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Abstract. Complex distributions of aerosol properties evolve in space and time as a function of emissions, new
particle formation, coagulation, condensational growth, chemical transformation, phase changes, turbulent mix-
ing and transport, removal processes, and ambient meteorological conditions. The ability of chemical transport
models to represent the multi-scale processes affecting the life cycle of aerosols depends on their spatial reso-
lution since aerosol properties are assumed to be constant within a grid cell. Subgrid-scale-dependent processes
that affect aerosol populations could have a significant impact on the formation of particles, their growth to
cloud condensation nuclei (CCN) sizes, aerosol–cloud interactions, dry deposition and rainout and hence their
burdens, lifetimes, and radiative forcing. To address this issue, we characterize subgrid-scale variability in terms
of measured aerosol number, size, composition, hygroscopicity, and CCN concentrations made by repeated air-
craft flight paths over the Atmospheric Radiation Measurement (ARM) program’s Southern Great Plains (SGP)
site during the Holistic Interactions of Shallow Clouds, Aerosols and Land Ecosystem (HI-SCALE) campaign.
Subgrid variability is quantified in terms of both normalized frequency distributions and percentage difference
percentiles using grid spacings of 3, 9, 27, and 81 km that represent those typically used by cloud-system-
resolving models as well as the current and next-generation climate models. Even though the SGP site is a rural
location, surprisingly large horizontal gradients in aerosol properties were frequently observed. For example,
90 % of the 3, 9, and 27 km cell mean organic matter concentrations differed from the 81 km cell around the
SGP site by as much as ∼ 46 %, large spatial variability in aerosol number concentrations and size distributions
were found during new particle formation events, and consequently 90 % of the 3, 9, and 27 km cell mean CCN
number concentrations differed from the 81 km cell mean by as much as ∼ 38 %. The spatial variability varied
seasonally for some aerosol properties, with some having larger spatial variability during the spring and others
having larger variability during the late summer. While measurements at a single surface site cannot reflect the
surrounding variability of aerosol properties at a given time, aircraft measurements that are averaged within an
81 km cell were found to be similar to many, but not all, aerosol properties measured at the ground SGP site.
This analysis suggests that it is reasonable to directly compare most ground SGP site aerosol measurements with
coarse global climate model predictions. In addition, the variability quantified by the aircraft can be used as an
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uncertainty range when comparing the surface point measurements with model predictions that use coarse grid
spacings.

1 Introduction

Complex distributions of aerosols evolve in space and time
as a function of emissions, turbulent mixing and transport,
coagulation, chemical transformation, phase changes, am-
bient temperature and humidity, cloud properties, and re-
moval processes. These processes affect the number con-
centration, size distribution, chemical composition, mixing
state, and microphysical properties of aerosols that ultimately
determine the ability of aerosols to alter the radiation bud-
get (e.g., Kaufman et al., 2002) and act as cloud- or ice-
nucleating particles (Petters and Kreidenweis, 2007; DeMott
et al., 2010). As aerosols are entrained into clouds, compli-
cated aerosol–cloud interactions perturb cloud hydromete-
ors, albedo, growth, dissipation, lifetime, and precipitation,
which influence climate (Twomey, 1974; Albrecht, 1989;
Rosenfeld et al., 2014). The ability of models to represent
the multi-scale processes affecting the aerosol life cycle de-
pends not only on their ability to capture the important chem-
ical and microphysical process, but also on their spatial res-
olution. Models often assume aerosol properties and mete-
orological conditions that influence aerosol evolution to be
constant within a grid cell. As a result, coarse grid spacings
currently used by Earth system models are not likely to re-
solve the large spatial variability of aerosol properties that
are observed in many regions of the world (e.g., Anderson et
al., 2003). While decades of work have gone into developing
subgrid treatments of clouds in models (e.g., Arakawa and
Schubert, 1974), characterizing and treating subgrid vari-
ability of aerosol processes have received far less attention.
Subgrid-scale processes that affect aerosol populations could
have a significant impact on the formation of particles, their
growth to cloud condensation nuclei (CCN) sizes, aerosol–
cloud interactions, dry deposition, wet scavenging, and hence
their burden, lifetimes, and radiative forcing (e.g., Wang,
2007).

Modeling studies have explored subgrid-scale variabil-
ity of aerosol properties and their effects on atmospheric
forcing via their interactions with radiation and clouds by
comparing the model predictions using different grid spac-
ings. For example, climate model simulations in Ekman and
Rodhe (2003) quantified the impact of anthropogenic sulfate
on cloud albedo using grid spacings of 2.0 and 0.4◦. They
found that the global mean indirect radiative forcing differed
by only 7 %, and there was no difference in the tempera-
ture response. However, they did note larger regional differ-
ences in aerosol radiative forcing and atmospheric response.
Qian et al. (2011) and Gustafson et al. (2011) used the chem-
istry version of the Weather Research and Forecasting model

(WRF-Chem) with 75, 15, and 3 km grid spacings to de-
termine differences in representing aerosol variability over
Mexico and found that neglecting small-scale variations in
aerosols led to biases in shortwave radiative forcing as large
as 30 %. Wainwright et al. (2012) performed simulations us-
ing the chemistry version of the Goddard Earth Observing
System model (GEOS-Chem) with grid spacings of 4, 2,
and 0.5◦ and found that predicted secondary organic aerosol
(SOA) concentrations depended significantly on model reso-
lution because of nonlinear effects associated with SOA par-
titioning, lifetime, and precursor emissions. By using both
a global climate model and WRF-Chem, Ma et al. (2014)
showed that grid spacings much smaller than typical global
climate models were needed to reproduce the observed black
carbon plumes transported over the Pacific Ocean. Weigum
et al. (2016) performed identical simulations using WRF-
Chem except with grid spacings of 80 and 10 km and found
that the coarser simulation of aerosol optical depth (AOD)
was underpredicted by 13 % and that CCN concentration was
overpredicted by 27 %.

These studies show that models are useful tools for in-
vestigating variability in aerosol properties and aerosol–
radiation–cloud interactions associated with a range of grid
spacings; nevertheless, measurements are critical for quan-
tifying those variabilities observed in the atmosphere. While
there are surface monitoring networks in North America, Eu-
rope, and parts of Asia that collect PM2.5 and PM10 mea-
surements, the density of stations is often insufficient to fully
characterize spatial variabilities in aerosol mass. In urban
areas, emissions of aerosols and their precursors vary sig-
nificantly, so that many monitors are needed to character-
ize variability in aerosol mass and a single monitor is not
likely to be representative of a large area (e.g., Schutgens
et al., 2017). The spatial representativeness of aerosol mea-
surements is likely larger over rural areas, but the density
of monitors also decreases. The distance between monitors
varies between tens of kilometers to a few hundred kilome-
ters apart, so that regional variability in aerosol mass may be
underestimated in rural regions as well. Asher et al. (2022)
recently described the spatial variability in aerosol number
concentrations across a rural region around the Atmospheric
Radiation Measurement (ARM) program’s Southern Great
Plains (SGP) site in northern Oklahoma using measurements
from a network of seven Portable Optical Particle Spectrom-
eters (POPS). They found that over a 5-month period con-
centrations of aerosols between 140 and 2500 nm in diameter
varied by 10 %–20 % among the sites.

Satellite measurements have more complete spatial cov-
erage than operational monitoring networks during clear-
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sky conditions, but they provide column-integrated quanti-
ties (e.g., AOD) and do not quantify more complex aerosol
properties such as number, composition, and size distribu-
tion as a function of altitude. Therefore, aircraft platforms
that deploy instrumentation capable of characterizing a wide
range of aerosol properties have been used to fill in this
data gap. Many research aircraft missions have been con-
ducted over the past several decades to quantify variations
in aerosol properties in many regions throughout the world.
For example, Weigum et al. (2012) used the global HIAPER
Pole-to-Pole Observations (HIPPO) over the Pacific Ocean
and suggested that the horizontal variations in black carbon
plumes could not be resolved by climate models at that time.
Many aircraft field campaigns are designed to be surveys
over global (e.g., Wofsy et al., 2011; Brock et al., 2019) to
regional (e.g., Toon et al., 2016) scales. For these surveys,
a specific region is sampled once that provides a “snapshot”
of the variability that may or may not be representative of
that region over a long period. Fewer aircraft campaigns have
been conducted with repeated flight transects over a region.
Those campaigns are often conducted over urban areas such
as Houston (e.g., Parrish et al., 2009) and Los Angeles (Ry-
erson et al., 2013) to better understand aerosol formation and
removal mechanisms rather than being used to characterize
the spatial variability of aerosol properties.

In contrast to Asher et al. (2022), who quantified the spa-
tial variability of aerosol number concentrations and size dis-
tributions using surface measurements, we address this is-
sue by characterizing the subgrid-scale variability in terms of
measured aerosol number, size, composition, hygroscopicity,
and CCN concentrations using aircraft measurements from
the Holistic Interactions of Shallow Clouds, Aerosols and
Land Ecosystem (HI-SCALE) campaign (Fast et al., 2019)
near the ARM SGP site. Repeated flights were conducted
over a predominantly rural area ∼ 160 km wide in northern–
central Oklahoma during the spring and late summer of 2016.
Subgrid variability of aerosol properties is quantified for
multiple grid spacings, ranging from those typically used
by current cloud-system-resolving models as well as current
and next-generation climate models. As will be shown later,
surprisingly large horizontal gradients in aerosol properties
were frequently observed even though the SGP site is a rural
location. As expected, the smaller grid spacings capture more
of the overall variability in aerosol properties; however, there
is still substantial subgrid-scale variability using grid spac-
ings of 3 km. We also find a seasonal dependence on subgrid-
scale variability for some aerosol properties, with more vari-
ability during the spring for some properties and more vari-
ability during late summer for other properties. These sea-
sonal differences are due, in part, to changes in variable pre-
cursor emissions of SOA and SOA formation rates. We also
compare the aircraft measurements in the boundary layer
with those collected at a surface site to determine the rep-
resentativeness of the surface measurements.

2 HI-SCALE aircraft measurements

Measurements of aerosol number, size, and composition
were collected by the Department of Energy (DOE)’s
Gulfstream-1 (G-1, Schmid et al., 2014) aircraft over
northern–central Oklahoma near the ARM SGP facility (Sis-
terson et al., 2016) during the HI-SCALE campaign (Fast et
al., 2019). Two Intensive Observational Periods (IOPs) were
conducted by the G-1 aircraft, one in the spring between
24 April and 21 May and the other in the late summer be-
tween 28 August and 24 September; 17 and 21 flights were
conducted during IOPs 1 and 2, respectively. One flight was
conducted per day, except on 5 days during IOP 2, which had
two flights per day. All flight paths during IOP 2 are shown
in Fig. 1, which were similar to those during IOP 1. G-1 was
based out of Bartlesville, Oklahoma, east of the SGP site;
66 % and 59 % of the flight time during spring and summer,
respectively, occurred within 100 km of the SGP site’s Cen-
tral Facility. Since the observed winds during the IOPs are
frequently from the south to southeast, as shown by wind
roses in Fig. S1 in the Supplement, measurements were col-
lected along two transects upwind of the SGP site on several
days.

Table 1 lists the instrumentation and measurements of
aerosol number, size, and composition used in this study to
quantify the spatial variability of those quantities. Additional
instrumentation deployed on G-1 and the resulting measure-
ments are described in Fast et al. (2019). Two TSI Conden-
sation Particle Counters (CPC models 3025 and 3010) were
deployed to measure number concentrations for particle di-
ameters greater than 3 and 10 nm. A coincidence correction
(Aaron et al., 2013) has been applied to the CPC3010 to ex-
tend the detection limit from 10 000 to 80 000 cm−3 with
an average discrepancy of less than 4 %. The Fast Integrated
Mobility Spectrometer (FIMS, Wang et al., 2018) measured
the number distribution for particle diameters between 9 and
426 nm. CCN number concentrations at two supersaturations
(0.24 % and 0.46 %) were measured by a Droplet Measure-
ment Technology (DMT) CCN counter. An Aerodyne Time-
of-Flight Aerosol Mass Spectrometer (AMS, DeCarlo et al.,
2006) provided bulk aerosol composition concentrations and
mass concentrations for nonrefractory organic matter (OM),
sulfate (SO4), nitrate (NO3), and ammonium (NH4) for parti-
cle diameters <1 µm in vacuum aerodynamic diameter parti-
cles. The average concentrations of OM, SO4, NO3, and NH4
for each flight are given in Tables S1 and S2. Detailed infor-
mation on aerosol composition is provided by miniSPLAT
(Zelenyuk et al., 2015), a single-particle mass spectrome-
ter that characterizes the composition of individual parti-
cles with vacuum aerodynamic diameters between 50 nm and
2 µm. The observed aerosol mixing state during HI-SCALE
is often complex (Fast et al., 2019), which is different than
assumptions of internal or external mixtures of aerosol com-
position commonly used by climate models. To reduce the
complexity of aerosol mixtures, particles sampled by min-
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Figure 1. G-1 flight paths near the ARM SGP site over northern–central Oklahoma during IOP 2 along with (a) surface POA (gray shading)
and stack SO2 (colored dots) emissions and (b) surface isoprene emission rates (gray shading). Open circles denote primary SGP site vertical
profiling measurement sites.

iSPLAT are divided into 11 classes as described in Table 2.
Most of the classes have mixtures of different types of organ-
ics. miniSPLAT is also able to characterize refractory parti-
cles containing soot and dust that the AMS cannot detect.
Two classes (Org_amins, Pyr) are not analyzed in this study
since relatively few of those particles were observed during
HI-SCALE. Particle classes were determined at 6 min inter-
vals, which has implications for spatial variability that will be
described later. The average particle class fractions for each
flight are given in Tables S3 and S4.

Given that the G-1 flight speed was 100 m s−1, each mea-
surement at 1 s intervals from the CPC, FIMS, and CCN in-
struments represents average conditions over 100 m. In con-
trast, each measurement from the AMS and miniSPLAT av-
erage conditions was over 1.3 and 6 km, respectively.

At the Central Facility, similar instrumentation to that on
the G-1 aircraft was deployed to obtain continuous measure-
ments of aerosol number, size, composition, and CCN con-
centrations. We also use Doppler lidar measurements from
the Central Facility, E32, E37, E39, and E41 sites denoted
by the white circles in Fig. 1. The Doppler lidar provides
vertical profiles of wind speeds and directions, but vertical
gradients in the signal-to-noise (SNR) ratio are also used to
determine the convective boundary-layer height as a function
of time during the day. In this study, we use these heights to
determine which aircraft flight legs are conducted within and
above the boundary layer.

Emission rates of primary organic aerosol (POA) at the
surface and sulfur dioxide (SO2) above the surface from
the 2011 EPA National Emissions Inventory (NEI) are also

shown in Fig. 1a to illustrate the spatial distribution of an-
thropogenic sources of aerosols and aerosol precursors in
the region in relation to the G-1 flight paths. The Oklahoma
City, Tulsa, and Wichita metropolitan areas have the largest
urban emission rates in the region. There are also several
large sources of SO2 located in rural areas, such as the Re-
drock Power Plant and the Ponca City Refinery near the SGP
site. The G-1 aircraft frequently observed peak concentra-
tions of SO2 and aerosol number close to these sources. As
described in Liu et al. (2021), the AMS measurements in-
dicated that organic matter made up the largest fraction of
aerosol mass during both IOPs and that biogenic trace gas
emissions likely contributed a significant fraction of the ob-
served organic aerosol mass. As shown in Fig. 1b, the largest
sources of isoprene emissions are located to the south and
east of the SGP site, and southeasterly winds would trans-
port fresh biogenic SOA towards the SGP site. These iso-
prene rates are based on the MEGAN model (Guenther et
al., 2012), the spatial distribution coincides with the density
of broadleaf trees (primarily oak) that emit isoprene, and the
emission rates depend on meteorological conditions which
are different between IOPs 1 and 2.

As described later, miniSPLAT measurements frequently
detected particles with biomass burning markers during both
IOPs. On a couple of days during IOP 1 (6 and 7 May, Ta-
ble S3), biomass burning aerosols comprised a large frac-
tion of the total aerosol number. Biomass burning emissions
from the Fire INventory from NCAR (FINN, Wiedinmyer et
al., 2011) in Fig. S2 indicate that the number of fires and
emission rates was relatively low around the SGP site and
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Table 1. Aerosol instrumentation deployed on the G-1 aircraft during HI-SCALE.

Measurement Sampling interval Instrument

Total aerosol number 1 s TSI: Condensation Particle Counter (CPC) 3010 (>10 nm) and
3025 (>3 nm), one CPC 3010 behind the isokinetic inlet and
another behind the CVI inlet

Aerosol size distribution 1 s Brookhaven National Laboratory (BNL): Fast Integrated
Mobility Spectrometer (FIMS) (9–426 nm), either isokinetic
or CVI inlet

Cloud condensation nuclei (CCN) 1 s DMT: CCN counter at two supersaturations

Aerosol composition (bulk) 13 s Aerodyne: high-resolution time-of-flight aerosol mass
spectrometer (HR-ToF-AMS), either isokinetic or CVI inlet

Aerosol composition (single particle) 60 s PNNL: miniSPLAT, either isokinetic or CVI inlet

that the number of fires was even lower during IOP 2. How-
ever, coupling air mass trajectories shown in Liu et al. (2021)
with FINN suggests that fires as far north as North Dakota
and southern Canada may have contributed to biomass burn-
ing aerosol during IOP 1. During IOP 2, biomass burning
aerosols were likely transported by southeasterly winds from
larger fires in Arkansas, Louisiana, and southeastern Texas.
Taken together, Figs. 1, S1, and S2 suggest that local anthro-
pogenic, biogenic, and biomass burning sources likely con-
tributed to aerosols sampled by G-1 in addition to long-range
transport.

3 Defining subgrid-scale variability

Our objective is to compute the spatial variability of observed
aerosol properties in relation to typical model grid cells that
assume constant values within those grid cells. First, grid
cells over the G-1 flight domain are defined with widths of
81, 27, 9, and 3 km as shown in Fig. 2. The 81 and 27 km cells
represent typical grid spacings used in current climate mod-
els, while the 9 and 3 km cells represent typical grid spac-
ings used by current weather forecast and chemical transport
models. Next-generation climate models are expected to have
similar spatial resolutions to current weather forecast mod-
els. Four 81 km cells encompass most of the HI-SCALE G-1
flight paths. This spatial configuration results in 36, 324, and
2196 cells for the 27, 9, and 3 km grid spacings, respectively.
Mean values of aerosol number, aerosol composition, hygro-
scopicity, and CCN concentration are then computed for each
cell, flight leg, and flight. Only data on constant flight legs
are used, so that effects of vertical gradients on the subgrid-
scale variability statistics are minimized. Data for flight legs
within clouds (i.e., when cloud liquid water content exceeded
0.001 g m−3) are also excluded from the statistics.

For example, Fig. 3a shows the constant-altitude flight legs
using alternating red and blue colors, and Fig. 3b shows the
temporal variability of OM, SO4, NO3, and NH4 concen-
trations sampled by the AMS on 7 May. Horizontal gradi-

ents in OM over individual flight legs are evident by com-
paring Fig. 3a and b. In addition, the spatial variability of
SO4, NO3, and NH4 over a particular flight leg can be quite
different because of different aerosol precursor sources and
secondary formation processes. The variability of the grid
cell means for the 81 km cell centered over the SGP site
(Fig. 3c) is shown in Fig. 3d. Mean OM concentrations for
flight legs (green dots) within the 81 km cell are between 3.21
and 3.47 µg m−3. The range of the mean values increases for
the 27 and 9 km cells; however, the range is similar for the
9 and 3 km cells. This suggests that a 9 km grid spacing cap-
tures much of the variability over the G-1 flight path. While
the 3 km cells do not provide a larger range in cell means,
they do result in a larger standard deviation of OM that re-
flects some small-scale variability that even the 3 km cell
mean does not represent. Since the AMS sampling interval
of ∼ 13 s results in only two to three samples within a sin-
gle 3 km cell, we note that the AMS is already averaging out
some of the variability that can be represented by instruments
with 1 s sampling intervals.

It is possible that the different flight leg altitudes introduce
vertical gradient variability into the horizontal gradient cal-
culations. While it is reasonable to assume that vertical gra-
dients of aerosols within the daytime convective boundary
layer are likely to be small, there were large vertical gradi-
ents between the top of the boundary layer and the lower free
troposphere. Therefore, flight legs are separated into those
within and above the convective boundary layer using a com-
bination of boundary-layer heights derived from the Doppler
lidars (Tucker et al., 2009; Krishnamurthy et al., 2021) and
visual inspection of vertical potential temperature gradients
from aircraft and radiosonde measurements. Flight legs at the
top of the boundary layer are excluded from those within
the boundary layer. Since data from the Doppler lidars are
not available prior to 3 May, boundary-layer depth is deter-
mined solely from radiosonde and aircraft measurements for
the first five flights during IOP 1.

https://doi.org/10.5194/acp-22-11217-2022 Atmos. Chem. Phys., 22, 11217–11238, 2022



11222 J. D. Fast et al.: Using aircraft measurements to characterize subgrid-scale variability

Figure 2. G-1 aircraft flight path on 7 May along with the (a) 81, (b) 27, (c) 9, and (d) 3 km boxes used to compute mean aerosol properties
from the aircraft measurements.

Figure 3. G-1 aircraft (a) altitude on 7 May where the alternating blue and red colors denote different constant-altitude flight legs and (b) con-
centrations of OM, SO4, NO3, and NH4 measured by the AMS where gray shading denotes boundary-layer flight legs used to compute
subgrid-scale variability. The gray shading in panel (c) denotes the 81 km cell around the SGP site associated with the 81, 27, 9, and 3 km
cell averages and standard deviation of OM shown in panel (d).

The average boundary-layer height determined from the
five Doppler lidars is included in Fig. 3a to separate the
flight legs into two groups. While there is some variability
in the boundary-layer height across the SGP site, the aver-
age boundary-layer height among the five lidars is similar to
the height at the Central Facility on 7 May. On this day, two
constant-altitude flight legs are at or very close to the top of
the convective boundary layer and are thus excluded from the
analysis of spatial variability within the boundary layer. Rel-
atively few flight legs were conducted in the lower free tropo-
sphere or near the boundary-layer top; therefore, we quantify
subgrid-scale variability of aerosol properties only within the
boundary layer.

We next compute a normalized frequency of the variable
means over all flight legs by binning OM into concentration
ranges of 0.5 µg m−3 and binning SO4, NO3, and NH4 into
concentration ranges of 0.05 µg m−3 as shown in Fig. 4. Fig-
ure 4a shows the same information in Fig. 3d but in a slightly
different manner. As in Fig. 3d, the mean OM concentrations
over the 81 km cell fall within the 3.0–3.5 µg m−3 bin, and
the mean cell concentrations for the 27, 9, and 3 km cells
have a larger range between 2.5 and 4.5 µg m−3. Similarly,
the smaller grid spacings resolve more of the spatial variabil-
ity in SO4, NO3, and NH4 (Fig. 3b–d).

Similar statistics on the normalized frequency can be com-
puted for all flights and for aerosol number, composition, hy-
groscopicity, and CCN concentration. For example, Fig. S3
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Figure 4. Normalized frequency of occurrence for (a) OM, (b) SO4, (c) NO3, and (d) NH4 concentrations observed for the 7 May flight
shown in Fig. 3b.

depicts the normalized frequency of aerosol composition for
all flights during IOP 1. However, this method will include
day-to-day variations in the mean concentrations (Tables S1
and S2), which complicates the quantification of overall hor-
izontal variability during the campaign. Instead, we com-
pute percent differences from the 81 km cell mean given by
Eq. (1) for each flight leg and variable within an IOP. Then,
percentiles are used to express the departures from the 81 km
cell mean. This removes the day-to-day variability as well
as temporal variability within the same flight, so that all the
flight statistics can be lumped together, which will be shown
in the next section.

%difference (cell)=
[
< cell>− < 81kmcell>

< 81kmcell>

]
× 100 (1)

We note that there are two additional assumptions that will
affect the computed spatial variability statistics. First, the air-
craft flight path does not sample a large portion of a grid
cell. At a minimum, it represents a transect across the grid
cell; therefore, we assume that the spatial variability along
that line is consistent with the variability within the entire
cell. This is analogous to cloud chord sampling (e.g., Bar-
ron et al., 2020; Griewank et al., 2020). However, there were
some flights that had a grid pattern near the Central Facility
(Fig. 1) which would permit multiple transects across the 81
and 27 km grid cells. Second, temporal variability is not to-
tally removed from these calculations. Individual flight legs
were usually 10 to 20 min in duration. Aerosol number, size
distribution, and composition, which influence CCN concen-
tration, can be affected by secondary chemical formation pro-
cesses over that period; however, we assume that those ef-
fects are smaller than the spatial variability present over a
flight leg.

4 Spatial variability as a function grid spacing and
season

4.1 Bulk aerosol composition

Figure 5 shows the variability in aerosol composition for all
flight legs during IOPs 1 and 2 relative to the coarse 81 km

cell around the SGP site. For OM (Fig. 5a), 50 % of the 27,
9, and 3 km cell means are within 7 %–13 % of the coarse
cell mean, while 90 % of the 27, 9, and 3 km cells are within
28 %–46 % of the coarse cell mean. The spatial variability of
SO4 (Fig. 5b) is somewhat smaller than OM since 90 % of
the 27, 9, and 3 km cells are within 23 %–35 % of the coarse
cell mean. In contrast, 50 % of the 27, 9, and 3 km grid cell
means for NO3 (Fig. 5c) during IOP 1 are within 16 %–33 %
of the coarse cell mean, and 90 % of the grid cell means are
within 52 %–64 % of the coarse cell mean, which is much
larger than the spatial variability of OM and SO4. The spatial
variability in NH4 (Fig. 5d) is somewhat greater than SO4
but less than NO3. The coarser 27 km cell means represent
a large fraction of the spatial variability produced by the 9
and 3 km cell means when all the aircraft measurements are
lumped together by the IOP. For all four composition species,
the 3 km cells have a somewhat broader distribution as evi-
dent by a larger range between the minimum and maximum
values and relatively fewer values closer to zero than the
27 km cells. In general, all the variability among all the 3 km
cell means is within ∼ 100 % of the coarse grid cell mean.

It is important to note that during IOP 2 the average
OM concentrations were 1.3 µg m−3 (52 %) higher, SO4 con-
centrations were 0.5 µg m−3 (63 %) higher, NO3 concentra-
tions were 0.16 µg m−3 (64 %) lower, and NH4 concentra-
tions were 0.025 µg m−3 (6 %) higher than during IOP 1, as
described by Liu et al. (2021) and reflected by the distribu-
tion of concentrations shown in Fig. S4. In addition to me-
teorological conditions being more conducive to SOA for-
mation during IOP 2, local peak concentrations around the
SGP site produce additional variability in OM, as reflected
by the broader distribution of the absolute difference between
the 3 km cell means within the coarse cell mean as shown in
Fig. S5. Similarly, the absolute difference in NO3 has more
local variability around the SGP site during IOP 1. Inspection
of individual IOP 1 flights shows that there were short peri-
ods of relatively large NO3 concentrations, suggesting there
were local NO3 hotspots as G-1 passed over the SGP site.
The events that occurred were less frequent during IOP 2,
most likely because temperatures were significantly higher
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Figure 5. Percent difference between the SGP 81 km cell average and the 27, 9, and 3 km cell averages of (a) OM, (b) SO4, (c) NO3,
and (d) NH4 concentrations from the AMS instrument expressed as percentiles where the white circles denote the median values. All flights
during IOPs 1 and 2 are grouped by the darker (left) and lighter (right) colors, respectively. Filled boxes denote values falling within the 25th
to 75th percentiles, open boxes denote values falling within the 5th to 95th percentiles, vertical lines denote minimum and maximum values,
and the black horizonal lines denote the mean values.

during the late-summer period, which would affect the tem-
perature dependence of NO3 on gas-to-particle partitioning
processes. In contrast, the distributions of the absolute dif-
ferences for SO4 and NH4 are similar for IOPs 1 and 2.

Since Eq. (1) normalizes the results by the 81 km cell
mean, much of the seasonality of absolute spatial differences
in OM is removed, as indicated by Fig. 5a. However, Fig. 5c
shows that Eq. (1) still leads to smaller spatial variability
of NO3 during IOP 2. For example, the 25th to 75th per-
centile range during IOP 2 is within 8 %–19 % of the coarse
cell mean, which is smaller than the 16 %–33 % range during
IOP 1.

Since total aerosol mass is dominated by organics, spatial
variability in total mass concentrations over the SGP site will
look similar to Fig. 5a in terms of percent differences of OM
from the 81 km cell mean. In terms of absolute differences,
the spatial variability of total mass concentrations over the
SGP site is expected to be larger during the summer IOP, as
with OM shown in Fig. S5. The variations among the 27, 9,
and 3 km cells as well as the seasonality for all four 81 km
cells shown in Fig. 2a are very similar to those in Fig. 5 (not
shown).

4.2 Single-particle composition

The aerosol class information from miniSPLAT is expressed
as a number fraction of the total number of characterized par-
ticles. To account for aerosol loadings, we compute subgrid
variability for the aerosol classes (Table 2) in terms of aerosol
volume by multiplying the particle fraction and the total
volume measured by FIMS. This assumes the same FIMS-
measured size distributions for all aerosol classes, while in
reality, some particle classes are likely to be more frequent
at small (i.e., soot) and large (i.e., dust) sizes. In addition,
miniSPLAT provides critical information on aerosol compo-

sition during IOP 2 for the flights between 30 August and
7 September when the AMS was not functioning.

Figure 6 shows the spatial variability of nine parti-
cle classes from miniSPLAT for all aircraft flights dur-
ing IOPs 1 and 2 in terms of percent difference from the
81 km cell mean. The percentiles for the Sulfate_org, Ni-
trate_org, IEPOX_SOA (for IOP 2), Org 1, Org 2 (for IOP 2),
BB_SOA, and BB classes in Fig. 6 are similar to the statis-
tics on bulk OM (Fig. 5) in terms of having a wider range
between the 5th and 95th percentiles among the 3 km cells
compared with the 27 km cells. However, the departures from
the coarse cell mean for these five particle classes is larger
than for bulk OM measured by the AMS. For example, 90 %
of the 27, 9, and 3 km cells for OM are within 28 %–46 % of
the coarse cell mean, while 90 % of these five particle classes
are within 42 %–87 % of the coarse cell mean. In addition,
the Org 1 (fresh organic-rich) and Org 2 (aged organic-rich)
classes (Fig. 6d, e) have smaller departures from the coarse
cell mean during IOP 2; 90 % of the 27, 9, and 3 km cells
during IOP 1 are within 61 %–81 % of the coarse cell mean,
which shrinks to 28 %–41 % during IOP 2. These differences
are likely due to the relative contributions of organic-rich
particles during the two IOPs, with significantly higher con-
tributions from fresh and aged organic-rich particles during
IOP 2 compared with IOP 1. Many days during IOP 1 were
dominated by the sulfate-organic mixtures (Sulfate_Org) or
biomass burning particles (BBOA_SOA and BB), with rela-
tively small contributions of organic-rich particles and larger
spatial variability over the SGP site. In contrast, the largest
fractions of organic aerosols on most days during IOP 2 were
comprised of organic-rich particle classes (Org 1, Org 2) that
were more evenly distributed over the SGP site. The smaller
fraction of the Sulfate_org particle class during IOP 2 is con-
sistent with the lower SO4 concentrations observed by the
AMS during IOP 2 compared with IOP 1.
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Table 2. Particle classes defined from miniSPLAT single-particle measurements.

Name Description Used in this study

Soot Soot-containing particles Yes
Sulfate_org Sulfate, nitrate, and organic mixed particles Yes
Nitrate_org Nitrate and organic mixed particles Yes
Org 1 Fresh, organic-rich particles Yes
Org 2 Aged (oxygenated), organic-rich particles Yes
BB Fresh biomass burning particles Yes
BB_SOA Biomass burning particles showing markers of aged organics Yes
Org_amines Organic particles with amine function group markers No
IEPOX_SOA Secondary organic aerosol containing isoprene epoxydiol markers Yes
Dust Dust particles Yes
Pyr Particles containing the pyridinium ion (mostly in the free troposphere) No

Figure 6. Percent difference between the SGP 81 km cell average and the 27, 9, and 3 km cell averages of (a) Sulfate_org, (b) Ni-
trate_Org, (c) IEPOX_SOA, (d) Org1, (e) Org2, (f) soot, (g) BB_SOA, (h) BB, and (i) dust volume concentration classes from the min-
iSPLAT instrument. The definition of percentiles and average values is the same as Fig. 5. All flights during IOPs 1 and 2 are grouped by the
darker (left) and lighter (right) colors, respectively.

Another aspect of the distributions of the organic classes
is that some classes during IOP 1, such as Nitrate_Org and
Org 1, are more skewed than others. This has implications if
models wish to represent subgrid-scale variability of aerosol
properties in some way. This is analogous to how some cloud
parameterizations (e.g., CLUBB, Golaz et al., 2002) use
assumed Gaussian or double Gaussian probability density
distributions to represent subgrid-scale variability of cloud
properties.

While soot is usually a small fraction of total aerosol mass,
it still has an important role in direct aerosol shortwave radia-
tive forcing. Figure 6f shows that the 3 km cells have a larger

range than the 27 km cells and 90 % of the 3 km cell means
within 65 %–72 % of the coarse cell mean, reflecting contri-
butions of both local and distant anthropogenic sources to
spatial variability in this predominantly rural location. The
observed distribution of soot is also skewed, and neglecting
this skewness within coarse climate model grid cell averages
may lead to uncertainties in the predictions of aerosol absorp-
tion. The spatial variability of fine-mode dust and its skewed
distribution (Fig. 6i) is similar to that of soot, and coarse cli-
mate model grid cell averages may also lead to uncertainties
in the aerosol longwave radiative forcing.
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Since the particle class information from miniSPLAT was
computed over 6 min intervals, which represents an average
over 6 km, the 9 and 3 km cell percentiles in Fig. 6 are nearly
the same. Therefore, the actual spatial variability in aerosol
mixing state may be larger than suggested by the 9 and 3 km
cells in Fig. 6.

For reference, Fig. S6 shows the absolute differences be-
tween the 3 km cell means and coarse cell means for the
nine particle class volumes during IOPs 1 and 2. The single-
particle measurements reveal that aerosol composition is far
more complex than the bulk AMS composition measure-
ments, and the spatial variability differs among the particle
classes. These differences in the bulk and single-particle rep-
resentations have implications for the overall hygroscopicity
of particle populations and consequently concentrations of
CCN and aerosol–cloud interactions.

4.3 Aerosol number concentration and size distribution

Figure 7 illustrates the temporal variability on the 7 May air-
craft flight for the particle number concentration from the
CPC3025 and FIMS instruments along with the CCN con-
centration at 0.24 % supersaturation. Large spatial gradients
in aerosol number concentrations were observed along the in-
dividual flight legs, with peak concentrations frequently ex-
ceeding 6000 cm−3 (Fig. 7a). While CPC3025 measurements
show that high aerosol number concentrations were observed
at many locations around the Central Facility (Fig. 7b), con-
tinuous ground measurements of aerosol size distribution at
the Central Facility (not shown) did not indicate a strong
new particle formation event on this day. The spatiotempo-
ral variations in number concentration from FIMS were sim-
ilar to those from the CPC3025, although the concentrations
were lower. Comparison of CPC3025 and FIMS concentra-
tions shows that a large fraction of particles was smaller than
9 nm in diameter. Since the smallest particle diameters from
the CPC3010 and FIMS instruments are nearly identical, the
CPC3010 concentrations are close to those from FIMS and
are therefore not shown for clarity. In addition, the FIMS
number concentrations for diameters between 49 and 426 nm
are shown to represent the variations in the lower portion of
the accumulation-mode size range.

The normalized frequency of the mean number concentra-
tions over 500 cm−3 bin intervals from CPC3025 and FIMS
number concentrations are shown in Fig. 7c and d, respec-
tively, for the 81, 27, 9, and 3 km cells. For the 81 km cell
around the SGP site, mean CPC3025 concentrations (Fig. 7c)
along the flight legs occurred within four bins between 4500
and 6500 cm−3. Progressively wider distributions are pro-
duced for the smaller grid cells, so that the peak mean con-
centrations increase to 6500–7000, 7000–7500, and 8500–
9000 cm−3 for the 27, 98, and 3 km cell sizes, respectively.
The results from FIMS (Fig. 7d) are similar to those from the
CPC3025, except that the highest frequencies occur at lower
concentrations. Figure 7c shows that the 3 km cells have the

broadest distribution and thus capture more of the variability
of small particles from the CPC3025, while both the 3 and
9 km cells captured much of the variability of the larger par-
ticles measured by FIMS, as shown in Fig. 7d. The range of
the aerosol number and volume distribution within the 81 km
cell around the SGP site is shown in Fig. 7e and f, respec-
tively, to illustrate the differences among the 81, 27, 9, and
3 km cells as a function of aerosol diameter. The range of
aerosol number (Fig. 7e) is largest for diameters less than
50 nm on this day, consistent with Fig. 7c. The spatial varia-
tions in the accumulation-mode aerosol volume (Fig. 7f) are
similar to the variability of organic aerosol mass (Fig. 4a).

These results imply that coarse climate models are not
likely to represent the variability of number concentrations
over land, especially on days when new particle formation
processes that produce high concentrations of ultrafine parti-
cles are important.

The spatial variability of number concentrations for all air-
craft flights during IOPs 1 and 2 in terms of percent dif-
ference from the 81 km cell mean is shown in Fig. 8. For
IOP 1, the ranges of the 5th and 95th percentiles for the 27,
9, and 3 km cells are very similar for the CPC3025 (Fig. 8a)
and CPC3010 (Fig. 8b) measurements for diameters greater
than 3 and 10 nm, respectively; 90 % of the grid cells means
are within 36 %–55 % and 41 %–55 % of the coarse grid cell
for particle diameters greater than 3 and 10 nm, respectively.
Nevertheless, the range of the remaining 10 % becomes pro-
gressively larger for the 27, 9, and 3 km cells. In contrast,
the ranges of values for the 27 km cells are larger than the 9
and 3 km cells for IOP 2, which is counterintuitive. The spa-
tial variability is also much larger and more skewed during
IOP 2, with 90 % of the grid cells means with 45 %–68 %
and 47 %–64 % of the coarse grid cell for diameters greater
than 3 and 10 nm, respectively. Fast et al. (2019) note that
20 and 6 new particle formation (NPF) events were observed
during IOPs 1 and 2, respectively, but these results show that
the overall spatial variability of number concentrations also
differed between the IOPs. During IOP 1, high number con-
centrations were frequently observed over a large portion of
the SGP site, similar to the distribution on 7 May (Fig. 7a,
b). Except for a couple of flights, peak number concentra-
tions were more often isolated and usually associated with
emissions from the Redrock Power Plant and the Ponca City
Refinery (Fig. 1a) during IOP 2. Therefore, the smaller spa-
tial variability represented by the 27, 9, and 3 km cells during
IOP 1 (Fig. 8a and b) reflects the more uniformly distributed
number concentrations over the 81 km cell even though the
number concentrations tend to be higher during IOP 1 than
during IOP 2 (Fig. S7).

Since the lowest size bin from FIMS is close to the small-
est particle measured by the CPC3010, Fig. 8b and c are sim-
ilar for the 27, 9, and 3 km cell as well as the differences
between the IOPs. When the smallest particles less than
49 nm in diameter are removed, Fig. 8d shows that the spatial
variability in number concentrations decreases significantly.
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Figure 7. G-1 aircraft (a) altitude on 7 May where the alternating red colors denote locations of peak number concentrations and (b) number
concentrations from the CPC3025, FIMS, and CCN instruments where the gray shading denotes boundary-layer flight legs used to com-
pute subgrid-scale variability. Normalized frequency from the (c) CPC3025 and (b) FIMS instruments and the (e) number and (f) volume
distribution associated with the 81, 27, 9, and 3 km cell averages within the 81 km cell around the SGP site.

Figure 8. Percent difference between the SGP 81 km cell average and the 27, 9, and 3 km cell averages of number concentrations with
particle diameters (a) >3 nm (CPC3025), (b) >10 nm (CPC3010), (c) 9–426 nm (FIMS), and (d) 49–426 nm (FIMS). The definition of
percentiles and average values is the same as Fig. 5. All flights during IOPs 1 and 2 are grouped by the darker (left) and lighter (right) colors,
respectively.

For this size range, 90 % of the 27, 9, and 3 km cells are
within 23 %–34 % and 27 %–35 % of the coarse cell mean for
IOPs 1 and 2, respectively. This range is comparable with the
range of OM mass concentrations where most of the mass is
in the accumulation mode. For reference, the absolute differ-
ences in number concentrations during IOPs 1 and 2 between
the 81 and 3 km cells are shown in Fig. S8, which shows that
these differences are frequently as large as 4000 cm−3 when
including ultrafine aerosol sizes and 500 cm−3 when consid-
ering accumulation-mode sizes.

It is important to note that the variability expressed in
Fig. 8 is larger than the 10 %–20 % spatial variability in
aerosol number concentrations over the SGP site reported
by Asher et al. (2022). The differences between this study
and Asher et al. (2022) are likely due to three factors. First,
the POPS instrument measures particles as small as 140 nm,
which neglects Aitken and ultrafine particles that are mea-
sured by the CPC and FIMS instruments. Second, the surface
measurements in Asher at al. (2022) were collected during
the fall and winter months between mid-October 2019 and
mid-March 2020, and therefore the spatial variability may
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differ from aerosol populations observed during the spring
and late summer as sampled during HI-SCALE. Finally, the
different methodology of quantifying spatial variability from
fixed surface sites and aircraft paths is likely a contributing
factor.

The previous statistics on aerosol number hide important
spatial variability in aerosol number and volume distributions
that has implications for CCN, since it depends strongly on
aerosol size (e.g., Dusek et al., 2006; Pöhlker et al., 2016;
Patel and Jiang, 2021). The range of aerosol number and vol-
ume distribution in Fig. 7e and f suggests that the Aitken and
accumulation modes each consist of a single mode diame-
ter. Aerosol number and volume distribution averaged over
an 81 km cell will likely have a simple, smooth distribution.
New representations of aerosol formation and growth pro-
cesses in climate models that better agree with such aver-
aged observations may be obtaining the right answer for the
wrong reasons because the spatial variability of aerosol and
growth processes is likely to be far more complicated. For
example, 81 km mean aerosol number and volume size dis-
tributions for 17 September and 7 May are shown in Fig. 9
along with select distributions from seven 3 km cells within
the 81 km cell. On 17 September during a new particle forma-
tion event (Fig. 9a), the aerosol number concentration of the
Aitken mode is about twice that of the accumulation mode.
The average Aitken-mode diameter for the 81 km cell occurs
at 30 nm, while the Aitken-mode diameters from select 3 km
cells range between 20 and 40 nm, indicating variability in
the growth rate of the Aitken mode over the 81 km cell. In-
terestingly, the aerosol volume size distributions from 3 km
cells show a distinct bimodal distribution within the accu-
mulation mode. While the bimodal distribution is still visi-
ble in the 81 km cell averaged accumulation volume mode,
it appears to be less pronounced than the 3 km cell aver-
ages. Zaveri et al. (2022) found similar bimodality progres-
sively developing within the accumulation volume mode in
aged urban air in the Amazon. They used a detailed aerosol
box model to interpret this behavior and attributed it to pref-
erential growth of the smaller Aitken-mode particles from
SOA formation at the expense of slow, bulk diffusion-limited
growth of the preexisting semisolid accumulation mode. This
aerosol growth behavior, however, could not be reproduced
by the equilibrium SOA partitioning approach typically used
in many chemistry–aerosol–climate models.

On 7 May in Fig. 9b, the Aitken-mode number concen-
trations are about half that of the accumulation mode for the
81 km average. While the 3 km cells show that the number
concentrations for particle sizes less than 40 nm can be up
to a factor of 2 larger than the 81 km average, these varia-
tions are much smaller than those on 17 September. In ad-
dition, the overall shape of the aerosol number distributions
from the 3 km cells tends to be similar to the 81 km aver-
age, in contrast to 17 September. Nevertheless, the aerosol
volume size distributions from the 3 km cells still exhibit
the characteristic bimodality within the accumulation mode,

suggesting a history of rapid Aitken-mode growth and bulk
diffusion-limited growth of the preexisting semisolid accu-
mulation mode from SOA formation.

Overall, the results in Fig. 9 show important differences in
aerosol number and volume size distributions over the 81 km
cell region that reflect subgrid-scale variability in the new
particle formation events and the subsequent particle growth
rates due to variable precursor emissions and meteorological
conditions. Thus, an equilibrium aerosol treatment used in a
coarse climate model that may approximately reproduce the
average aerosol number and volume size distributions, such
as the 81 km cells shown in Fig. 9, may not work at progres-
sively higher spatial resolutions, where more variability and
important features are seen in aerosol size distributions due
to variability in NPF rates and complex aerosol growth be-
haviors.

4.4 Cloud condensation nuclei and hygroscopicity

CCN are an important metric for climate models, since they
drive aerosol–cloud interactions that influence the Earth’s
radiation budget and precipitation patterns. The representa-
tions of aerosol–cloud interactions in climate models remains
highly uncertain (Boucher et al., 2013; Szopa et al., 2021)
because of the non-coincident spatiotemporal variations in
aerosol and cloud populations and their representation by
coarse grid spacings as well as parameterized treatments of
aerosol and cloud properties.

The spatial variability of CCN from the G-1 flight legs dur-
ing IOPs 1 and 2 at two supersaturations is shown in Fig. 10a.
For CCN at 0.24 % supersaturation during IOP 1, 50 % of the
27, 9, and 3 km cell means are within 4 %–8 % of the coarse
cell mean and 90 % of the cell means are within 22 %–38 %
of the coarse cell mean. The remaining 10 % of the 3 km cells
differed by as much as 100 % of the coarse cell mean. Dur-
ing IOP 2, the spatial variability is somewhat larger for the
25th to 75th percentiles, which are within 6 %–11 % of the
coarse cell mean. However, the maximum differences with
the coarse cell mean are similar for the 27, 9, and 3 km cells.
For CCN at 0.46 % supersaturation, 50 % of the 27, 9, and
3 km cell means are within 5 %–15 % of the coarse cell mean,
which is somewhat larger than for CCN at 0.24 % supersat-
uration. While the percent differences among the 27, 9, and
3 km cells and between the IOPs differ somewhat, the spatial
variability for CCN at both supersaturations is similar, with
little skewness and medians close to zero. Interestingly, the
5th to 95th variability in CCN concentrations among 27, 9,
and 3 km is significantly lower than the observed variability
in aerosol composition and mixing state (Fig. 6) and number
concentrations (Fig. 8), especially at the 0.24 % supersatu-
ration, even though both aerosol properties determine their
CCN activity. This result indicates that improved representa-
tions of aerosol formation and growth processes may result in
modest improvements in CCN concentrations and variability
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Figure 9. Aerosol number and volume size distributions on (a) 17 September and (b) 7 May. Black line denotes the average within the 81 km
cell over the SGP site, and the color lines denote select 3 km cell averages within the same 81 km cell.

at ambient supersaturation levels and hence modest changes
in modeled indirect radiative effects.

CCN concentrations at 0.46 % supersaturation are usually
higher than those at 0.24 %, and CCN at both supersatura-
tions is usually higher during IOP 2 (Tables S1 and S2), when
number concentrations were also higher. The higher CCN
concentrations during IOP 2 drive more spatial variability in
absolute differences between the 81 and 3 km cells, as shown
in Fig. S9a. For CCN at 0.24 % supersaturation, most of the
3 km cells are within 100 and 200 cm−3 of the 81 km cell for
IOPs 1 and 2, respectively. Most of the 3 km cells are within
200 and 300 cm−3 of the 81 km cell for CCN at 0.46 % su-
persaturation. Similarly, the higher CCN concentrations at
0.46 % supersaturation produce broader distributions in the
absolute differences than for CCN at 0.24 % supersaturation.

We also examined the spatial variability of the hygroscop-
icity parameter, kappa (κ). κ was calculated using collocated
measurements of aerosol particle size from FIMS and CCN
number concentrations at the 0.24 % and 0.46 % supersatu-
rations. A backward stepwise integration from the upper size
limit of the FIMS measurements is performed until the in-
tegrated particle concentration matches the measured CCN
number concentrations, and the corresponding particle diam-
eter where both these concentrations are equal is defined as
the critical diameter (Dc). The particles greater than Dc are
assumed to be those particles that activate to act as CCN
(e.g., Ren et al., 2018), and it is assumed that all particles
greater than Dc had a uniform chemical composition and

mixing state. Further, κ-Köhler theory (Petters and Kreiden-
weis, 2007) that describes the relationship between aerosol
size and CCN is used to calculate κ .

Figure 10b shows the spatial variability of κ in terms of
percentage differences during both IOPs. For both supersat-
urations, 50 % of the 27, 9, and 3 km cell means are within
∼ 5 %–15 % of the coarse cell mean, while 90 % of the 27, 9,
and 3 km cell means are within ∼ 18 %–28 % of the coarse
cell mean. In contrast to CCN, which has maximum or mini-
mum departures up to∼ 100 % from the coarse cell mean, the
maximum and or minimum departures for κ do not exceed
32 %. These results suggest that the variability among the 27,
9, and 3 km cells is not significantly different. We note that
distributions are skewed, particularly for IOP 2. This skew-
ness in hygroscopicity may be contributing to the somewhat
greater skewness in CCN during IOP 2. While the percentage
differences shown in Fig. 10b are similar between the IOPs,
Fig. S9b shows that the absolute differences in κ from the
coarse grid cell are somewhat broader during IOP 1 for both
supersaturations.

4.5 Spatial representativeness of SGP surface aerosol
measurements

The aircraft measurements during HI-SCALE provide an
opportunity to assess the representativeness of the routine
aerosol measurements collected at the surface from the Cen-
tral Facility of the SGP site. Figure 11 presents the tempo-
ral variability of ground OM, SO4, NO3, and NH4 measure-
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Figure 10. Percent difference between the SGP 81 km cell average and the 27, 9, and 3 km cell averages of (a) CCN and (b) hygroscopicity,
κ , at 0.24 % and 0.46 % supersaturation. The definition of percentiles and average values is the same as Fig. 5. All flights during IOPs 1 and
2 are grouped by the darker (left) and lighter (right) colors, respectively.

ments collected by an AMS during HI-SCALE (Liu et al.,
2021). These measurements are similar to those made by the
operational Aerosol Chemical Speciation Monitor (ACSM)
measurements (not shown). The gray shading denotes the
range of the spatial variability one might expect over the
81 km cell around the SGP site. This range is defined as the
largest departures from zero for the 5th and 95th percentiles
shown in Fig. 5, which is 41 % for OM, 31 % for SO4, 61 %
for NO3, and 62 % for NH4. The 81 and 3 km cell means
within the boundary layer are denoted by blue and red cir-
cles, respectively.

Interestingly, the 81 km cell means from the aircraft legs
are often very similar to the Central Facility surface measure-
ments for OM, SO4, and NH4. There are only a few instances
in which the 81 km cell means fall outside the gray shading,
which would suggest that the surface measurements may not
be representative over a large area. The right-hand-side pan-
els that plot the surface values averaged over the same time
interval as the aircraft 81 km cell means show that most of the
81 km cell means are close to the 1 : 1 line. The 3 km cells
exhibit more spatial variability, as expected, and most fall
within the gray shading. However, there are days on which
the 3 km cells have a broader distribution, showing that the
estimate of spatial variability will not be reasonable on all
days. In contrast, there are larger differences for NO3, sug-
gesting that the variability of NO3 around the SGP site is
larger and that the estimates of spatial variability from the
aircraft measurements are not as robust. In particular, the air-
craft mean values are often higher than those at the SGP site.

Local precursor emissions are likely a significant source
of spatiotemporal variability in SO4 and NO3. For exam-
ple, emission rates of SO2 from the nearby Redrock Power
Plant and Ponca City Refinery (Fig. 1a) are relatively large,
which contributes to SO4 formation in the region. The G-1
aircraft frequently intersected plumes of SO2 and small par-

ticles nearby and downwind of these point sources. Despite
the variability in SO2 emissions and variable wind direc-
tions during IOP 1, the aircraft 81 km cell mean and the sur-
face measurements of SO4 are often quite similar (Fig. 11b).
Emission precursors of NO3, such as NOx and NH3, are also
highly variable over the SGP site, which is reflected in the
larger spatial variability in NO3. The larger spatial variabil-
ity may also be due to the shorter lifetime of NO3 compared
with SO4, coupled with the local emission sources.

Figure 12 is similar to Fig. 11, except that the temporal
variations from surface CPC3025, CPC 3010, Scanning Mo-
bility Particle Sizer (SMPS), and CCN are shown. The gray
shading denotes the range of spatial variability indicated by
the maximum departures from zero for the 5th and 95th per-
centile aircraft data shown in Fig. 8, which is 55 % for the
CPC3025 and CP3010, 52 % for SMPS, and 28 % for CCN.
Unfortunately, ground CCN data are not available prior to
10 May, so that those measurements can only be compared
with eight flights during IOP 1.

While the aircraft measurements reveal large spatial vari-
ations in aerosol number concentrations around the SGP site
as reflected by the range of 3 km cell means in Fig. 12a–c,
it is interesting that the 81 km cell means are frequently very
similar to the surface measurements. The temporal variations
in CCN shown in Fig. 12d are similar to the OM concen-
trations in Fig. 11a. As with the number concentrations, the
aircraft 81 km cell means for CCN are similar to the ground
measurements after 10 May.

5 Discussion

When comparing observations with model predictions, it is
important to note that “resolution” of spatial variability of
an atmospheric variable and “grid spacing” have different
meanings (Pielke et al., 1991; Grasso, 2000). A minimum
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Figure 11. Measured (a) OM, (b) SO4, (c) NO3, and (d) NH4 at the surface SGP site during IOP 1 (black lines), along with aircraft 81 km cell
averages within the boundary-layer (blue dots) and 3 km cell averages (red dots) with the 81 km cell over the SGP site. The right-hand-side
panels compare coincident-in-time surface and aircraft measurements.

of four to six grid spacings is required to resolve variations
in physical features, but the exact number is subjective (Dur-
ran, 2000), and more grid spacings are preferable to fully
resolve those features. Nevertheless, many modeling stud-
ies still incorrectly use “resolution” and “grid spacing” inter-
changeably. In relation to the findings from this study, coarse
climate models with grid spacings greater than a quarter of
a degree will not adequately resolve the spatiotemporal vari-
ability in aircraft measurements of aerosol properties around
the SGP site. However, their predictions of aerosol proper-
ties may agree reasonably well with aircraft measurements
averaged over the coarse model grid cells. Conversely, op-
erational forecasting models and research chemical transport
models with kilometer-scale grid spacings will resolve much,
but not all, of the spatiotemporal variability since a 3 km grid
spacing can only resolve variations that are at a minimum of
four to six grid spacings wide (i.e., 12 to 18 km).

While the statistics shown in Sect. 4 describe the spatial
variability of aerosol properties in terms of all the flights over
a month-long IOP, the amount of spatial variability in aerosol
properties varied from day to day. For example, some days
had more or less spatial variability in aerosol composition,
as shown by the flight on 7 May in Fig. 3b. As shown in

Fig. 11, the range of OM 3 km cell means around the SGP
site was smaller on other days (e.g., 25 April) than on 7 May.
In contrast, 7 May also had little spatial variability in SO4
compared with other days.

Aircraft sampling during HI-SCALE had many repeatable
flight patterns over the same region to characterize the day-
to-day spatial variability, but the number of flights still can
be considered limited for defining typical spatial variability.
Our results also indicate seasonal differences in spatial vari-
ability which may not be applicable to conditions during the
fall and winter months. While there have been many aircraft
missions of aerosol properties over the past several decades,
many of them have not had repeatable transects over a small
region that can be used to characterize spatial variability.
For example, flights during the Studies of Emissions and At-
mospheric Composition, Clouds, and Climate Coupling by
Regional Surveys (SEAC4RS, Toon et al., 2016) campaign
were conducted over much of the continental US; therefore,
most of the measurements can only quantify spatial variabil-
ity once over a specific region. Nevertheless, it may be possi-
ble to characterize spatial variability in the vicinity of Hous-
ton, with the highest density of flight tracks where the re-
search aircraft were based. Several campaigns have also been
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Figure 12. Measured (a) number concentration>3 nm, (b) number concentration>10 nm, (c) number concentration between 1 and 972 nm,
and (d) CCN concentration at the surface SGP site during IOP 1 (black lines), along with aircraft 81 km cell averages within the boundary-
layer (blue dots) and 3 km cell averages (red dots) with the 81 km cell over the SGP site. The right-hand-side panels compare coincident-in-
time surface and aircraft measurements.

conducted in Houston, including the TexAQS 2000 and 2006
campaigns (Brock et al., 2003; Parish et al., 2009) among
others, so that compiling measurements of aerosol properties
from those campaigns may provide more robust estimates of
variability that could also change in time as aerosol precur-
sor emissions change. SENEX (Warneke et al., 2016) is an-
other campaign that conducted grid-like aircraft flight paths
over urban regions in the southeastern US; however, most
of the urban areas were sampled only once. While subgrid-
scale variability statistics similar to those in this study could
be computed from those transects, the statistics would not be
robust since they would depend on meteorological conditions
and chemical evolution for a particular day.

It is also important to note that weather and climate models
often have poor vertical resolution in addition to coarse grid
spacings, which impacts our concept of subgrid-scale vari-
ability. For example, large vertical gradients in aerosol prop-
erties are frequently observed across the top of the boundary
layer and lower troposphere, which requires small grid spac-
ings on the order of tens of meters to resolve adequately. It
is possible that aircraft measurements could be used to quan-
tify subgrid-scale variability associated with vertical gradi-
ents; however, this aspect was not explored in this study since

there were relatively few profiles made by the G-1 aircraft
during HI-SCALE compared with the time spent on horizon-
tal transects. In addition, vertical profiles usually extended to
just above the boundary-layer top, so that vertical gradients
in aerosol properties across a large portion of the lower tro-
posphere were not characterized. Other aircraft datasets may
be more appropriate for this purpose (e.g., Wang et al., 2020).
In the future, unmanned aerial platforms that can operate for
longer periods of time may have sufficient measurements to
provide robust statistics on vertical gradients in aerosol prop-
erties.

6 Summary and conclusions

In this study, we use aerosol properties measured by re-
search aircraft during the 2016 HI-SCALE field campaign
over northern–central Oklahoma near the DOE ARM South-
ern Great Plains site to quantify their subgrid-scale variabil-
ity over a range of spatial scales. Aerosol properties exam-
ined include bulk composition concentrations, composition
derived from a single-particle mass spectrometer, aerosol
number concentrations, aerosol size distribution, and CCN
concentrations. To compute subgrid-scale variability statis-
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tics, the aircraft flight paths are divided into segments that
fall within grid cells that are 81, 27, 9, and 3 km wide. The
coarser and finer grid spacings are consistent with those used
by current global climate and operational forecasting models,
respectively. Only the constant-altitude flight legs within the
convective boundary layer are used to minimize variations
associated with the vertical gradients in aerosol properties.
Day-to-day variations in mean aerosol properties are also re-
moved from the statistics to isolate variations due solely to
spatial variability. Multiple aircraft flights occurred over the
same region, so that more robust statistics of subgrid-scale
variability could be obtained. The seasonality of subgrid-
scale variability in aerosol properties is quantified by com-
paring the statistics from the spring and late-summer peri-
ods. In addition, we explore the representativeness of surface
point measurements at the SGP site by comparing the vari-
ability of aerosol properties in the boundary layer with that
at the ground.

Not surprisingly, we find that the coarse 81 km cell aver-
ages miss substantial variability in aerosol composition, mix-
ing state, number, size distribution, and CCN over the SGP
site. Even though this site is in a rural area, relatively large
variations in aerosol properties are produced because of lo-
cal variations in anthropogenic and biogenic precursor emis-
sions and chemical formation superimposed on background
aerosols transported from upwind regions. We also show the
following.

– The subgrid-scale variability associated among the
27 km cells is qualitatively similar to the distribution ob-
tained from the 9 and 3 km cells. This does not imply
that global climate models with ∼ 0.25◦ grid spacings
are capable of resolving the observed aerosol variability
at the SGP because a minimum of four to six grid cells
are needed to resolve spatial variations in atmospheric
constituents. Therefore, smaller grid spacings consistent
with current operational forecasting models are likely
needed to explicitly represent the observed spatial vari-
ability in aerosol properties.

– As shown in Fig. 5, 90 % of the 27, 9, and 3 km cell
mean OM concentrations varied by as much as 46 % of
the 81 km cell mean around the SGP site. Similar statis-
tics for SO4 and NO3 produced lower (as much as 35 %
different) and higher (as much as 64 % different) spatial
variability, respectively, than OM.

– 90 % of the 27, 9, and 3 km cell mean accumulation-
mode number concentrations varied from the 81 km
mean by as much as 35 %. The spatial variability
in number concentrations that included ultrafine and
Aitken-mode particles was larger, producing variations
as large as 68 % of the 81 km cell mean. Much of this
variability was due to local sources of ultrafine particles
close to and downwind of the Redrock Power Plant and

Ponca City Refinery and more widespread NPF events
during IOP 1.

– The spatial variability of some composition species and
particles of less than 50 nm in diameter has skewed dis-
tributions.

– Analyses of the variations in size distributions (Fig. 9)
reveal that the 81 km cell mean is often quite differ-
ent from the variability of the 3 km cell means over
the SGP site. This suggests that coarse climate models
may misrepresent CCN concentrations because subgrid-
scale variability in size distribution is neglected. Aver-
aging observed size distribution variations can also hide
bimodal distributions that reflect chemical processes
contributing to particle growth.

– Even the 3 km cell averages miss extreme local maxima
and minima in aerosol properties, especially for number
concentrations of small particles.

– Even though there are large variations in aerosol prop-
erties around the rural SGP site, we find that the 81 km
averages of the aircraft properties are often very close
to the ground measurements made at a single point.
The exception is NO3, but since NO3 concentrations
are usually low during HI-SCALE, those differences
do not seem to significantly impact comparisons of av-
erage aircraft and surface aerosol number and CCN.
This suggests that coarse global model predictions of
aerosol properties can be directly compared with SGP
site measurements. However, it would be useful to ac-
count for the range of observed variability derived from
the aircraft measurements to indicate how much local
variability the model does not represent, similar to ac-
counting for measurement uncertainties that complicate
measurement-to-model comparisons.

In terms of seasonal differences in subgrid-scale variabil-
ity, we found the following.

– Spatial variability in OM in terms of absolute differ-
ences with the 81 km mean (Fig. S5) increased from
spring to late summer rather than during the spring, but
the percentage differences (Fig. 5) had smaller seasonal
dependence. This suggests that the higher concentra-
tions themselves during IOP 2 contributed to the in-
creased variability of absolute differences. The higher
OM concentrations during the late summer likely re-
sulted from higher SOA formation rates coupled with
variability in both anthropogenic and biogenic precur-
sor sources.

– In contrast to OM, both absolute concentrations
(Fig. S5) and percentage differences (Fig. 5) of NO3
had more variability during IOP 1. The lower variability
during IOP 2 was due to both lower concentrations and
more uniformly distributed NO3.
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– Analyses of the composition classes derived from a
single-particle mass spectrometer suggest more com-
plex seasonal differences than bulk composition mea-
surements. While there were relatively small differences
between IOPs 1 and 2 for many mixtures of organics,
fresh OM (Org 1) and aged OM (Org 2) had less spatial
variability during the summer. During IOP 1, the ma-
jority of organics were from biomass burning or were
mixed with sulfate and nitrate with relatively lower and
spatially more variable concentrations of pure organic-
rich particles. During IOP 2, OM was composed primar-
ily of organic-rich particles that were less variable over
the SGP site.

– Consistent with the bulk OM composition measure-
ments, the spatial variability in the absolute differences
in mean accumulation-mode aerosol number (Fig. S8)
between the 27, 9, and 3 km cells and the 81 km cell
mean was larger during the late summer, while the
percentage differences (Fig. 8) did not vary much be-
tween IOPs 1 and 2. Even though IOP 1 had more fre-
quent NPF events, the spatial variability in ultrafine and
Aitken-mode particles was larger during IOP 2. While
there were large variations in total number concentra-
tions during IOP1, average concentrations were also
higher in general during IOP 1, so that the overall spatial
variability was larger during IOP 2.

– Seasonal differences in the spatial variability of CCN
were also consistent with the variability associated with
bulk composition and accumulation-mode aerosol num-
ber, with little seasonal differences in terms of percent-
age differences with the 81 km cell mean (Fig. 10) and
larger spatial variability in the absolute differences dur-
ing IOP 2 (Fig. S10).

The methodology of computing subgrid-scale aerosol vari-
ability statistics could be extended to other aircraft cam-
paigns with repeated flight tracks over a particular region.
For example, past G-1 aircraft missions over Mexico City
(Kleinman et al., 2008), Cape Cod (Berg et al., 2016), and
Sacramento (Zaveri et al., 2012) and downwind of Manaus,
Brazil (Shilling et al., 2018), are potential candidates that
can be used to quantify subgrid-scale variability directly over
and just downwind of large urban areas. While the magni-
tude of aerosol concentrations and the footprint from urban
sources likely change over the years due to growth and/or
emission controls, these datasets would provide an estimate
of spatial variability influenced by meteorological conditions
that are likely similar from year to year. For aerosols in a
more remote continental region, the recent Cloud, Aerosol,
and Complex Terrain Interactions (CACTI) field campaign
(Varble et al., 2021) provided repeated aerosol measurements
over a limited area that would be useful for assessing how
subgrid-scale variabilities in aerosol properties influence the
life cycle of deep convection.

In addition to providing alternative methods of evaluat-
ing model predictions, such information derived from air-
craft field campaigns could also be used to develop numeri-
cal treatments that consider subgrid-scale aerosol variability
in aerosol–cloud–radiation interactions in conjunction with
existing treatments of cloud parameterizations.
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