in
PM2.5 forecast skills than those in CNOP-EXPs when they
are assimilated to forecast PM2.5 (see Table 2). Specifically,
the improvements measured by the AEV and averaged for
the five observation arrays in Region-W and Region-N (i.e.
14.08 % and−0.33 %, respectively) are approximately 1

3 and
1

100 of that (i.e. 36.34 %) in CNOP-EXPs, and the improve-
ments measured by AEM (i.e. 15.92 % and 2.41 %, respec-
tively) are approximately 1

3 and 1
20 of that (i.e. 43.62 %) in

CNOP-EXPs, respectively. From the above experiments, it
is obvious that for the 24 and 12 h lead time forecasts at
the AT, the five observation arrays deployed in Region-W
and Region-N, although they often enhance the forecast skill
of PM2.5 against the control run, present improvements in
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the PM2.5 forecast skill that are significantly smaller than
those in the CNOP-EXPs. This shows that the sensitive areas
for targeted observations of meteorological fields associated
with the PM2.5 forecast at the AT are most likely to be the
ones identified by the CNOP-type errors, rather than those at
Region-W and Region-N.

For the PM2.5 forecasts at the DT, the results also illustrate
the strong sensitivity of the targeted observations in the sensi-
tive area identified by the CNOP-type errors. Specifically, for
the 24 h lead time forecast, the observation arrays in Region-
W tend to benefit the PM2.5 forecast, and the improvement
averaged for five observation arrays is 18.68 % for the AEV
and 12.68 % for the AEM , which are both nearly half of those
in the CNOP-EXPs. When the five observation arrays are de-
ployed in Region-N, they all lead to worse forecasts at the DT
than the control run, with the AEV varying from −0.92 %
to −0.15 % and the AEM from −3.43 % to −0.49 % (Ta-
ble 3). For the 12 h lead time forecasts, the five observation
arrays deployed in Region-W do not significantly improve
the PM2.5 forecast, with AEV values ranging from −0.45 %
to 4.83 % and AEM values from −2.86 % to 2.62 %; in con-
trast, the five observation arrays deployed in Region-N con-
siderably improve the PM2.5 forecasts, with AEV ranging
from 12.52 % to 15.07 % and AEM from 15.00 % to 16.64 %,
where the observation array with an adjacent distance of
30 km shows the best performance of the five observation
arrays for improving the PM2.5 forecast skill. Despite this,
the improvement is still less than that of the worst forecast in
CNOP-EXPs, where the observation array was at an adjacent
distance of 150 km. Specifically, the improvements in AEV
and AEM are 14.03 % and 15.85 %, respectively, which are
both averaged for five observation arrays and approximately
50 % lower than those in CNOP-EXPs. Therefore, the sen-
sitive areas for targeted observation of meteorological fields
associated with the PM2.5 forecast at the DT are the ones
identified by the CNOP-type errors, i.e. the area from Ho-
hhot in Inner Mongolia to the Altai Mountains in Mongolia
(for a lead time of 24 h) and the area from Zhangjiakou and
Chengde in the northern part of the BTH region (for a lead
time of 12 h).

5 Interpretation

In this section, we further interpret why the sensitive area
identified by CNOP-type errors can result in a larger im-
provement in PM2.5 forecast skill. It is known that dy-
namic and thermodynamic conditions are two key factors
that determine the transport and deposition of pollution.
With a relatively strong wind, pollution can be transported
to the downwind region in a short time, while a relatively
calm wind could favour ground pollution accumulation. For
the BTH region, northerly winds blow away PM2.5, while
southerly winds lead to the accumulation of PM2.5 through
the blocking effect of the surrounding mountains (Zhao et al.,

2009). Thermodynamic conditions such as the strong temper-
ature inversions in the atmospheric boundary layer are also
favourable for the accumulation of air pollutants to form air
pollution events (Miao et al., 2015). Moreover, an increased
temperature may accelerate the production rate of precursors
and secondary pollutants, which contribute to variations in
ground-level PM2.5.

In this paper, we showed that the control run with a lead
time of either 12 h or 24 h presents a severe underestimation
of PM2.5 at the AT and a large overestimation of PM2.5 at
the DT for the heavy air pollution event that occurred from
30 November to 4 December 2017 (see Sect. 3.1). The assim-
ilation runs greatly improve the skill of these PM2.5 forecasts
by assimilating the targeted observations in the sensitive ar-
eas of the meteorological fields. Here, we interpret why the
assimilation runs increase the PM2.5 forecast skill for dy-
namic and thermodynamic reasons. After we compare the
forecast biases of the control run with lead times of 12 and
24 h, we find that the forecast biases of the control run under
the two leading times are almost the same. For simplicity,
we present the forecast with a lead time of 24 h. Figure 11
shows the differences in the wind and temperature fields be-
tween the truth run and control run at ground level at the
AT and DT, with a lead time of 24 h. The truth run presents
significant southerly winds with a mean speed of 2.32 m s−1

over the BTH region (see Fig. 11a), while the control run
forecasts a southerly wind with a mean speed of 0.74 m s−1

(see Fig. 11b) and exhibits northerly wind biases, as shown in
Fig. 11c. The weak southerly wind in the control run reduces
the pollution transported from the south to the BTH region in
the truth run, which results in a significant underestimation
of the PM2.5 concentration of the control run at the AT. In
addition to this dynamic reason, the thermodynamical con-
ditions are also key factors influencing the PM2.5 forecasts.
Both the truth run and the control run are able to simulate the
temperature inversion layer, which prevents vertical disper-
sion of pollutants and promotes the accumulation of surface
PM2.5. For the forecasts at the AT, the truth run has fore-
casted 0.11 K 100 m−1 vertical temperature inversion layers
at Dongsi station in Beijing, while the control run has fore-
casted 0.05 K 100 m−1. The mean lapse rate simulated by the
truth run over the BTH region is 0.03 K 100 m−1, and the
control run has forecasted a rate of 0.002 K 100 m−1. This
means that the truth run simulated a more stable thermody-
namic condition, which is favourable for the accumulation of
surface air pollutants. Meanwhile, the negative temperature
bias in the near surface of the control run decreases the pro-
duction rate of precursors of PM2.5, and the negative bias of
relative humidity reduces the useful carrier of PM2.5, causing
a decrease in PM2.5, favouring the underestimation of PM2.5
at the AT in the control run.

From the above information, it is clear that the control run
exhibits northerly wind, a less stable boundary layer, and low
temperature and relative humidity biases at the AT relative to
the truth run. However, after assimilating the artificial meteo-
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Figure 11. The wind (vector, m s−1) and temperature field (shaded, ◦) forecasts at the ground level at the AT (with a lead time of 24 h) of
the (a) truth run and (b) control run. The differences in the wind and temperature fields between the truth run and control run (control run
minus truth run) at the AT are shown in (c). Panels (d–e) are the same as panels (a–c) but for the forests at the DT.

rological variables over the sensitive areas determined by the
CNOP-type errors into the initial analysis field of the control
run, the PM2.5 forecasts are improved in terms of forecast-
ing skill. For the forecasts with lead times of 12 and 24 h,
the interpretations as to why the assimilation runs increase
the PM2.5 forecast skill and its related mechanisms are sim-
ilar. For simplicity, we present the interpretations in detail
for the forecast with a lead time of 24 h. In Fig. 12, we plot
the spatial evolution of the 24 h forecast differences of wind
and PM2.5 concentrations between the CNOP-EXP and con-
trol run. From Fig. 12, we can see that the sensitive areas
for the PM2.5 forecast at the AT are mainly located in the
southern and northwestern parts of the BTH region (also see
Fig. 7), and assimilating meteorological observations over
the sensitive areas increases the southerly wind in the south-
ern part of the BTH region at the initial field and enhances

the southerly wind by 0.18 m s−1 over the BTH region at the
verification time, which is helpful for transporting southern
pollution to the BTH region. Between the two areas, the sen-
sitive area near Inner Mongolia plays a more dominant role
in the PM2.5 forecast of BTH region by inducing a larger
southerly wind component. In addition, the assimilation run
has forecasted 0.06 K 100 m−1 temperature inversion layers
at Dongsi station, and the mean lapse rate over the BTH
region has reached 0.004 K 100 m−1. The slightly improved
thermodynamic conditions further result in modifications of
the boundary layer structure, including a decreased plane-
tary boundary layer height. The mean boundary layer height
over the BTH region decreased from 261 m in the control run
to 256 m in the assimilation run, which also contributed to
the increased ground level PM2.5 pollution and improved the
PM2.5 forecast skill in the assimilation run. Moreover, assim-
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ilating the targeted observations increases the initial temper-
ature and relative humidity in the western parts of the BTH
region and decreases them in the northwestern parts of the
BTH region. Following this, the western warm air and north-
western cool air move east and southeast, respectively, which
finally decreases the temperature by 0.05 ◦C and the relative
humidity by 0.6 % at the AT over the BTH region. Decreased
temperature and relative humidity are not beneficial for the
formation of PM2.5. From the above analysis, it can be found
that the improvements in the PM2.5 forecast skill in assimila-
tion runs result from the increased southerly wind and more
stable boundary layer during the accumulation process.

For the forecast at the DT, the truth run presents a large
northerly wind with a mean speed of 5.24 m s−1, as shown
in Fig. 11d, which blows the pollution from the BTH region
to the south. However, the control run forecasts a southerly
wind with a mean speed of 1.82 m s−1 (Fig. 11e), which is
the reverse of the truth run and might transport more pollu-
tion from the southwestern part to the BTH region than from
the BTH region to the south in the truth run, finally contribut-
ing to the overestimation of the PM2.5 concentration in the
control run. Meanwhile, the control run also presents a warm
temperature and much higher relative humidity biases, which
prevent the dissipation of PM2.5 over the BTH region and
favour the overestimation of PM2.5 at the DT (see Fig. 11f).
When the targeted observations are assimilated into the con-
trol run at 24 h before the DT and then the assimilation run
is formulated, the northerly wind increases and the temper-
ature and relative humidity decrease in the sensitive areas at
the initial time, which subsequently drives a large amount of
cool and dry air in the sensitive area (i.e. the northwestern
part of the BTH region; also shown in Fig. 7) to the south
that accumulates over the BTH region (see Fig. 13), decreas-
ing the temperature and relative humidity over the BTH re-
gion at the verification time and improving the forecasts of
the PM2.5 concentrations in the assimilation run at the DT.
It is obvious that the improvement of both the dynamic and
thermodynamic conditions is responsible for the increase in
the PM2.5 forecast skill at the DT in the assimilation run.

6 Summary and discussion

Motivated by the important role of the meteorological ini-
tial field in air quality forecasts, we make the first attempt
at applying a targeted meteorological field observation strat-
egy with a CNOP approach to improve PM2.5 forecasts
using the WRF-NAQPMS model. By considering a heavy
haze episode that occurred from 30 November to 4 Decem-
ber 2017 in the Beijing–Tianjin–Hebei region, we explore the
effect of possible targeted observations on PM2.5 forecasts
during both the accumulation and dissipation periods of the
haze event, where the targeted observations are represented
by observation arrays consisting of 15 evenly and horizon-
tally distributed grids through four pressure levels (i.e. 950,

850, 750 and 500 hPa) in the sensitive areas identified by the
CNOP-type errors, including horizontal wind, temperature
and relative humidity components.

To improve the PM2.5 forecast during the accumulation
and dissipation periods of the haze event, forecasts with lead
times of both 12 and 24 h are investigated, where the AT (i.e.
accumulation time, 02:00 BJT on 2 December) and DT (i.e.
dissipation time, 14:00 BJT on 3 December) are selected as
the verification times (i.e. the forecast times). We first cal-
culate the CNOP-type errors for these four forecasts sepa-
rately. Then, since the CNOP-type errors concentrate on dif-
ferent vertical levels and in different horizontal areas for dif-
ferent meteorological variables, including wind, temperature
and moisture components, we propose using the vertical in-
tegral of CNOP-type errors to measure the comprehensive
sensitivity of initial errors and to determine the sensitive ar-
eas for targeted observations of meteorological fields associ-
ated with the PM2.5 forecasts. For the verification time AT,
the results show that the sensitive areas identified by CNOP-
type errors mainly concentrate in Dezhou and central Inner
Mongolia for a lead time of 24 h and in Beijing and Tianjin
for a lead time of 12 h. For the verification time DT, the sensi-
tive areas are determined as the region from Hohhot in Inner
Mongolia to the Altai Mountains in Mongolia for a lead time
of 24 h and the region around Zhangjiakou and Chengde for
a lead time of 12 h.

Numerically, we conducted a series of OSSEs to explore
whether the possible targeted observations in the above sen-
sitive areas can improve the PM2.5 forecasts of the BTH re-
gion and to infer the usefulness of these sensitive areas in im-
plementing practical field observations. For each of the four
forecasts, we tried different observation arrays of 15 evenly
and horizontally distributed grids through four pressure lev-
els in the sensitive areas and assimilated them to the initial
fields for evaluating the improvement of PM2.5 forecasting
skill, finally suggesting a more useful observation array for
improving the forecasts at the AT and DT. Specifically, for
the forecast at the AT, the observation array with a grid space
of 90 km in the sensitive area is more effective for a 24 h lead
time, and a grid space of 150 km performs the best for a 12 h
lead time; however, for the forecast at the DT, the observa-
tion array of a grid space of 150 km leads to a better forecast-
ing skill at a 24 h lead time, while that with a grid space of
90 km results in a higher forecasting skill at a 12 h lead time.
To further confirm the usefulness of CNOP in identifying
the sensitive areas for targeted observations, we compare the
improvements of PM2.5 forecasts after assimilating targeted
observations in the sensitive areas and the additional obser-
vations in the areas along the southwestern (Region-W) and
northern (Region-N) directions of the BTH region suggested
by previous studies. The results show that the improvements
in the PM2.5 forecasting skill when using the additional ob-
servations deployed in Region-W and Region-N are signifi-
cantly smaller than those in the sensitive areas determined by
the CNOP approach. More specifically, assimilating the ad-
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Figure 12. The spatial evolution of the forecast differences of ground wind (vector, m s−1) and PM2.5 concentrations (shaded, µg m−3)
between the assimilation run (CNOP-EXP with an observing distance of 90 km) and the control run starting from 02:00 BJT 1 December,
with lead times of (a) 1 h, (b) 6 h, (c) 11 h, (d) 16 h, (e) 21 h and (f) 24 h.

ditional observations over Region-W and Region-N cannot
ensure a positive forecast benefit. All of these results indi-
cate that preferentially implementing additional observations
in the sensitive area determined by the CNOP approach is
more likely to significantly improve the PM2.5 forecasts.

Physically, we interpret the reason why the possible tar-
geted observations can significantly improve the PM2.5 fore-
casting skill by comparing the relevant meteorological fields

before and after assimilation. Since the interpretation and its
related mechanisms are similar for the forecasts with lead
times of 12 and 24 h, we present only the interpretations
in detail for the forecast with a lead time of 24 h. During
the accumulation process, the control run forecasts a weaker
southerly wind and a less stable boundary layer at the AT,
which is unfavourable for the accumulation of PM2.5 and fi-
nally leads to a severe underestimation of PM2.5 at the AT.
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Figure 13. The same as Fig. 12 but for the forecast starting from 14:00 BJT on 2 December.

When the targeted observations are assimilated to the con-
trol run, the southerly wind increases in the southern part of
the BTH region at the initial state and finally enhances the
southerly wind over the BTH region at the verification time.
The increased southerly wind transports more PM2.5 from
the south to the BTH region and improves the PM2.5 forecast-
ing skills of the control run at the AT. The assimilation also
induces a more stable boundary layer in the assimilation run,
which contributed to the increased ground level PM2.5 pollu-

tion and improved the PM2.5 forecast skill. For the forecast
at the DT, the control run exhibits large southerly wind and
positive temperature and relative humidity biases, which pre-
vents the dissipation of PM2.5 and results in an overestima-
tion of PM2.5 at the DT. When the targeted observations are
assimilated to the control run, the northerly wind increases
and the temperature and relative humidity decrease in the
sensitive areas at the initial state. The increased northerly
wind drives the cool air in the sensitive area southward and
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finally blows more PM2.5 from the BTH region to the south,
which improves the PM2.5 forecasting skills of the control
run at the DT.

The present study provides numerical and physical evi-
dence that the sensitive areas of meteorological initial fields
associated with the PM2.5 forecasts indeed exist and that de-
ploying targeted observations of meteorological fields in the
sensitive areas determined by the CNOP approach can sig-
nificantly improve PM2.5 forecasts. Such results formulate a
theoretical basis to implement practical field campaigns as-
sociated with air quality forecasts. In the practical field cam-
paigns, although the reanalysis data cannot be obtained in
time, one can choose the forecast data from ECMWF, which
are currently widely regarded as the best and most reliable
forecast data, as the initial field to yield a better forecast.
Based on this forecast, one can compute the CNOP-type er-
ror to identify the sensitive area and design the relevant field
observation networks. Such ideas have been applied on real-
time typhoon forecasting and have been verified to be able
to greatly improve typhoon forecasting skills (Duan and Qin,
2022; Qin et al., 2022). It is also noted that even if sufficient
observations exist, the results in the present study can tell us
which area of the observations should be preferentially as-
similated to improve air quality forecasts.

As this is the first attempt to study the effect of targeted
meteorological observations on air quality forecasts, we only
utilized one event, and in the future more events should be
investigated to obtain a systematic and comprehensive con-
clusion about how to deploy targeted observations to im-
prove PM2.5 forecasts. Meanwhile, in the present study, fi-
nite meteorological variables (wind, temperature, pressure
and water vapour) are selected to represent the sensitivity
of meteorological initial fields in PM2.5 forecasts. Though
they are recognized as important meteorological variables in
PM2.5 forecasts over the BTH region (Chen et al., 2020),
in order to get a comprehensive conclusion, the sensitivities
of more meteorological parameters need to be investigated,
including boundary layer height and atmospheric stability,
which may not belong to an initial value problem but can
be explored by the extension of CNOP method, such as via
CNOP-parametric perturbation (CNOP-P; Mu et al., 2010)
or a non-linear forcing singular vector method (Duan and
Zhou, 2013). In addition, a WRF with the horizontal reso-
lution of 30 km was preliminarily tried in the present study.
It is beyond doubt that this resolution is relatively low for the
PM2.5 forecasts. Nevertheless, the sensitive areas revealed
in the present study are still instructive for practical field
observations of PM2.5 forecasts because of the verifications
through a series of OSSEs and the reasonable physical in-
terpretation shown in this context. In any case, a WRF with
much higher resolution should be used in the future. In addi-
tion, only two verification times were adopted for determin-
ing sensitive areas, and the dependence of sensitive areas on
forecasting times was not explored; both of these issues will
be addressed in future work.

In addition to meteorological inputs, emissions are also
a key input for air quality forecasts. Accurate emission in-
puts are difficult enough in terms of their high uncertainties
in time and 3-D space, and it is also challenging to satisfy
the need for highly confident simulations of a specific event
(Peng et al., 2017). Targeted observations may be a better
strategy to improve the quality of emissions, and the determi-
nation of sensitive areas of emissions is certainly important.
Previous studies have adopted the singular vector decompo-
sition and adjoint sensitivity methods to identify the sensitive
area for the emissions (Daescu and Carmichael, 2003; Goris
and Elbern, 2013). However, it should be noted that these two
strategies are based on linear approximation of initial error
evolutions, and deploying the observations over the sensitive
areas identified by these two strategies may not result in the
largest improvement over the verification area, especially for
the medium- and long-range forecasts (Wang et al., 2011).
Our current study represents the first step in studies of tar-
geted observation of meteorological variable strategies asso-
ciated with air quality forecasts via the application of CNOP,
and only observations of meteorological fields are explored.
Thus, targeted observations of emissions based on the CNOP
approach are expected to be studied for air quality forecasts
in the future.
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