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S1. Sensitivity of the results to model features and setup 

In preparation of the simulations presented in the manuscript we performed a number of test simulations to quantify the 

sensitivity of the results to various model features and setup options.  

S1.1 Model domain and resolution  

All UCLALES-SALSA simulations presented in the manuscript were made with horizontal resolution of 60x60 m on a 10x10 

km domain. Figure S1 compares cloud field and precipitation from simulations with larger domain size (20x20 km) and higher 

horizontal resolution (50 m) (Panel A) with identical simulations using the current setup (Panel B). The larger setup was 

computationally too heavy to be feasible for the large number of simulations presented, however, the simulations with current 

setup (10x10 km domain and 60 m horizontal resolution) did not significantly differ from those in any of the variables discussed 

in the manuscript (see timeseries on Figure S2).  

A) Domain: 20x20 km, resolution: 50x50 m  B) Domain: 10x10 km, resolution: 60x60 m  

   

Figure S1. Cloud and precipitation pattern in comparable simulations with (A) 20 km domain, 50 m resolution and (B) 10 km 

domain, 60 m resolution. 10 hours after the start of the simulation. Contours – surface precipitation rate (mm/h), white shading –

liquid water path (g/m2) (scaled by a factor 0.01 to fit on same scale as precipitation). 

 



2 
 

 

Figure S2. Timeseries of comparable simulations with 20 km domain, 50 m resolution (brown) and 10 km domain, 60 m resolution 
(black). Hourly averaged time series, mean over the model area. Panels: a – in-cloud cloud interstitial aerosol (solid) and cloud 
droplet (dashed) concentration, b – Cloud droplet size, c –Cloud liquid water path (solid) and rain water path (dashed), d – height 
of cloud top (solid) and base (dashed), e –precipitation rate at surface (solid) and below cloud (dashed), f – cumulative wet deposition 
of background aerosol (ammonium bisulfate). 

We have not explicitly tested the sensitivity of UCLALES-SALSA model to the vertical resolution for this specific case, as 

it was optimized for the LES intercomparison study by Ackerman et al. (2009). The resolution is less than 25 meters for all in-

cloud and below-cloud layers and 5 meters in the regions with largest gradients (near surface and cloud top).  Stevens et al. 

(2005) tested the sensitivity of LES models to the resolution at cloud top for the Research flight 1 of the DYCOMS II campaign 

and showed no further improvement with resolutions better than 5m. Tonttila et al. (2021) show very small difference between 

5 and 10 meter model vertical resolutions with UCLALES-SALSA model, although for a different case. 

S1.2 Model noise 

In the preliminary testing phase, we also investigated the model noise by performing two almost identical simulations that 

differed only by the random fluctuations in the temperature field used to initialize the turbulence. The results of this experiment 

are shown on Figure S3. Expectedly, the noise is largest in the precipitation flux, while other quantities do not show large 

discrepancies, with the exception of cloud drop size at the very end of the simulation. Any simulation results differing from 

each other in similar level to what is shown on Figure S3 have been considered identical when analysing the results. 
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Figure S3. Timeseries of two simulations that differ only by the random perturbations used to initialize the turbulence. 

 

S1.3 Autoconversion parameterization 

While the bin scheme in UCLALES-SALSA describes accurately particle dry-size distribution, in the presented simulations 

we applied the autoconversion parameterization of Seifert and Beheng (2001) that is based on total droplet number and mass 

and thus does not resolve their size spectrum. Thus, it is not optimal for modelling the effect of the giant cloud condensation 

nuclei (GCCN). However, UCLALES-SALSA includes an alternative, more mechanistic option for simulating droplet growth 

from cloud droplet to small drizzling droplet. This scheme has been used previously for studying cloud seeding (Tonttila et 

al., 2021) and in a aerosol-cloud closure study by (Calderón et al., 2022). It is based on explicitly counting all collisions 

between cloud droplets where the product is large enough (>20 microns in wet diameter) to start efficiently collecting other 

droplets to form drizzle and rain. This collision rate limited scheme requires much longer spin-up to build up realistic cloud 

and drizzle droplet size distributions than employing the autoconversion parameterization that grows a subpopulation of cloud 

droplets instantly to wet sizes above 50 micrometers.  

As the current study required a large number of simulations and GCCN effects were relevant for only small fraction of those, 

we used the Seifert-Beheng parameterization to reduce computational burden. However, as the GCCN effect seemed to play a 
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small but noticeable role in creating the difference between the no-emission control case and the simulation with Gong (2003) 

sea spray emission, we repeated these simulations together with the base case with Fuentes et al. (2010) sea spray emission 

using the more mechanistic scheme. Figure S4 and Figure S5 show the simulations using the Seifert-Beheng parameterization 

and the collision-based scheme respectively. Figure S4 indeed shows relatively minuscule effects of the GCCN. 

 

Figure S4. Simulations with the Seifert-Beheng autoconversion parameterization. Hourly averaged time series, mean over the 
model area. Panels: a – in-cloud cloud interstitial aerosol (solid) and cloud droplet (dashed) concentration, b – Cloud droplet size, c 
–Cloud liquid water path (solid) and rain water path (dashed), d – height of cloud top (solid) and base (dashed), e –precipitation rate 
at surface (solid) and below cloud (dashed), f – cumulative wet deposition of background aerosol (ammonium bisulfate). Simulations: 
grey – no-emission control, black – F10, Blue – G03 setups. All schemes were run with SST 10°C and 10 m/s windspeed. 
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Figure S5. Simulations using explicit precipitation formation scheme. Panels and line colours are the same as in Figure S4 

 

 As seen from Figure S5, with the mechanistic scheme it takes about twice longer in the no-emission case (gray line) before 

the clouds start restructuring and significant levels of precipitation occur. And in this case the effect of the GCCN emitted by 

the Gong (2003) sea spray scheme (blue line) is indeed much more noticeable, speeding up the appearance of surface 

precipitation by several hours. An indication of GCCN effect is also visible for the F10 case (black) where low levels of below-

cloud drizzle are visible hours before the precipitation occurs in the no-emission case. In this case the GCCN effect competes 

with the rain-delaying effects of the extra CCN from fine sea spray and thus stronger surface-reaching drizzle still starts a 

couple of hours later than it occurs in the no-emission control, similarly to the main simulations.  

The large difference in the mean cloud droplet size when using the different schemes is due to using different definitions for 

drizzle – in the case of the Seifert-Beheng scheme the raindrop size spectrum starts from 50 microns wet diameter and all 

droplets produced by the autoconversion scheme are assumed to be this size. In the simulations with the mechanistic scheme 

the drizzle bins are used for coalescence-growth dominated size-range and start from 20 microns wet diameter. All droplets 

that reach this size by collision-coalescence process are moved from cloud bins to drizzle bins, while purely condensational 

growth is still handled in the cloud bins, as condensation affects the whole population in the bin uniformly and the wet-size 

distribution does not widen. This classification is not expected to be a source of error as all microphysical processes are 
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computed identically for both cloud droplets and drizzle and only the bin limits are defined differently based on dry size (cloud 

droplets) or wet size (drizzle/precipitation).  

S2. Gas phase chemistry 

Table S1. VOC oxidation reactions and stoichiometric coefficients. Reaction rate k (cm3 molec−1 s−1) at temperature T is obtained 
as follows: k(T) =  k298 * exp(E/T). 

 

a) Atkinson et al. (2006) 

b) Interpolated from Henze and Seinfeld (2006) 

c) Kokkola et al. (2014) 

d) Bates et al. (2014), average of cis and trans isomers 

e) Paulot et al. (2009) 

f) IUPAC (2022) 

g) Jacobs et al. (2013) 

h) Jenkin et al. (2015) 

  

Reaction Rate Stoichiometric coefficients 

k298  E VBS0 VBS1 VBS10 IEPOX Glyoxal 

Isoprene OH 2.7            a) 

× 10−11      

390                          b) 

 

0.0 

b) 

 

0.0295 

 

b) 

 

0.0453 

 

0.525       e) 0.025       h) 

Isoprene O3 1.03       a) 

× 10−14        

−1995     - - 

Isoprene NO3 3.15      a) 

× 10−12     

−450       - - 

Mono-

terpenes 

OH 1.2         a) 

× 10−11      

440         c) 

 

0.1  

 

c) 

 

0.037 

 

c) 

 

0.088 

 

- - 

Mono-

terpenes 

O3 6.3           a) 

× 10−16     

−580       - - 

Mono-

terpenes 

NO3 1.2            a) 

× 10−12      

490          - - 

IEPOX OH 1.25      d) 

× 10−11 

-             

 

- - - - 0.24        g) 

Glyoxal OH 3.1         f) 

× 10−12 

340     - - - - - 

Glyoxal NO3 4.0         f) 

× 10−16 

    - - - - - 
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