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Abstract. We use satellite methane observations from the Tropospheric Monitoring Instrument (TROPOMI),
for May 2018 to February 2020, to quantify methane emissions from individual oil and natural gas (O/G) basins
in the US and Canada using a high-resolution (∼ 25 km) atmospheric inverse analysis. Our satellite-derived emis-
sion estimates show good consistency with in situ field measurements (R = 0.96) in 14 O/G basins distributed
across the US and Canada. Aggregating our results to the national scale, we obtain O/G-related methane emis-
sion estimates of 12.6± 2.1 Tg a−1 for the US and 2.2± 0.6 Tg a−1 for Canada, 80 % and 40 %, respectively,
higher than the national inventories reported to the United Nations. About 70 % of the discrepancy in the US En-
vironmental Protection Agency (EPA) inventory can be attributed to five O/G basins, the Permian, Haynesville,
Anadarko, Eagle Ford, and Barnett basins, which in total account for 40 % of US emissions. We show more
generally that our TROPOMI inversion framework can quantify methane emissions exceeding 0.2–0.5 Tg a−1

from individual O/G basins, thus providing an effective tool for monitoring methane emissions from large O/G
basins globally.
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1 Introduction

Increasing atmospheric methane has driven a 0.5 ◦C global
warming since 1850, making methane abatement a critical
means to limit future warming (IPCC, 2021). Methane emis-
sions have a warming potential 80 times higher than carbon
dioxide over a 20-year horizon (Myhre et al., 2013; Ocko et
al., 2021). Methane is the primary component of natural gas,
which is an increasingly important energy source in the US
and Canada, accounting for one-third of national energy con-
sumption in 2019 (US International Energy Agency, https:
//www.iea.org/, last access: 1 May 2021). The production of
oil and gas (O/G) in the US has more than doubled since
2005 (Enverus DrillingInfo, 2020), raising concerns about
the climate impacts from methane emissions. National green-
house gas emission inventory data reported to the United Na-
tions Framework Convention on Climate Change (UNFCCC,
2021) by the US Environmental Protection Agency (EPA)
and Environmental and Climate Change Canada (ECCC)
governmental agencies report methane emissions from O/G
sectors of 7.0 Tg a−1 in the US and 1.6 Tg a−1 in Canada
in 2018 (EPA, 2020; ECCC, 2020), accounting for 13 % of
global O/G methane emissions (Scarpelli et al., 2020).

Emission inventories reported to the UNFCCC are based
on “bottom-up” estimates by applying emission factors to
activity data. Many “top-down” studies using measurements
of atmospheric methane have shown that the national O/G
methane emission inventories in the US and Canada are bi-
ased low (Brandt et al., 2014; Alvarez et al., 2018; Omara
et al., 2018; Maasakkers et al., 2021; Johnson et al., 2017;
MacKay et al., 2021). Alvarez et al. (2018) estimated the
US O/G methane emissions in 2015 to be 13± 2 Tg a−1 by
extrapolating field observations from nine O/G production
basins and found the emissions to be 60 % higher than EPA
estimates. Maasakkers et al. (2021) and Lu et al. (2022) in-
ferred a factor of 2 underestimate in EPA oil emissions by in-
version of Greenhouse Gases Observing Satellite (GOSAT)
data. Ground-based and satellite observations for the Per-
mian Basin, the largest oil-producing basin in the US, in-
dicate an emission source of 2.7–3.2 Tg a−1 (Zhang et al.,
2020; Schneising et al., 2020; Robertson et al., 2020; Lyon
et al., 2021), 3 times higher than expected based on the
EPA reported data. Field and GOSAT measurements over
Canada similarly show a factor of 1.5 or greater underesti-
mate of O/G emissions in the ECCC inventory (Johnson et
al., 2017; Baray et al., 2018, 2021; Atherton et al., 2017; Lu
et al., 2022). A likely reason to explain the large discrep-
ancy between the national emission inventories and atmo-
spheric measurements is that the inventories do not properly
account for the heavy-tailed emissions due to abnormal op-
erating conditions and malfunctions, including fugitive emis-
sions from venting, leakage, inefficient flaring, and blowouts
(Brandt et al., 2014; Zavala-Araiza et al., 2021; Alvarez et
al., 2018; Pandey et al., 2019; Duren et al., 2019; Lyon et al.,
2021; Rutherford et al., 2021).

While inversion of GOSAT satellite observations has
emerged as a powerful tool to quantify methane emissions
from different sectors (such as O/G) on global and con-
tinental scales (Cressot et al., 2014; Alexe et al., 2015;
Maasakkers et al., 2019; Lu et al., 2021; Turner et al., 2015;
Zhang et al., 2021), GOSAT data have limited skill on re-
gional scales because individual sampling tracks are sep-
arated by ∼ 270 km. On the other hand, field campaigns
can characterize emissions on regional scales (Alvarez et
al., 2018) and from point sources (Frankenberg et al., 2016;
Duren et al., 2019), but they are limited in their spatial ex-
tent and temporal duration, which is problematic because of
the temporal variability and intermittency of emissions (Cus-
worth et al., 2021; Varon et al., 2021; Lyon et al., 2021).

The Tropospheric Monitoring Instrument (TROPOMI) on
board Sentinel-5P is a more recent satellite mission that
provides daily continuous methane observations starting in
May 2018 (Lorente et al., 2021), considerably increasing the
potential for monitoring regional methane emissions from
space (Schneising et al., 2020; Zhang et al., 2020; Shen et
al., 2021). Here we exploit TROPOMI to better quantify
methane emissions from all major O/G production basins in
the US and Canada with a high-resolution (∼ 25 km) inver-
sion of 22 months of data and using the most recent grid-
ded versions of the EPA and ECCC inventories as prior esti-
mates (Maasakkers et al., 2016, with updates; Scarpelli et al.,
2022). Our inversion uses an analytical method that provides
closed-form error characterization as part of the solution and
enables an ensemble approach to assess the sensitivity of the
results to the choices of inversion parameters and data fil-
ters. This allows us to evaluate the ability of TROPOMI to
quantify methane emissions from an individual O/G basin
as a function of source and observation characteristics. From
there we draw general conclusions about the emerging role of
satellite observations in quantifying regional methane emis-
sions and evaluating bottom-up emission inventories.

2 Data and methods

2.1 Satellite observations

We use the TROPOMI methane retrieval version 2.02 from
Lorente et al. (2021) for the period May 2018–February
2020. TROPOMI is on board the polar sun-synchronous
Sentinel-5 Precursor satellite with a ∼ 13 : 30 local overpass
time and provides daily global coverage in cloud-free con-
ditions with 7× 7 km spatial resolution at nadir (7× 5.5 km
since August 2019) (Hu et al., 2016; Veefkind et al., 2012).
The column-averaged methane dry mixing ratio (XCH4) is
retrieved using the sunlight backscattered by the Earth’s
surface in the shortwave infrared (SWIR) 2.3 µm spectral
band using the RemoTeC full-physics algorithm with near-
uniform sensitivity down to the surface. We do not con-
sider observations after February 2020 because the Covid-
19 pandemic could significantly affect O/G-related emis-
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sions (Lyon et al., 2021). We only use good-quality XCH4
retrievals that meet the following recommended criteria: (1)
qa_value ≥ 0.5, (2) blended albedo ≤ 0.85, and (3) surface
altitudes ≤ 2 km (Fig. S1 in the Supplement). The blended
albedo is a weighted difference of near-infrared (NIR) and
SWIR albedos to filter scenes covered by snow (Wunch et
al., 2011). The resulting total number of TROPOMI observa-
tions is 7×106 in the US and Canada for May 2018–February
2020. The number of observations per 0.25× 0.3125◦ inver-
sion grid cell is typically in the 100–1000 range and exceeds
1000 in the southwestern US (Fig. S2).

When validated with the ground-based measurements
from the Total Column Carbon Observing Network (TC-
CON), TROPOMI XCH4 has a mean bias of −3.4± 5.6 ppb
globally and 6.4± 4.1 ppb for the US (Lorente et al., 2021).
We also intercompared the TROPOMI data to GOSAT data
from the University of Leicester version 9.0 Proxy XCH4 re-
trieval (Butz et al., 2011; Parker et al., 2020) and find the
mean TROPOMI–GOSAT difference to be−5.4±6.9 ppb in
North America (Fig. S3). The mean bias in the TROPOMI
data is effectively corrected in the specification of boundary
conditions. The regional bias (standard deviation of the mean
bias) is below the 10 ppb threshold recommended by Buch-
witz et al. (2015) for successful inversions.

2.2 Gridded national bottom-up inventories

Prior anthropogenic methane emissions in the US and
Canada are from the sector-resolved national inventories pro-
duced by the EPA (Inventory of U.S. Greenhouse Gas Emis-
sions and Sinks) and ECCC and spatially allocated to a
0.1× 0.1◦ grid by Maasakkers et al. (2016) for the US in
2012 and Scarpelli et al. (2022) for Canada in 2018. We
extrapolated the US emissions for the O/G production sec-
tor to 2018 based on upstream well data in the Enverus
DrillingInfo database (Enverus DrillingInfo, 2020) together
with EPA national totals for O/G production, gas process-
ing, transmission, and distribution (EPA, 2020). Emissions
from the oil and gas are assumed to be constant throughout
each year with no seasonality. Prior anthropogenic emission
totals for the continental US and Canada are 31.7 Tg a−1,
with major contributions from livestock (10.7 Tg a−1), oil
and gas (8.6 with 7.0 for the US and 1.6 Tg a−1 for Canada),
landfills (6.4 Tg a−1), coal (3.2 Tg a−1), wastewater treat-
ment (0.72 Tg a−1), and others. Prior wetland emissions with
0.5× 0.5◦ spatial resolution for individual months are taken
from the mean of the nine highest-performing members
of the WetCHARTS v1.3.1 inventory ensemble (Ma et al.,
2021). Figure S4 shows the distribution of the prior methane
emissions over the study domain. Although the EPA and
ECCC bottom-up inventories report oil and gas emissions
separately, spatial overlap between the two makes specific
attribution difficult, and we therefore combine them here.

2.3 GEOS-Chem forward model simulations and
inverse model setup

We use the GEOS-Chem 12.7.0 chemical transport model
(https://doi.org/10.5281/zenodo.1343546) as the forward
model to relate methane emissions to the atmospheric
methane columns observed by TROPOMI. GEOS-Chem
is driven by GEOS-FP reanalysis meteorological fields
from the NASA Global Modeling and Assimilation Office
(GMAO) (Lucchesi, 2013) with 0.25× 0.3125◦ resolution.
Here we use a nested version of GEOS-Chem with 0.25×
0.3125◦ horizontal resolution and dynamic boundary con-
ditions from a 4× 5◦ global simulation. Following Shen et
al. (2021), we correct the local boundary conditions on a
daily basis by scaling to the ratio of TROPOMI and GEOS-
Chem columns averaged over the neighboring±1000 km and
±15 d.

The inversion optimizes a state vector defined by grid-
ded methane emissions for the domain of interest. This in-
volves constructing a Jacobian matrix K that describes the
sensitivity of model XCH4 to each emission state vector el-
ement. The construction is done by conducting sensitivity
simulations in GEOS-Chem for the inversion period perturb-
ing individual state vector elements in turn, and this is read-
ily done on a high-performance cluster as a massively paral-
lel problem. To reduce the computational cost, we limit the
high-resolution inversion to the five domains where the O/G
sources in the US and Canada are concentrated (Fig. 1 and
more details in Fig. S5). These five domains encompass over
98 % of total O/G emissions, 97 % of oil production, and
99 % of gas production in the continental US and Canada
according to bottom-up information (Enverus DrillingInfo,
2020; Maasakkers et al., 2016; Scarpelli et al., 2022).

In each domain, we construct the state vector as follows.
First, all native 0.25× 0.3125◦ grid cells with prior O/G
emissions >0.5 Gg a−1 are treated as independent state vec-
tor elements. These grid cells account for 93 % of total O/G
emissions in the US and Canada. Second, we aggregate grid
cells that are inside each domain but with O/G emissions
<0.5 Gg a−1 into clusters using a k-means algorithm based
on adjacency and consistency in prior sectoral emissions, fol-
lowing Turner and Jacob (2015). The average size of these
clusters is 1× 1◦, and they allow us to retrieve another 5 %
of total O/G emissions in the US and Canada, adding up to
98 %. Third, we aggregate grid cells that are outside each do-
main but that are within 4◦ in distance into 16 clusters using
the k-means algorithm based on adjacency (Fig. S6), follow-
ing Shen et al. (2021). These clusters are designed to correct
for errors in boundary conditions, and they are not used for
O/G source attribution. Altogether, the model estimates 3650
independent flux variables in the United States and Canada
(Table S2 in the Supplement). Methane sinks from oxidation
and uptake by soils are included in GEOS-Chem, but we do
not optimize them here since they are irrelevant in nested
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Figure 1. TROPOMI methane observations and prior estimates of oil and natural gas emissions in the US and Canada. (a) TROPOMI
satellite observations of the column-averaged dry methane mixing ratio (XCH4) averaged from May 2018 to February 2020, mapped to
0.25× 0.3125◦ resolution and corrected for surface topography as 7 ppb km−1 (Kort et al., 2014). This elevation correction is only for
visualization. We conduct the inversions for the five rectangular domains shown in black that account for over 98 % of O/G emissions in
the continental US and Canada. (b) Gridded national inventory emissions from the oil and natural gas sectors in the US and Canada in 2018
used as prior estimates in our inversion of TROPOMI observations. Grid cells with emission fluxes <0.1 metric ton a−1 km−2 are shown in
white. The boundaries of the 19 major O/G basins are shown on the map, and the names of these basins can be found in Fig. S11.

model simulations where the loss of methane is by ventila-
tion outside the domain (Varon et al., 2022).

2.4 Atmospheric inverse analysis

We solve for the posterior estimates of methane emissions
(state vector x) in the US and Canada using Bayesian inverse
analysis with Gaussian error statistics. The inversion finds
the optimal estimate of x by minimizing the cost function J
given by

J (x)= (x− xA)T S−1
A (x− xA)

+ γ (y−Kx)T S−1
O (y−Kx) , (1)

where xA is the prior estimate, K is the Jacobian matrix,
y is the vector of TROPOMI observations, SA and SO are
covariance matrices for prior and observational errors, and
γ is an additional regularization factor (Brasseur and Jacob,
2017). The relationship between emissions and methane con-
centration (XCH4) is strictly linear since the sinks are not
optimized (Varon et al., 2022). We construct the observa-
tional error covariance matrix SO by applying the residual
error method, which assumes that the statistics of residual er-
ror (after removing the mean bias) between the observations
and a GEOS-Chem simulation with prior emissions define
the observational error variance (Heald et al., 2004; Wecht
et al., 2014). Both SA and SO are taken as diagonal, and we
use γ to avoid overfitting. For native grid cells, we assume
50 % error standard deviation for all anthropogenic and nat-
ural emissions on the 0.25× 0.3125◦ grid. For the grid-cell
clusters, we assume the error standard deviation to be 50 %

√
p

,
where p is the number of grid cells in each cluster.

The analytical solution for ∇xJ (x)= 0 yields the optimal
estimate x̂ for the state vector, the corresponding posterior

error covariance matrix Ŝ, and the averaging kernel matrix A
as follows:

x̂ = xA+
(
γKT S−1

O K+S−1
A

)−1
γKT S−1

O (y−KxA) , (2)

Ŝ−1
= γKT S−1

O K+S−1
A , (3)

A= I− ŜS−1
A , (4)

where I is the identity matrix. The averaging kernel matrix
A defines the sensitivity of the posterior solution to the true
state, and the diagonal terms of A are the averaging kernel
sensitivities diagnosing the ability of the inversion to quan-
tify emissions for the corresponding state vector elements in-
dependently of the prior estimates. The trace of A quantifies
the degrees of freedom for the signal (DOFS), representing
the number of independent pieces of information that can be
effectively optimized in the inversion (Brasseur and Jacob,
2017).

The regularization term γ is intended to account for un-
resolved observational error covariances in the inversion
and thus to avoid overfit to observations. Following Lu et
al. (2021), we choose γ such that

(
x̂− xA

)T S−1
A
(
x̂− xA

)
≈

n, where n is the number of state vector elements, as would
be expected from a chi-squared distribution with n degrees of
freedom. This yields γ in the range 0.1–0.4 with a best esti-
mate of 0.2 (Fig. S7). We previously found a similar range of
γ using the L-curve method in a previous regional inversion
of TROPOMI data for eastern Mexico (Shen et al., 2021).

We evaluate the inversion by comparing the column-
averaged methane from TROPOMI to GEOS-Chem simula-
tions using prior and posterior estimates (Fig. S8). The prior
simulation has a negative bias of 10–15 ppb across most O/G
basins and a positive bias of 10–20 ppb in the central and
eastern US. GEOS-Chem simulations based on posterior es-
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Figure 2. Corrections to oil and natural gas methane emissions in the US EPA and Canadian ECCC national inventories from the inversion
of TROPOMI methane observations (May 2018–February 2020). (a) Posterior correction factors to the gridded national inventory estimates
shown in Fig. 1b and used as prior estimates in the inversion. The boundaries of the 19 major O/G basins are shown on the map, and the
names of these basins can be found in Fig. S11. (b) Posterior O/G methane emissions. For panels (a) and (b), grid cells with prior O/G
emissions <0.1 metric ton a−1 km−2 are shown in white (consistent with Fig. 1b). (c) Prior and posterior emissions in the 19 oil and gas
basins, arranged in decreasing order of posterior emissions. Delaware is a subregion of the Permian Basin. Vertical bars indicate the 2× error
standard deviations from the inversion ensemble. Striped bars for the Permian and Delaware basins show the results of an inversion where the
prior estimate of emissions from the oil and gas production sector was increased by a factor of 4 from the EPA inventory, reflecting previous
evidence that the EPA inventory is too low.

timates (as shown in Fig. 2) can reduce the negative bias to
0–10 ppb in most O/G basins, and especially in the south-
western US, where the TROPOMI observation frequency is
high (Figs. S2 and S9).

2.5 Partitioning the oil and natural gas emissions

Following Shen et al. (2021), we write the sectorial posterior
correction for each grid cell as

fi =
ηαiσ

2
i,nation (f0− 1)

σ 2
0

+ 1 (1≤ i ≤M) , (5)

η =
σ 2

0∑M
i=1α

2
i σ

2
i,nation

, (6)

where αi is the local fraction of emissions of each sector i
taken from the prior and fi is the posterior correction fac-
tor for that sector in this grid cell, f0 is the posterior scal-
ing factor for that state vector element, σ0 is the prior error

standard deviation, M is the number of source sectors, and
σi,nation refers to the error standard deviations in the national
totals obtained from Maasakkers et al. (2016) and Bloom et
al. (2017). The posterior correction factor will be adjusted
more for a specific sector if this sector has a higher percent-
age in the prior emissions and higher prior uncertainty.

2.6 Inversion ensemble and uncertainty analysis

Starting from the baseline inversion as described above, we
conducted an ensemble of sensitivity inversions to test the
robustness of our results to different inversion parameters
and selection of TROPOMI observations. The 24-member
ensemble includes (1) setting the regularization factor γ to
0.1 and 0.4 (0.2 in the baseline), (2) increasing the prior O/G
emissions by 50 % (EPA and ECCC in the baseline), (3) a
prior error standard deviation of 75 % (50 % in the baseline),
and (4) removing TROPOMI data with shortwave infrared
albedo <0.05 (12 % of total TROPOMI observations). The
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posterior covariance matrix Ŝ describes the error within the
choice of each set of inversion parameters, and the ensemble
allows us to explore the uncertainty arising from the selec-
tion of these inversion parameters. We use the Monte Carlo
method to estimate the posterior uncertainty from the ensem-
ble. For each of the 24 members, we generate 100 samples
from the posterior distribution, which yields 2400 samples in
total for each grid cell. We report error statistics on the in-
version results as 2 standard deviations (2σ ) corresponding
to the 95 % confidence level.

3 Quantification of oil and natural gas emissions in
the US and Canada using TROPOMI

Figure 1a shows the spatial distribution of the TROPOMI
column-averaged dry-air mole fraction of methane (XCH4)
(Lorente et al., 2021) in the US and Canada from May 2018
to February 2020. The data shown in Fig. 1a are corrected
for topography following Kort et al. (2014), but this correc-
tion is not used in the inverse analysis because the GEOS-
Chem forward model accounts for topography. The largest
values are along the southeastern coastal areas and the Mis-
sissippi River, where wetland emissions are the dominant
source (Fig. S10). Anthropogenic enhancements are also ap-
parent in O/G basins, including the Central Valley in Cali-
fornia, the Permian Basin, the Anadarko Basin, the Dallas–
Fort Worth–Barnett Shale area, and southwestern Pennsyl-
vania. Figure 1b shows the bottom-up O/G methane emis-
sions from the US and Canada in 2018 based on the grid-
ded versions of the EPA and ECCC national inventories
(Maasakkers et al., 2016; Scarpelli et al., 2022), which are
used as prior estimates in our inversion framework. Here the
original gridding of US EPA emissions for the year 2012
(Maasakkers et al., 2016) has been extrapolated to 2018 on
the basis of the updated national inventory (EPA, 2020) and
updated information about O/G wells (Enverus DrillingInfo,
2020).

Figure 2a shows the optimized posterior correction factors
for O/G emissions relative to the EPA and ECCC invento-
ries (Fig. 1b). Figure 2b shows the corresponding posterior
emissions, and Fig. 2c shows the results for the 19 O/G
basins (more details can be found in Fig. S11). Although
the national maps show patterns of upward and downward
correction factors, emissions for the 19 O/G basins show
general increases except for parts of the Marcellus Basin in
southwestern Pennsylvania, California’s Central Valley, and
the Denver–Julesburg Basin. Emissions are dominated by a
small number of basins where the correction factors to the
national inventories are in excess of 2, except for the Marcel-
lus Basin. The Permian Basin is the largest basin-wide source
(2.9 Tg a−1), a factor of 4.7 larger than the 0.62 Tg a−1 in the
extrapolated gridded EPA inventory, and accounts for 25 %
of total US O/G emissions in the posterior estimate. The av-
erage posterior uncertainty is 20 % (2σ ) for the first 9 largest

O/G basins and 34 % (2σ ) for the 10 smaller ones, indicating
that TROPOMI can more effectively quantify the emissions
from the larger basins.

The underestimate of emissions by the gridded EPA in-
ventory in the Permian has been pointed out before using
satellite observations, including TROPOMI (Zhang et al.,
2020), GOSAT (Maasakkers et al., 2021), point source im-
agers (Irakulis-Loitxate et al., 2021), and field studies (Lyon
et al., 2021), and attributed in part to rapidly increasing oil
and gas production (Zhang et al., 2020). Increasing our prior
estimate of emissions in the Permian from 0.62 to 2.2 Tg a−1

to reflect this knowledge increases our posterior estimate
by 30 % to 3.7 Tg a−1 (Fig. 2c, more details in Fig. S12),
a relatively small response reflecting the strong informa-
tion available from TROPOMI observations. Splitting the
TROPOMI observations into two periods, and with prior esti-
mates of 0.62–2.2 Tg a−1, we find posterior emissions of 2.5–
3.4 Tg a−1 for May 2018–March 2019 and 3.0–3.8 Tg a−1

for April 2019–February 2020, indicating an increase over
the period. The O/G emissions in the Delaware subbasin in-
crease from 0.83 to 0.97 Tg a−1 in response to the changes
in prior emissions from 0.12 to 0.45 Tg a−1. Assuming an
average methane content of 80 % for this natural gas, our
posterior emission range of 2.9–3.7 Tg a−1 corresponds to a
3.5 %–4.6 % loss rate (natural gas production in the Permian
was 5.4× 106 MMcf from May 2018 to February 2020; En-
verus DrillingInfo, 2020).

We derive national totals for O/G emissions in the US
and Canada by aggregating the posterior emissions from
Fig. 2 and retaining the prior EPA and ECCC estimates for
0.2 Tg a−1 of O/G emissions outside the inversion domains
(including Alaska). Figure 3 compares our results to previ-
ous studies, most of which are for emissions before 2017.
Our satellite-derived US estimate in 2018–2020 is 12.6±
2.1(±2σ ) Tg a−1, which is 80 % higher than the bottom-up
inventory reported by the EPA (EPA, 2020) and the Emis-
sions Database for Global Atmospheric Research (EDGAR
version v6.0) (Crippa et al., 2020). About 70 % of this under-
estimate is from five O/G basins, including Permian, Hay-
nesville, Anadarko, Eagle Ford, and Barnett, which are in to-
tal responsible for 40 % of US O/G emissions (Fig. 2). Our
US national estimate is comparable to the facility-based esti-
mate for 2015 by Alvarez et al. (2018) that can better account
for the heavy-tailed emissions and that was found to be con-
sistent with aircraft measurements. We find lower emissions
than Alvarez et al. (2018) in Denver–Julesburg, Fayetteville,
Uinta, West Arkoma, San Juan, and northeastern Pennsyl-
vania, which could be due to decreasing O/G production in
these basins (Fig. S13). This is offset by fast-growing emis-
sions in the Permian, where the O/G production almost dou-
bled from 2015 to 2019 (Enverus DrillingInfo, 2020; Zhang
et al., 2020). Our US national estimate for O/G emissions
is also comparable to previous inversions of GOSAT and in
situ data for 2010–2017 (Maasakkers et al., 2021; Lu et al.,
2022) and to Lu et al. (2022) reporting increasing emissions
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Figure 3. Bottom-up and top-down estimates of national oil and natural gas methane emissions in the US and Canada. Estimates from this
work are shown as quantile plots for the inversion ensemble. The top and bottom of the box are the 25th and 75th percentiles, the vertical bars
are for the minimum and maximum, and the center line is the 50th percentile. Mean emissions ±2 standard deviations from the inversion
ensemble are 12.6± 2.1 Tg a−1 for the US and 2.2± 0.6 Tg a−1 for Canada. Symbols show previous estimates, including EPA (2020) for
2018 (which equals the prior estimate for our work), EDGAR v6.0 (Crippa et al., 2020) for 2018, Alvarez et al. (2018) for 2015, Maasakkers
et al. (2021) for 2010–2015, Lu et al. (2022) for 2010–2017, ECCC (2020) for 2018 (used as the prior estimate for our work), Baray et
al. (2021) for 2010–2015, and Chan et al. (2020) for 2010–2017. Maasakkers et al. (2021) and Lu et al. (2022) did not include the O/G
emissions in Alaska, so we add 0.1 Tg a−1 of emissions (EPA, 2020; Maasakkers et al., 2016) here to obtain the US national total.

in the oil-producing basins but decreasing emissions in gas-
producing basins over the period. When normalized by an-
nual natural gas production (4.1× 107 MMcf, US EIA, as-
suming the average CH4 content is 80 %) in 2019, the na-
tional O/G mean leakage rate (including all O/G sectors)
inferred from our work is 2.0 % in the US.

Our top-down estimate in Canada is 2.2±
0.6 (±2σ ) Tg a−1, which is 40 % higher than the most
recent ECCC-reported emissions (ECCC, 2020) and
EDGAR v6 (Crippa et al., 2020) in 2018 and is at the
lower end of other top-down studies (2.3–3.6 Tg a−1) for
2010–2017 (Baray et al., 2021; Maasakkers et al., 2021;
Chan et al., 2020; Lu et al., 2022). When normalized by
annual natural gas production (7.1× 106 MMcf, UNFCC
https://unfccc.int/documents/271492 (last access: 1 May
2021), assuming the average CH4 content is 90 %) in 2019,
the national O/G mean leakage rate is 1.8 % in Canada.

We also calculated posterior emissions from the O/G sec-
tor using TROPOMI observations in different seasons. Here
the prior O/G emissions remain constant over different sea-
sons, so any changes in the posterior correction factors are
determined by the inversion of the satellite data. Overall, the
spatial distributions of posterior correction factors in spring,
summer, and fall are consistent with that using the year-round
data, especially in the south, where TROPOMI observation
density is high (Fig. S2). The posterior corrections from us-
ing wintertime data are slightly different in Canada and the
northeastern US because of the low observation density and
low averaging kernel sensitivities (Fig. S14).

4 Comparison to field estimates for individual
basins

A unique feature of our work is the use of satellite obser-
vations to quantify emissions at high resolution for individ-
ual O/G basins, building up to the national scale for the US
and Canada. A number of aircraft and ground-based field
campaigns previously estimated emissions from individual
basins (Table S1). These field campaigns were carried out
between 2013 and 2020 (with many of those field measure-
ments taken before 2015), whereas our satellite observational
period is for 2018–2020, which could affect the comparison.
Intermittency of emissions is another factor that would affect
the interpretation of results from field campaigns (Cusworth
et al., 2021; Varon et al., 2021). Figure 4 compares the basin-
scale emission estimates from these field campaigns to the
gridded EPA and ECCC inventories and to our TROPOMI
inversion results. The inventories are consistently lower by
a factor of 1.5–3. Results from our TROPOMI inversion
are more consistent with the field campaigns, especially for
the large O/G basins (>0.5 Tg a−1) such as the Permian,
its Delaware subbasin, Haynesville, and Barnett. The corre-
lation coefficient (R) between TROPOMI-derived posterior
estimates and field measurements is 0.96 compared to 0.85
for the EPA and ECCC inventories. Overall, the results of-
fer quantitative support of our TROPOMI inversion for high-
emitting basins (>0.5 Tg a−1) but suggest that TROPOMI
measurements provide only a limited constraint on the emis-
sion quantification of lesser-emitting basins. We examine be-
low more broadly the parameters governing the capability of
TROPOMI to quantify basin-scale emissions.
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Figure 4. Methane emissions from 14 oil and natural gas production basins in the US. Estimates from field campaigns are compared to
the gridded EPA and ECCC inventories for the US and Canada (a) and to results from our TROPOMI inversion using these inventories as
prior estimates (b). The 1 : 1 line is dashed, and correlation coefficients (R) are shown in the inset. More details, including references for the
field campaigns, can be found in Table S1. Circles represent the same nine basins in Alvarez et al. (2018), and triangles are the new basins
included in this study.

5 Assessing the quantification efficacy of TROPOMI
for O/G basins

TROPOMI is designed to quantify emissions on a regional
scale, and a critical question for methane emission controls
is whether it can do so at the scale of individual O/G basins.
Results in Figs. 2c and 4 indicate successful quantification
of basin-scale emissions exceeding 0.5 Tg a−1. The inherent
TROPOMI limitations can be understood by examining the
averaging kernel (AK) sensitivities of our inversion system.
The AK sensitivities (diagonal terms of the AK matrix) mea-
sure the ability of the inversion to quantify the true emissions
independently of the prior estimate (1: fully, 0: not at all).
Our inversion assumes a fixed (50 %) prior emission error
standard deviation on the 0.25× 0.3125◦ grid, so that abso-
lute prior errors scale with the magnitude of emissions and
decrease with the size of the basin. On the other hand, ob-
servational errors as estimated by the residual error method
(Heald et al., 2004) generally remain in the 10–20 ppb range
for individual observations and decrease with the number of
observations. It follows that the ability of our TROPOMI in-
version to quantify basin-scale emissions increases with the
magnitude of emissions and with the number of observations.
The observation density is highest in the southwestern US,
where TROPOMI retrievals are most often successful (arid
regions, clear skies, homogeneous surfaces), and thus the AK
sensitivities are highest for O/G fields in those regions and in
particular for the Permian Basin (Figs. S2 and S9). We also
estimate the relative error reduction from prior to posterior
estimates, and our results show that the uncertainty decreases
by an average of 40 % (0 %–80 %) across the 19 O/G basins
(Fig. S15).

We examined more broadly the variables influencing the
ability of our TROPOMI-based inversion system to quan-
tify emissions at the basin scale. These variables include (a)
emissions (prior and posterior emissions), (b) the number
of satellite observations, and (c) other geophysical proper-
ties and satellite retrieval parameters (e.g., the albedo, sur-
face altitude, or surface roughness). Of all these variables,
emissions and the number of satellite observations show the
strongest correlation with the posterior uncertainty for the 19
O/G basins; the correlation coefficient R can be as high as
−0.7, a result consistent with AK sensitivities (Fig. 5, more
details in Fig. S16). Results across these O/G basins show
that our inversion framework can quantify area methane
emissions with an average uncertainty below 30 % if the
emission rates exceed 0.2 Tg a−1 and the number of observa-
tions exceeds 5000 a−1. If we normalize the number of obser-
vations by the basin area, it suggests that our inversion frame-
work can quantify large basin-scale sources where the satel-
lite data density is greater than 0.3 counts km−2 a−1 (Fig. 5).
This encompasses many O/G fields at mid-latitudes, though
O/G fields in the tropics are more of a challenge because
they are often collocated with wetlands (Nigeria, Venezuela)
and therefore have extensive cloudiness (Fig. S17). For areas
with lower data density, a reliable quantification may need
the support of other observations (e.g., other satellites, field
measurements) or more accurate facility-scale information.
From the data in Fig. 5, the basin-scale posterior relative un-
certainty (%) of our inversion framework can be estimated
using the following equation:

z=−15log10x1− 13x2− 17
(
R2
= 0.53

)
, (7)
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Figure 5. Relationship of the relative standard deviation (we use 2σ here) of satellite-derived posterior estimates with different variables,
including (a) the number of TROPOMI observations per year, (b) the satellite observation density, (c) prior emissions, (d) posterior emissions,
and (e) averaging kernel sensitivities. The correlation coefficients are shown in the inset. The boundaries of the 19 O/G basins are overlain
on the map, and the names of these basins can be found in Fig. S11.

where z is the posterior relative uncertainty (%), x1 is the
bottom-up emission (Tg a−1) for the basin, and x2 is the
satellite data density (in counts km−2 a−1).

We further test this conclusion by examining 1000 pseudo-
basins that are generated randomly with varying locations
and area sizes (Fig. S18) in the US and Canada. Unlike the
19 O/G basins that are usually located in arid regions with
denser observations, these 1000 pseudo-basins can encom-
pass more complicated satellite-observing conditions and
sectorial emission constitutions. As seen from Fig. S19, our
inversion framework can constrain the posterior O/G emis-
sions with an uncertainty <30 % in areas with O/G emis-
sion rates >0.2–0.5 Tg a−1, and the number of observations is
higher than 5× 103 a−1. Our result suggests that TROPOMI
can be useful in assessing large-area sources with emissions
exceeding 0.2–0.5 Tg a−1 and observation counts exceeding
5000 a−1.

6 Discussion

In summary, we have shown that TROPOMI satellite obser-
vations can successfully quantify methane emissions from
the oil and natural gas (O/G) sector in the US and Canada
and resolve the contributions from individual production
basins. This involved inversions of TROPOMI observations
for 22 months (May 2018–February 2020) at 0.25×0.3125◦

resolution in the O/G production basins and other O/G-

emitting grid cells, accounting for over 98 % of total O/G
emissions in the continental US EPA and Canadian ECCC
national inventories used as prior estimates for the inversion.
We conducted an ensemble of inversions to determine the
sensitivity of results to different weightings of observations,
different prior estimates and associated uncertainties, and the
addition of data-quality filters. We find that national methane
emissions from the O/G sector are 12.6± 2.1 (±2σ ) Tg a−1

in the US and 2.2± 0.6 (±2σ ) Tg a−1 in Canada, which are
80 % and 40 % higher than the national bottom-up inven-
tories, respectively. About 70 % of the discrepancy in the
EPA inventory can be attributed to five O/G basins, the
Permian, Haynesville, Anadarko, Eagle Ford, and Barnett
basins, which in total account for 40 % of US emissions. Our
satellite-derived emission estimates show good consistency
with in situ field measurements for large O/G basins with
emissions higher than 0.5 Tg a−1. Further examination of the
error budget of the inversion suggests that the TROPOMI ob-
servations can quantify emission rates with an uncertainty
(2σ ) better than 30 % in areas with emissions exceeding
0.2–0.5 Tg a−1 and observation counts exceeding 5000 a−1.
Many large O/G basins at mid-latitudes meet these criteria
for successful source quantification.

Code availability. The code for the GEOS-Chem
12.7.0 chemical transport model is available at
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https://doi.org/10.5281/zenodo.1343546 (International GEOS-
Chem User Community, 2020). Other codes used in the analyses
are available at https://doi.org/10.18170/DVN/JPKFU6 (Shen,
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