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Abstract. We quantify methane emissions in China and the contributions from different sectors by inverse anal-
ysis of 2019 TROPOMI satellite observations of atmospheric methane. The inversion uses as a prior estimate
the latest 2014 national sector-resolved anthropogenic emission inventory reported by the Chinese government
to the United Nations Framework Convention on Climate Change (UNFCCC) and thus serves as a direct evalua-
tion of that inventory. Emissions are optimized with a Gaussian mixture model (GMM) at up to 0.25◦×0.3125◦

resolution. The optimization is done analytically assuming log-normally distributed errors on prior emissions.
Errors and information content on the optimized estimates are obtained directly from the analytical solution and
also through a 36-member inversion ensemble. Our best estimate for total anthropogenic emissions in China
is 65.0 (57.7–68.4) Tg a−1, where parentheses indicate the uncertainty range determined by the inversion en-
semble. Contributions from individual sectors include 16.6 (15.6–17.6) Tg a−1 for coal, 2.3 (1.8–2.5) for oil,
0.29 (0.23–0.32) for gas, 17.8 (15.1–21.0) for livestock, 9.3 (8.2–9.9) for waste, 11.9 (10.7–12.7) for rice pad-
dies, and 6.7 (5.8–7.1) for other sources. Our estimate is 21% higher than the Chinese inventory reported to the
UNFCCC (53.6 Tg a−1), reflecting upward corrections to emissions from oil (+147 %), gas (+61 %), livestock
(+37 %), waste (+41 %), and rice paddies (+34 %), but downward correction for coal (−15 %). It is also higher
than previous inverse studies (43–62 Tg a−1) that used the much sparser GOSAT satellite observations and were
conducted at coarser resolution. We are in particular better able to separate coal and rice emissions. Our higher
livestock emissions are attributed largely to northern China where GOSAT has little sensitivity. Our higher waste
emissions reflect at least in part a rapid growth in wastewater treatment in China. Underestimate of oil emissions
in the UNFCCC report appears to reflect unaccounted-for super-emitting facilities. Gas emissions in China are
mostly from distribution, in part because of low emission factors from production and in part because 42 % of
the gas is imported. Our estimate of emissions per unit of domestic gas production indicates a low life-cycle
loss rate of 1.7 % (1.3 %–1.9 %), which would imply net climate benefits from the current “coal-to-gas” energy
transition in China. However, this small loss rate is somewhat misleading considering China’s high gas imports,
including from Turkmenistan where emission per unit of gas production is very high.
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1 Introduction

Methane (CH4) is a potent greenhouse gas with an atmo-
spheric lifetime of 9.1± 0.9 years (Prather et al., 2012).
Its atmospheric concentration has nearly tripled since pre-
industrial times because of anthropogenic emissions. The re-
sulting radiative forcing from methane on an emission basis
(including effects on tropospheric ozone, stratospheric wa-
ter vapor, and carbon dioxide (CO2) is 1.21 W m−2 since the
pre-industrial era, compared with 2.16 W m−2 for CO2 Naik
et al., 2021). Reducing methane emissions is a recognized
priority under the Paris Agreement. As of January 2022,
111 countries have signed the Global Methane Pledge to
reduce their methane emissions by 30 % below 2020 levels
by 2030 (https://www.globalmethanepledge.org, last access:
10 October 2021).

China is the single largest contributor to global anthro-
pogenic methane emissions (Worden et al., 2022). It is es-
timated to have emitted 46–74 Tg a−1 out of a global anthro-
pogenic source of 349–393 Tg a−1 for the 2008–2017 decade
(Saunois et al., 2020). According to the latest national emis-
sion inventory for 2014 submitted by the Chinese govern-
ment to the United Nations Framework Convention on Cli-
mate Change (UNFCCC, 2020), China emitted 53.6 Tg a−1

including contributions from coal mining (38 %), livestock
(24 %), rice paddies (16 %), landfills (7 %), wastewater man-
agement (5 %), oil/gas systems (2 %), and other sources
(8 %). Emission inventories reported to the UNFCCC are
“bottom-up” estimates derived from activity data and emis-
sion factors (EFs) per unit of activity, supplemented in some
cases with more source-specific information. There are large
uncertainties in these bottom-up estimates (Saunois et al.,
2020; Gao et al., 2021). Different bottom-up national inven-
tories for China as reported by Lin et al. (2021) ranged from
44.4 to 57.5 Tg a−1 in 2010, with larger relative differences
for individual sectors. These uncertainties make it difficult to
set targets for reducing methane emissions.

The recent “coal-to-gas” transition policy in China (Qin et
al., 2018) has raised growing awareness of oil/gas methane
emissions, which are presently small but could grow rapidly.
Gas is projected to account for 15 % of total energy supply
in China by 2030 (Gan et al., 2020). It is crucial to quantify
China’s oil/gas and coal methane emissions in order to assess
the climate benefits of switching from coal to gas (Alvarez et
al., 2012, 2018). Chinese oil/gas emissions in the most recent
version of the widely used bottom-up EDGAR v6 inventory
for 2018 (3.4 Tg a−1; Crippa et al., 2021) are much higher
than in the government report to the UNFCCC (1.1 Tg a−1),
while coal emissions in EDGAR v6 (20.4 Tg a−1) are consis-
tent with the government report (19.5 Tg a−1). Previous ver-
sions of EDGAR overestimated coal emissions from China
(Bergamaschi et al., 2013; Turner et al., 2015).

Satellite observations of atmospheric methane in the short-
wave infrared (SWIR) offer important “top-down” informa-
tion for evaluating bottom-up inventories and reducing un-

certainty (Jacob et al., 2016). Exploiting this information
involves inversion of the observations with an atmospheric
transport model relating emissions to atmospheric concen-
trations, and using the bottom-up inventory as prior infor-
mation (Brasseur and Jacob, 2017). A number of global
and regional inversions relevant to China have been con-
ducted with satellite observations from the Scanning Imag-
ing Absorption Spectrometer for Atmospheric Chartogra-
phy (SCIAMACHY) for 2003–2012 (Bergamaschi et al.,
2013; Houweling et al., 2014) and the Greenhouse Gases
Observing Satellite (GOSAT) for 2009–present (Alexe et al.,
2015; Turner et al., 2015; Pandey et al., 2016; Miller et
al., 2019; Maasakkers et al., 2019; Zhang et al., 2021; Qu
et al., 2021; Deng et al., 2022). The TROPOspheric Moni-
toring Instrument (TROPOMI) satellite instrument launched
in October 2017 provides global daily data with 5.5× 7 km
(7× 7 km before August 2019) pixel resolution, consider-
ably increasing coverage relative to previous satellite instru-
ments (Hu et al., 2018; Lorente et al., 2021). Recent studies
have used TROPOMI data in inverse analyses of methane
emissions for North America (Zhang et al., 2020; Shen et
al., 2021) and globally at coarse resolution (Qu et al., 2021;
van Peet et al., 2021). Qu et al. (2021) pointed out that their
TROPOMI inversion suffered from major artifacts in south-
ern China due to mislocation of prior coal emissions, juxta-
position of coal and rice emissions at the ∼ 200 km resolu-
tion of the inversion, and extensive seasonal cloudiness.

Here we use TROPOMI observations for 2019 to quan-
tify methane emissions from China at up to 0.25◦× 0.3125◦

(∼ 25× 25 km2) resolution and with attribution to different
source sectors. Our inversion uses the Chinese national in-
ventory reported to the UNFCCC as prior information so
that our results are directly relevant for evaluating that inven-
tory, and includes an improved prior spatial distribution of
methane emissions from the coal sector (Sheng et al., 2019).
We apply an analytical solution to the Bayesian inference of
methane emissions (Jacob et al., 2016), which has the advan-
tage of providing closed-form error statistics and hence in-
formation content as part of the solution, and also allows us
to conduct an ensemble of sensitivity inversions at minimal
added computational effort.

2 Data and methods

We conducted the inversion of TROPOMI data for the full
year of 2019 over the East Asia domain of Fig. 1 (15–55◦ N,
70–140◦ E) at up to 0.25◦× 0.3125◦ resolution. In this sec-
tion we describe the TROPOMI observations (Sect. 2.1), the
prior emission estimates (Sect. 2.2), the GEOS-Chem chem-
ical transport model used as the forward model for the inver-
sion (Sect. 2.3), the analytical inversion method (Sect. 2.4),
the sectoral attribution of inversion results (Sect. 2.5), and
the ensemble of sensitivity inversions (Sect. 2.6).
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Figure 1. TROPOMI observations of column-averaged dry methane mixing ratios (XCH4) over East Asia and comparison with GEOS-
Chem simulations. (a) Mean observations for 2019 mapped on the GEOS-Chem 0.25◦× 0.3125◦ grid. (b) Number of observations on that
grid. (c) Mean differences between the GEOS-Chem simulation with prior emissions and observations. The spatiotemporal mean bias (MB)
and root-mean-square error (RMSE) over the study domain are shown in the insets. (d) Same as (c) but for the GEOS-Chem simulation with
posterior emissions. Thin black lines are Chinese provincial boundaries.

2.1 TROPOMI observations

TROPOMI is onboard the polar sun-synchronous Sentinel-5
Precursor satellite with a ∼ 13:30 local overpass time. The
instrument observes methane columns by solar backscat-
ter in the 2.3 µm absorption band with near-uniform sen-
sitivity down to the surface. The column-averaged dry-
air methane mixing ratio (XCH4) is retrieved with a full-
physics algorithm (Butz et al., 2011) together with sur-
face and atmospheric scattering properties. We use the
recently updated TROPOMI version 2.02 retrieval from
the Netherlands Institute for Space Research (Lorente
et al., 2021; http://www.tropomi.eu/data-products/methane,
last access: 10 October 2021), filtering out low-quality re-
trievals (“qa_value”< 0.5) and surfaces above 2 km where
the stratospheric contribution to the column is large (Shen
et al., 2022). We further adopt the “blended albedo” filter
suggested in Lorente et al. (2021) to remove snow- or ice-
covered scenes identified by blended albedo exceeding 0.8
from October to April.

Global mean bias in the TROPOMI observations is incon-
sequential for regional inversions because it can be incorpo-
rated in the boundary conditions (defined as the edges of the
study domain), and random error (precision) is effectively
reduced through the large number of observations (Fig. 1).

More problematic is spatially variable bias, which corrupts
the information on methane concentration gradients used to
optimize emissions in the inversion. This variable bias typ-
ically arises from aliasing of surface spectral features into
the XCH4 retrieval. Lorente et al. (2021) estimated a vari-
able bias of 5.6 ppb for the TROPOMI XCH4 full-physics
retrieval as the spatial standard deviation of the mean differ-
ence with ground-based methane observations from the Total
Carbon Column Observing Network (TCCON; Wunch et al.,
2011). This is below the threshold requirement of 10 ppb
recommended by Buchwitz et al. (2015) for use of satellite
data in regional inversions. However, the TCCON network is
sparse and includes no sites in China.

Qu et al. (2021) conducted a more thorough worldwide
analysis of variable bias in the TROPOMI version 1.03 data
(Hu et al., 2018) by using the GOSAT observations as refer-
ence on a 4◦× 5◦ grid. GOSAT is much less subject to re-
trieval artifacts because of its higher spectral resolution and
its use of the CO2 proxy retrieval method in the 1.65 µm
absorption band (Parker et al., 2020). Qu et al. (2021)
found TROPOMI variable biases typically in the range of
9–13 ppb but exceeding 20 ppb for some regions. Repeating
this analysis for our East Asia domain with TROPOMI ver-
sion 2.02 (Lorente et al., 2021) on the 0.25◦× 0.3125◦ grid,
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Figure 2. Comparison between 2019 TROPOMI and GOSAT observations of XCH4 over East Asia. (a) Scatter plot of daily observations
on the GEOS-Chem 0.25◦× 0.3125◦ grid. Green lines indicate absolute TROPOMI-GOSAT differences of 20 ppb and we exclude the
outlying TROPOMI observations. (b) Spatial pattern of annual mean differences 1XCH4 between TROPOMI and GOSAT observations
after outlying TROPOMI data have been excluded. The mean difference is −3.6± 9.1 ppb. TROPOMI version 2.02 observations are from
Lorente et al. (2021) and GOSAT version 9.0 observations are from Parker et al. (2020).

we find a mean TROPOMI–GOSAT difference of −9.9±
17.6 ppb (Fig. 2a). The mean difference is largely driven by
TROPOMI values below 1830 ppb at high latitudes (Fig. 1),
likely reflecting snow-covered surfaces that are not success-
fully removed by the blended albedo filter. The standard devi-
ation of the difference (measure of variable bias) is relatively
high in part due to the high spatial resolution in our analy-
sis, which also means that a higher bias threshold is accept-
able because methane enhancements are larger. Here we ex-
clude TROPOMI observations that show discrepancies larger
than 20 ppb compared with GOSAT. The mean TROPOMI–
GOSAT difference after these outlying data have been ex-
cluded is −3.6± 9.1 ppb with no evident regional structure
(Fig. 2b).

Figure 1 shows the mean TROPOMI observations for 2019
retained in our analysis on the 0.25◦× 0.3125◦ grid, along
with the number of observations in each grid cell. We assim-
ilate m= 5907939 TROPOMI retrievals over the inversion
domain. There are few observations in western China and
no observations at all in Tibet because we have excluded lo-
cations with surface altitude above 2 km following Shen et
al. (2022).

2.2 Prior emissions

Figure 3 shows the prior estimates of emissions from differ-
ent sectors over the inversion domain and Table 1 gives na-
tional totals for China. Anthropogenic emissions for China
are from the latest 2014 national governmental report to the
UNFCCC (UNFCCC, 2020). Emissions from coal and oil/-
gas exploitation are spatially allocated to the 0.25◦×0.3125◦

GEOS-Chem grid using infrastructure information com-
piled by the Global Fuel Exploitation Inventory (GFEI v2;
Scarpelli et al., 2022). This includes bottom-up information
from Sheng et al. (2019) for the distribution of China’s coal

Table 1. Methane emissions in China in 2019.

Prior Posterior estimate Sensitivity to
estimate (Tg a−1)b observationsc

(Tg a−1)a

Total emission 56.8 70.0 (61.6–79.9) 0.91
Anthropogenic 53.6 65.0 (57.7–68.4) 0.91
Coal mining 19.5 16.6 (15.6–17.6) 0.91
Oil 0.93 2.3 (1.8–2.5) 0.76
Gasd 0.18 0.29 (0.23–0.32) 0.30
Livestocke 13.0 17.8 (15.1–21.0) 0.75
Wastef 6.6 9.3 (8.2–9.9) 0.71
Rice paddies 8.9 11.9 (10.7–12.7) 0.86
Otherg 4.6 6.7 (5.8–7.1) 0.81
Natural 3.2 5.0 (3.9–11.6) 0.61
Open firesh 0.16 0.24 (0.18–0.26) 0.30
Wetlands 2.3 3.4 (2.8–7.5) 0.61
Seeps 0.06 0.11 (0.10–0.18) 0.43
Termites 0.72 1.2 (0.8–3.7) 0.32

a Prior estimates of anthropogenic emissions are from the Chinese government report to
the UNFCCC for 2014 (UNFCCC, 2020). Wetland emissions are the mean of the
high-performance subset of the WetCHARTs v1.3.1 inventory ensemble for 2019 (Ma et
al., 2021). Open-fire emissions are from GFED4s (van der Werf et al., 2017). Termite
emissions are from Fung et al. (1991), and geological seepage emissions are from Etiope
et al. (2019) with scaling from Hmiel et al. (2020). See Sect. 2.2 for details. b Results
from the base inversion, with uncertainty range in parentheses encompassing the best
estimates from the inversion ensemble and the 2σ error from the posterior error
covariance matrix Ŝ of the base inversion (Fig. S2 in the Supplement). See Sect. 2.6 for
details. c Sensitivity of posterior emissions to the TROPOMI observations, ranging from
0 (no information from observations, emissions determined by prior estimate) to 1 (full
information from observations, no sensitivity to prior estimate). The sensitivities are
defined by the diagonal terms of the reduced averaging kernel matrix for the inversion.
See Sect. 2.5 for details. d Contributions from production, transmission, and distribution
subsectors are 0.03, 0.025, and 0.125 Tg a−1 in the prior estimate, and are 0.07, 0.06, and
0.16 Tg a−1 in the posterior estimate. e Livestock sector includes emissions from enteric
fermentation and manure management. f Waste sector includes emissions from landfills
and wastewater treatment, and are combined in the inversion because of their spatial
overlap. Prior estimates are 3.84 Tg a−1 for landfills and 2.72 Tg a−1 for wastewater
treatment. g Including industry, stationary combustion, mobile combustion, aircraft,
composting, and field burning of agricultural residues. h Excluding field burning of
agricultural residues.
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Figure 3. Prior estimates of methane emissions used for the inversion. Coal, oil, and gas emissions are from the GFEIv2 gridded version of
the national inventories from individual countries reported to the UNFCCC (Scarpelli et al., 2022). Other anthropogenic emissions for China
are from its UNFCCC report with spatial allocation from EDGAR v4.3.2, while for other countries they are from EDGAR v4.3.2. Wetland
emissions are 2019 monthly means of the nine-member high-performance subset of the WetCHARTs inventory ensemble (Ma et al., 2021)
and are shown here as the annual means for 2019. White areas have emissions lower than 1× 10−12 kg m−2 s−1. Total emissions for China
are listed in Table 1.

emissions. Other anthropogenic sources are spatially allo-
cated using the EDGAR v4.3.2 inventory. Anthropogenic
emissions outside of China are from GFEI v2 for fuel ex-
ploitation and from EDGAR v4.3.2 for other sectors. Wolf
et al. (2017) produced an alternative global gridded inven-
tory for livestock emissions, but we find that it is too uniform
over China, as Scarpelli et al. (2020a) previously found over
Mexico, because they use livestock numbers resolved only by
province and distribute them over all grasslands and shrub-
lands. All anthropogenic emissions are assumed to be asea-
sonal, except for manure management for which we apply
temperature-dependent corrections following Maasakkers et
al. (2016) and rice paddies for which we apply seasonal cor-
rections derived from a biogeochemical model (Zhang et al.,
2016).

Wetland emissions are monthly means for 2019 on a 0.5◦×
0.5◦ grid from the nine-member high-performance subset
of the WetCHARTs v1.3.1 inventory ensemble that best fits
global GOSAT inversions (Ma et al., 2021). Other natural
sources include daily open-fire emissions from the Global
Fire Emissions Database version 4s (GFED4s; van der Werf

et al., 2017), termite emissions from Fung et al. (1991),
and geological seepage emissions from Etiope et al. (2019)
scaled to a global magnitude of 2 Tg a−1 following Hmiel et
al. (2020).

2.3 GEOS-Chem chemical transport model

A nested version of the GEOS-Chem chemical transport
model (13.0.0; https://doi.org/10.5281/zenodo.4618180) is
used as the forward model in the inversion to relate methane
emissions to atmospheric observations. The model is driven
by GEOS-FP reanalysis meteorological fields with 0.25◦×
0.3125◦ spatial resolution and 3 h temporal resolution (1 h
for mixing depths and surface fields) from the NASA Global
Modeling and Assimilation Office (Lucchesi, 2013). We con-
duct GEOS-Chem model simulations at 0.25◦×0.3125◦ res-
olution over the study domain of Fig. 1 for 2019. The nested
version of GEOS-Chem is similar to that used in previous
regional inversions of TROPOMI observations (Zhang et al.,
2020; Shen et al., 2021) and uses 3 h dynamic boundary con-
ditions from the global GEOS-Chem simulated vertical pro-
files at 2◦× 2.5◦ resolution for 2019 with posterior methane

https://doi.org/10.5194/acp-22-10809-2022 Atmos. Chem. Phys., 22, 10809–10826, 2022

https://doi.org/10.5281/zenodo.4618180


10814 Z. Chen et al.: Methane emissions from China: a high-resolution inversion of TROPOMI satellite observations

emissions optimized by TROPOMI observations (Qu et al.,
2021). The global simulation includes methane sinks from
atmospheric oxidation and uptake by soils, but these are in-
consequential in the nested version because the ventilation
time scale for the nested domain is much shorter than the
methane lifetime. We convolve the GEOS-Chem vertical pro-
files of methane dry mixing ratios with the TROPOMI aver-
aging kernel vectors and prior vertical profiles (Varon et al.,
2022) to obtain the model simulation of XCH4 for compari-
son with the TROPOMI observations in the inversion.

Bias in boundary conditions is critical to avoid as it would
propagate to biases in the inversion. The boundary condition
vertical profiles obtained from Qu et al. (2021) avoid system-
atic drift of the simulation from the TROPOMI observations,
but some bias could remain because Qu et al. (2021) used
an earlier version (1.03) of the TROPOMI data and the data
would not be expected to perfectly correct the model any-
way. We therefore further correct the boundary conditions on
each side of our domain (north, south, west, and east) and
for each season as part of the inversion (Table S1 in the Sup-
plement). Initial conditions on 1 January 2019 are also from
the GEOS-Chem simulations by Qu et al. (2021) and uni-
formly scaled to match the mean column mixing ratios re-
trieved from TROPOMI.

2.4 Analytical inversion

The state vector x to be optimized in the inversion includes
spatially resolved emissions within the inversion domain and
seasonal boundary conditions. We could technically carry out
the inversion on the 0.25◦×0.3125◦ model grid, but satellite
observations do not have sufficient information to constrain
emissions in such detail everywhere; attempting to do so
would introduce large smoothing errors (Wecht et al., 2014;
Turner and Jacob, 2015). Here we use the Gaussian mixture
model (GMM) of Turner and Jacob (2015) to define emission
patterns that can be effectively constrained by the TROPOMI
observations as informed by the prior estimates. The GMM
functions are selected with the goal of retaining native resolu-
tion for strong localized source features while merging weak
source regions as given by the prior emission field. Specifi-
cally, we project methane emissions at 0.25◦×0.3125◦ reso-
lution onto K-dimensional Gaussian functions where K is
the number of similarity criteria, in this case 14 similar-
ity factors on the 0.25◦× 0.3125◦ grid including longitude
and latitude (spatial proximity), and the prior emission pat-
terns by sector (Sect. 2.2). Each multivariate Gaussian is
hence built to characterize the location (determined by lon-
gitude and latitude), emission magnitude, and distribution
from different sectors (Turner and Jacob, 2015). The param-
eters of the Gaussians are estimated using an expectation-
maximization algorithm (Dempster et al., 1977) to find the
maximum likelihood. We choose to use 600 Gaussian func-
tions, based on previous experience in inversions for North
America (Turner and Jacob, 2015; Maasakkers et al., 2022).

The inversion optimizes the amplitudes for each Gaussian.
We also optimize 16 boundary condition (four seasons× four
boundaries) for a total of 616 state vector elements. Con-
struction of the GMM does not include information from the
observations and therefore might not resolve hotspots in the
observations that are not present in the prior emission pat-
terns. Nesser et al. (2021) proposed an alternative approach
where information from the observations is integrated into
the emission patterns to be optimized.

We perform the inversion with log-normal error probabil-
ity density functions (PDFs) for prior emissions (Maasakkers
et al., 2019; Lu et al., 2022). Specifically we optimize ln(x)
instead of x, with the prior errors on ln(x) (referred to here-
after as x′) following a Gaussian distribution. This enforces
positivity of the solution and better captures the high tail of
the frequency distribution of emissions than a normal error
PDF. High-tailed emissions have been observed for all sec-
tors including oil/gas (Yuan et al., 2015; Zavala-Araiza et al.,
2015; Lyon et al., 2015; Alvarez et al., 2018), coal (Sadavarte
et al., 2021), waste (Maasakkers et al., 2022), and livestock
(Duren et al., 2019).

Bayesian inference of the maximum a posteriori (MAP)
estimate for the state vector x assuming normal error PDFs
involves minimization of the cost function J (x) (Brasseur
and Jacob, 2017):

J (x′)=
(
x′− x′a

)T S
′
−1

a
(
x′− x′a

)
+ γ (y−K′x′)T S−1

o (y−K′x′), (1)

where x′ = ln(x) and x′a = ln(xa), xa(n×1) is the prior emis-
sion estimate (Sect. 2.2), and y(m× 1) is the m-dimensional
vector of TROPOMI observations (m= 5907939). S′a(n×
n) is the prior error covariance matrix in log space and
So(m×m) is the observational error covariance matrix. K′ =
∂y/∂x′(m×n) is the Jacobian matrix that describes the sen-
sitivity of observations y to x′, and K′x′ =Kx where K =
∂y/∂x is the sensitivity of y to x, which can be readily rep-
resented by the GEOS-Chem forward model (Jacob et al.,
2016). The relationship between methane emissions and con-
centrations (or more precisely, concentration enhancement
above background mixing ratios) in the nested GEOS-Chem
simulation is linear (omitting the minimal effect of poten-
tial errors in initial conditions), so that K defines the for-
ward model for the purpose of the inversion. We hence derive
K′i,j =

∂yi
∂ ln(xj ) = xj

∂yi
∂xj
= xjKi,j , where i and j represent the

indices of the observation and the state vector elements. γ is
a regularization factor to avoid over- or underfit to observa-
tions. γ is needed because the prior and observational error
covariance matrices can only be roughly estimated and is as-
sumed here to be diagonal for lack of better information and
convenience of computation.

We assume a geometric standard deviation factor (σg) of 2
for the log-normally distributed errors in x and construct
the S′a matrix (with diagonal elements s′a) following

√
s′a =

ln(σg) (Kirkwood, 1979; Limpert et al., 2001). Observational
error standard deviations (square roots of diagonal terms
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of So) include contributions from instrument error, retrieval
error, representation error, and forward model error. We cal-
culate the sum of these errors using the residual error method
(Heald et al., 2004) on the basis of the XCH4 differences
1= y−yGEOS-Chem,prior for individual 0.25◦×0.3125◦ grid
cells between individual TROPOMI observations and the
GEOS-Chem simulation with prior emissions. The tempo-
ral mean 2019 difference 1= y− yGEOS-Chem,prior for each
grid cell is to be corrected in the inversion while the stan-
dard deviation of the residual difference 1–1 is taken as the
observational error standard deviation, adjusted up to a min-
imum value of 10 ppb following Maasakkers et al. (2019)
if necessary (10.4 % of the retrievals). The resulting obser-
vational error standard deviation averages 13.4 ppb, which
agrees closely with previous TROPOMI inverse analyses and
is mostly due to retrieval error (Shen et al., 2021; Qu et al.,
2021). Sparse matrix algebra is applied wherever possible in
matrix calculations, making use of the diagonal structure of
the error covariance matrices S′a and So.

As mentioned earlier, the Jacobian matrix K′ is nonlin-
ear and can be immediately transformed following K′i,j =
xjKi,j . Here we construct K column by column, by per-
turbing individual elements xi of the state vector indepen-
dently and running GEOS-Chem forward model simulations
to obtain the columns ∂y/∂xi . These simulations are readily
achievable with massively parallel computing.

The optimization problem is nonlinear and needs to
be solved iteratively. We approach the solution using the
Levenberg–Marquardt method (Rodgers, 2000):

x′N+1 =x′N +
(
γK

′T
N S−1

o K′N + (1+ k)S
′
−1

a

)−1

(
γK

′T
N S−1

o (y−KxN )−S
′
−1

a
(
x′N − x′a

))
. (2)

k is a coefficient for the iterative approach, and we tested
three methods to set κ:

1. κ is set to 100 to start and is gradually decreased as
the solution is approached, i.e., κ = 101−max(N,101)
where N is the iteration index;

2. κ is set to 100 for iterations N ∈ [1,20); 10 for N ∈
[21,40); 1 for N ∈ [41,60); and 0 for N > 60;

3. κ is fixed at 10.

We find that using κ = 10 converges faster with no differ-
ence in results compared with the other two methods, and
adopt that method in what follows. We iterate on Eq. (2) un-
til the maximum difference in state vector elements between
two consecutive iterations (x′N and xN + 1′) is smaller than
0.5 %, at which point we adopt x̂′ = xN + 1′ as the best pos-
terior estimate. It takes the base inversion 139 iterations to
converge to the solution.

It is of critical importance to discuss if the Gaussian trans-
formation in Eq. (1) could arrive at a best linear unbiased esti-
mator (BLUE) solution (Cohn, 1997). As x′−x′a ∼N (0,S′a)

and y−K′x′ = y−Kx ∼N (0,So) (Fig. S1 in the Supple-
ment), both the prior and observational errors are Gaus-
sian with zero mean; there is a nonlinearity relationship be-
tween x′ and y that are linked by K′. Our analytical trans-
formation thus conforms to the case of a “Gaussian anamor-
phosis” defined by Bocquet et al. (2010), for which a BLUE
solution can be properly carried out. A weak point is that the
Jacobian matrix may be nonlinear, which is, however, some-
times the case in particular if the original Jacobian matrix is
linear. Previous studies have applied this approach to trans-
form non-Gaussian problems (Fletcher, 2010; Brioude et al.,
2011; Saide et al., 2015; Cui et al., 2019). We acknowledge
that those studies assumed non-Gaussian errors for both the
prior information and the observations, while our work only
assumes log-normally distributed errors on the prior state
vector.

Rodgers (2000) indicated that the solution of a nonlinear
problem using the Levenberg–Marquardt method can be ap-
plied to obtain the posterior error covariance matrix Ŝ′:

Ŝ′ =
(
γK

′T S−1
o K′+S

′
−1

a

)−1
, (3)

with the averaging kernel matrix A quantifying the sensitivity
of the solution to the true value:

A=
∂x̂′

∂x′
= In− Ŝ′S

′
−1

a , (4)

where In is the identity matrix. The trace of A measures the
number of independent pieces of information on x′ obtained
from the observations, and is often referred to as the degrees
of freedom for signal (DOFS). The diagonal terms of A de-
fine the averaging kernel sensitivities, which quantify the ex-
tent to which the solution is informed by the observations
within the inversion framework. They measure the actual er-
ror reduction if the inversion framework is correct, but errors
in inversion parameters, such as prior emission distributions,
can affect this interpretation (Yu et al., 2021). An alternative
and better way to estimate posterior errors is to generate an
ensemble of sensitivity inversions (Sect. 2.6).

The optimal value of γ can be determined following X. Lu
et al. (2021) so that the sum of state vector terms in the poste-
rior estimate of the cost function, Ja x̂′ = (x̂′−x′a)T S′−1

a (x̂′−
x′a) has value of∼ n±

√
2n, which is the expected value (±1

standard deviation) from the Chi-square distribution with
n degrees of freedom. We find in this manner an optimal
γ value of 0.015 as the best fit for our TROPOMI inversion.
This is smaller than a previous regional TROPOMI inversion
at 0.25◦×0.3125◦ resolution (γ = 0.25 in Shen et al., 2021)
because of the much larger number of observations per state
vector element (m/n) in our work. We also conducted sensi-
tivity inversions using γ = 0.005 and 0.03 ns as described in
Sect. 2.6.

The MAP estimate in log space is for the median of
emission but not for the mean; mean emissions are, how-
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Figure 4. Optimization of methane emissions over East Asia in 2019 from inversion of TROPOMI observations. Results are from the base
inversion and are shown on the 0.25◦× 0.3125◦ grid. (a) Prior estimates of methane emissions, summing the contributions from the sectors
in Fig. 3 plus additional minor sectors as given in Table 1. (b) Posterior methane emissions from the TROPOMI inversion. (c) Posterior/prior
emission ratios. (d) Averaging kernel sensitivities. The averaging kernel sensitivities are the diagonal elements of the averaging kernel matrix
and display the ability of the observations to quantify emissions independently from the prior estimates (1= fully; 0= not at all). The degrees
of freedom for signal (DOFS, defined as the trace of the averaging kernel matrix) is given in the inset.

ever, necessary for spatial aggregation and sectoral attribu-
tion purposes. Here we make use of the posterior error co-
variance matrix from Eq. (3) to infer the mean emissions
from the median following the log-normal distribution statis-

tics xmean = xmedian exp
(
ŝ′

2

)
, and the corresponding analyt-

ical posterior error covariance Ŝ (with diagonal elements
ŝ = x2

mean exp(ŝ′−1)), where ŝ′ is the diagonal element of the
posterior error covariance matrix in log space corresponding
to that state vector element. We still use the normal error as-
sumption for the boundary condition elements of the state
vector, with a prior error standard deviation of 10 ppb.

2.5 Sectoral attribution of posterior emissions

The posterior estimate of methane emissions for the GMM
state vector can be readily mapped on the 0.25◦× 0.3125◦

grid by summation of the GMM elements, but it is also of
interest to aggregate it spatially for inferring national to-
tals including by source sector. This reduction in state vec-
tor dimension is readily done while preserving the informa-
tion from the posterior error covariance matrix by using a
summation matrix W to represent the linear transformation
from the full state vector (n× 1) to the reduced state vector.

Here we use the reduction of the state vector to 12 sectors
(Sect. 2.2) of aggregated emissions as an example to illustrate
the construction of W. The GMM approach derives the rel-
ative weighting of each Gaussian on the p native-resolution
grid W1(p× n); W1 thus allows the spatial allocation of the
posterior state vector to the individual 0.25◦× 0.3125◦ grid
cell (Fig. 4c and d). W1 is further multiplied by W2(12×p),
the fractional contribution of individual sectors to total grid
cell emissions, to obtain the summation matrix W=W2W1
(12× n in this example).

The posterior estimate of the reduced state vector (xred) is
computed as

x̂red =Wx̂ (5)

and the posterior error covariance and averaging kernel ma-
trices are then given by

Ŝred =WŜWT (6)
Ared =WAW∗, (7)

where W∗ = (WTW)−1WT is the Moore–Penrose pseudo
inverse (Calisesi et al., 2005).
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2.6 Error characterization and inversion ensemble

The sections above describe our base inversion with the so-
lution defined by (x̂, Ŝ). By using the regularization factor γ ,
we prevent overfit to the observations and therefore Ŝ is a
fair representation of the uncertainty within our choice of in-
version parameters. However, there is uncertainty in these
parameters, and we therefore perform an ensemble of sen-
sitivity inversions with different choices. The sensitivity in-
versions include (1) using ln(1.5) and ln(2.5) for the prior
error standard deviations instead of ln(2); (2) using 0.005
and 0.03 for the regularization factor γ instead of 0.015; and
(3) using 5 and 20 ppb for the prior error standard deviation
in the boundary condition elements of the state vector in-
stead of 10 ppb. We also perform sensitivity inversions as-
suming normally distributed errors with prior error standard
deviation

√
sa = 50 %. Combination of these perturbations

to our inversion framework generates 36 members in the in-
version ensemble. The uncertainty in posterior estimates re-
ported here is taken as the greater of the range of solutions
given by the inversion ensemble and the 2σ error inferred
from the diagonal of Ŝ, and is generally determined by the
ensemble (Fig. S2).

3 Results

3.1 Evaluation of posterior emission estimates

Figure 4 compares the prior and posterior estimates of emis-
sions mapped on the 0.25◦× 0.3125◦ grid. It also shows the
averaging kernel sensitivities (diagonal terms of the averag-
ing kernel matrix), which measure the ability of TROPOMI
observations to determine the posterior solution indepen-
dently of the prior estimate (0= not at all; 1= perfectly).
High averaging kernel sensitivities reflect a combination
of high observation density and large prior emissions. We
achieve high sensitivities to observations in major source re-
gions, with 167 independent pieces of information (DOFS)
out of the 600 Gaussian state vector elements.

Comparison of GEOS-Chem simulations using posterior
versus prior emissions indicates an improved ability of
the posterior emissions to fit the TROPOMI observations
(Fig. 1). The mean bias over the inversion domain decreases
from 7.8 to 0.4 ppb while the RMSE decreases from 16.8 to
13.6 ppb. The inversion effectively corrects the mean bias
from using the prior emissions. The ability to decrease the
RMSE is limited by the retrieval error on individual observa-
tions.

We independently evaluate the posterior estimate by com-
parison to in situ surface observations from the GLOB-
ALVIEWplus CH4 ObsPack v4.0 database compiled by the
National Oceanic and Atmospheric Administration (NOAA)
Global Monitoring Laboratory (Schuldt et al., 2021). There
are five sites in East Asia in 2019, all in relatively remote
locations and with near-weekly sampling schedule (Fig. 5

and Table S2). The GEOS-Chem model bias for 2019 annual
mean concentrations across the five sites is−4.1±9.5 ppb us-
ing prior emissions and−3.8±4.7 ppb using posterior emis-
sions. There is little decrease in the mean bias, which is
consistent with the mean bias of −3.4 ppb for TROPOMI
relative to TCCON (Lorente et al., 2021) and implies that
both the prior and posterior simulations are effectively unbi-
ased in the mean. The factor of 2 lower standard deviation
in the posterior simulation indicates a better fit to observa-
tions. The RMSE for individual observations decreases only
slightly from 23.7 to 20.8 ppb because it is limited by the for-
ward model transport error, previously estimated by X. Lu et
al. (2021) at 20 ppb for the GLOBALVIEWplus CH4 Ob-
sPack database using the residual error method. The model
transport error is larger for surface than satellite observations
because the amplitude of variability is larger and includes
uncertainties in boundary layer vertical mixing.

Qu et al. (2021) previously reported overcorrections and
inconsistencies with respect to GOSAT in their global
TROPOMI inversion results over southeastern China. They
attributed the problem to spatial overlap of coal and rice
emissions, and to seasonal cloudiness correlated with the
peak in rice emissions. We have more confidence in our re-
sults for several reasons. First, our higher spatial resolution
compared with the 2◦× 2.5◦ of Qu et al. (2021) allows bet-
ter separation of coal and rice emissions. Second, we use an
improved spatial distribution of coal emissions (Sheng et al.,
2019) compared with the EDGAR v4.3.2 inventory in Qu
et al. (2021). Third, we use version 2.02 of the TROPOMI
retrieval with additional filters, and exclude data inconsis-
tent with GOSAT (Fig. 2), whereas Qu et al. (2021) used
TROPOMI v1.03 data with quality flags but no other filter-
ing. Our results show higher averaging kernel sensitivities
over southeastern China than those of Qu at al. (2021) and
no overcorrections (Fig. 1).

3.2 National and sectoral emissions for China

Table 1 compiles the total national and sectoral posterior
emissions for China. Sectoral attribution assumes that the
posterior/prior emission ratios for a given 0.25◦× 0.3125◦

grid cell (Fig. 4c) apply equally to all prior emission sectors
within that grid cell, so that the combination of Figs. 4c and 3
gives the spatial distribution of the change in emission by
sector. Posterior estimates of total, anthropogenic, and nat-
ural emissions for China are 70.0 (61.6–79.9), 65.0 (57.7–
68.4), and 5.0 (3.9–11.6) Tg a−1, respectively, where the
parentheses indicate the uncertainty range in the inversion
solution as described in Sect. 2.6. The averaging kernel sen-
sitivities for the national total and anthropogenic posterior
emission estimates are 0.91, indicating that these estimates
are largely determined by the TROPOMI observations with
little influence from the prior estimate. Our best posterior
estimate of 65 Tg a−1 for Chinese anthropogenic emissions
is 21 % higher than the 2014 value of 53.6 Tg a−1 reported
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Figure 5. Comparison of GEOS-Chem simulations of atmospheric methane concentrations to in situ observations from five surface sites
in 2019 compiled in the NOAA GLOBALVIEWplus CH4 ObsPack v4.0 database. The five sites are described in detail in Table S2. The
annual mean GEOS-Chem model biases and root-mean-square errors (RMSEs) for individual near-weekly observations at each site are
shown. The insets give spatial mean biases± standard deviations for the ensemble of sites and corresponding RMSEs.

by the Chinese government to the UNFCCC, and the range
of our inversion results gives us high confidence that the re-
ported emissions are too low.

Our ability to separate the contributions from different sec-
tors to the posterior emission estimates for China can be eval-
uated by examining the error correlations in the reduced pos-
terior error covariance matrix (Sect. 2.5), as shown in Fig. 6.
We find that landfills and wastewater treatment cannot be ef-
fectively separated in the posterior solution (posterior error
correlation coefficient r = 0.95), because they have similar
spatial distributions associated with population (Fig. 3), and
we thus group them as a single waste sector for further anal-
ysis. The “Other” sector, which is mostly associated with ur-
ban emissions, also has strong error correlations with waste
(r = 0.66–0.75). Other sectors can be successfully separated,
as shown by the posterior error correlations in Fig. 6. We
find that most of the posterior error correlation coefficients
between sectors are lower than 0.2. For example, there is lit-
tle error correlation (r =−0.2–0.1) between coal and other
sectors. The global TROPOMI inversion by Qu et al. (2021)
found it difficult to separate emissions between coal and rice
paddies, but here we find a low error correlation of –0.04 that
reflects our much higher spatial resolution. The main natural
emission sector is wetlands, which is effectively separated
from all other sectors except rice (r = 0.29).

Figure 6. Error correlation coefficients (r) between posterior esti-
mates of methane emissions from different source sectors in China.
Error correlations measure the ability of the inversion to separate
emissions between sectors (±1= not at all; 0= fully). “Other” is
a combination of minor anthropogenic emissions including indus-
try, stationary combustion, mobile combustion, aircraft, compost-
ing, and field burning of agricultural residues.
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We can now attribute the 21 % underestimate of anthro-
pogenic emissions in the Chinese government report to the
UNFCCC, as given in Table 1. We find large upward cor-
rections in emissions from oil (+147 %), gas (+61 %), live-
stock (+37 %), rice paddies (+34 %), and waste (+41 %),
but a downward correction in coal emissions (−15 %). Av-
eraging kernel sensitivities for all anthropogenic sectors are
high (0.71–0.91), indicating strong constraints from the ob-
servations. An exception is the gas sector (0.31), for which
emissions are relatively small. The uncertainty ranges of the
inversion results for the different sectors are small, indicating
an insensitivity to different inversion assumptions and high
confidence in the posterior sectoral emissions in the base in-
version.

The inversion returns a larger estimate of 5.0 (3.9–
11.6) Tg a−1 for natural sources relative to 3.2 Tg a−1 in the
prior estimate, mainly driven by increased contributions from
wetlands (+1.1 Tg a−1) and termites (+0.5 Tg a−1). Averag-
ing kernel sensitivity for wetlands is moderately high (0.61)
but low for the other small natural sources.

The base inversion assuming a log-normal error distri-
bution for prior emissions returns larger posterior Chinese
emissions from all sectors relative to a normal error assump-
tion, as would be expected from the asymmetry of the log-
normal function. The largest differences are for the oil and
gas sectors, where the sensitivity inversion, assuming a nor-
mal error distribution, yields posterior estimates respectively
22 % and 21 % lower than the base inversion. The oil and gas
sectors are particularly high-tailed in their frequency distri-
butions of emissions (Zavala-Araiza et al., 2015; Lyon et al.,
2015; Brandt et al., 2016; Alvarez et al., 2018).

4 Discussion

By using the official Chinese inventory reported to the UN-
FCCC as prior estimate of methane emissions, our inversion
can usefully evaluate that inventory and guide its improve-
ment. Here we discuss the significance and implications of
our results for different sectors, placing them in the context
of previous literature, and we identify specific issues requir-
ing further work.

Figure 7 compiles the total and sectoral anthropogenic
emissions in China reported by top-down and bottom-up
studies for the past decade. Our total posterior emission esti-
mate of 65 (57.7–68.4) Tg a−1 is consistent with the EDGAR
inventories, but this reflects canceling differences for individ-
ual sectors as shown in Fig. 7b. We estimate higher national
total emissions than Peng et al. (2016), driven by their much
smaller rice and waste emissions. Our estimate is higher
than the best estimates from previous top-down studies (43–
62 Tg a−1), which used EDGAR prior estimates for spatial
distribution, and were conducted at much coarser resolutions
(2◦× 2.5◦–4◦× 5◦ versus 0.25◦× 0.3125◦) and with much
sparser observations (GOSAT versus TROPOMI) than ours.

Figure 7. Anthropogenic methane emissions in China. Panel a
compares the national total emissions reported by different bottom-
up and top-down studies. Vertical bars for our work indicate the un-
certainty range, obtained by combining results from the inversion
ensemble and the posterior error covariance Ŝ (Fig. S2). Peng et
al. (2016), Janardanan et al. (2020), Worden et al. (2022), and Deng
et al. (2022) also reported uncertainty estimates. Panel b shows the
contributions from different sectors inferred in our work and com-
pared with inventories including the UNFCCC, EDGAR, and Peng
et al. (2016), and to the means and ranges from recent top-down
studies compiled in Table S3.

Deng et al. (2022) compiled results from 11 GOSAT inver-
sions for 2010–2017 using Chinese UNFCCC totals as prior
estimate and showing a range of 40–62 Tg a−1. Although the
emission estimates in Fig. 7 are from different years, X. Lu
et al. (2021) and Zhang et al. (2021) reported an increas-
ing Chinese emission trend of 0.4 Tg a−1 from inversion of
2010–2018 GOSAT observations, which would only make a
small contribution to the differences. The lower emissions in
the previous top-down studies are mostly driven by down-
ward revision of coal emissions relative to their prior esti-
mates, and we find such a decrease too but not to the same
extent. Our inversion uses an improved prior estimate of the
distribution of coal emissions in China with much larger con-
tribution from southern China (Sheng et al., 2019), so that
some of the previous corrections attributed to rice agricul-
ture might reflect coal emissions instead. Another striking
difference in our work relative to others is the much higher
livestock emissions. We discuss the coal, oil/gas, livestock,
and waste sectors in more detail below.

4.1 Coal

Our downward correction of coal emissions compared with
the UNFCCC report is driven by both Shanxi province and
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southwestern China, which are the two largest coal produc-
ing regions in China (Zhu et al., 2017). This could reflect
(1) overestimate of EFs in the UNFCCC report, (2) under-
accounting of surface mines, and (3) increasing coal methane
utilization. With regard to (1), many high-methane-content
coal mines with inefficient coal production have been closed
in the past decade (Wang et al., 2020). Coal production has
shifted from southern and eastern China to northwestern
China (including Shanxi) with abundant coal reserves and
where methane content is relatively low (Gao et al., 2021; Liu
et al., 2021). With regard to (2), a previous study (Gao et al.,
2021) indicated an underestimated share of surface mining
in the UNFCCC report for China. The methane emission in-
tensity of surface mining is 10 times lower than underground
mining (Palmer et al., 2021). With regard to (3), coal mine
methane (CMM) utilization in China has greatly increased in
the past decade (Y. Y. Lu et al., 2021).

However, uncertainty in the spatial distribution of coal
emissions remains a major obstacle for top-down studies.
Different bottom-up inventories are inconsistent in their es-
timates of the number of mines in China (e.g., 324 in
EDGAR v4.2, 4243 in EDGAR v4.3.2, and 10 963 in Sheng
et al., 2019). Mine closures and regional shifts in coal pro-
duction may also be difficult to track (Gao et al., 2021). New
satellite observations of methane plumes from individual
point sources could provide important new information for
geolocation and quantification of emissions from coal mines,
as shown for the Shanxi province by Guanter et al. (2021)
and Sánchez-García et al. (2022).

4.2 Oil/gas

Our posterior estimate of oil/gas emissions is higher than
the UNFCCC report and Peng et al. (2016), but lower than
EDGAR v4.3.2 and v6. The previous top-down estimates
in Fig. 7 range from 0.7 Tg a−1 by X. Lu et al. (2021) to
5.5 Tg a−1 by Miller et al. (2019), and our estimate is in mid-
range. Scarpelli et al. (2022) found that the oil/gas emissions
from X. Lu et al. (2021) were heavily influenced by the low
GFEI v1 inventory (Scarpelli et al., 2020b) used as their prior
estimate. The high emissions in Miller et al. (2019) could re-
flect their use of the EDGAR v4.2 inventory as prior estimate
with spuriously high emissions from pipelines (Scarpelli et
al., 2020b).

We find that the oil sector has the largest relative upward
correction to the UNFCCC inventory (+147 %) among all
sectors. The correction might be attributed to methane leak-
age from oil extraction not fully accounted for in the UN-
FCCC report (Rutherford et al., 2021; Deng et al., 2022).
Lauvaux et al. (2022) used 2019–2020 TROPOMI observa-
tions to identify a number of ultra-emitters (> 25 t h−1 on
the 5.5× 7 km2 grid) from oil production fields; their identi-
fied ultra-emitters in China are consistent with the locations
where we find large oil upward adjustments.

Gas emissions for China in the UNFCCC report
(0.18 Tg a−1) are dominated by distribution (0.125 Tg a−1)
with only small contributions from production (0.03 Tg a−1)
and transmission (0.025 Tg a−1). This is in part because of
low EFs from production, and in part because a large frac-
tion of the gas used in China is imported. The assumed EF for
gas production in the UNFCCC report is 1.3×10−10 Gg m−3

of gas production, much lower than in the IPCC (2006)
EF guidelines (lower-end value of 3.8×10−10 Gg m−3 of gas
production for developed countries). Of the gas used in China
in 2019, 42 % was imported (EIA, 2020).

Our inversion returns a posterior emission for the gas sec-
tor of 0.29 Tg a−1 including 0.16 Tg a−1 from distribution,
0.07 Tg a−1 from production, and 0.06 Tg a−1 from transmis-
sion. However, the averaging kernel sensitivity is low (0.3)
and the distribution subsector is difficult to disentangle from
the waste sector because it is mostly urban. Alvarez et
al. (2012) suggested that the life-cycle loss rate from gas pro-
duction should be less than 3.2 % for a coal-to-gas transition
to be of climate benefit. Our posterior estimate indicates a
loss rate of 1.7 % (1.3 %–1.9 %) for China, assuming 92 %
methane gas by volume (Scarpelli et al., 2022).

China’s gas industry has entered a rapid development stage
driven by the domestic coal-to-gas transition policy (Qin et
al., 2018); China’s gas production in 2019 was 42 % higher
than in the 2014 year of the UNFCCC inventory (EIA, 2020).
The small loss rate suggests that the transition will be bene-
ficial for climate but is somewhat misleading because of the
large fraction of imported gas. Of that imported gas, 25 % is
from Turkmenistan (EIA, 2020), where emissions from gas
production are exceedingly high (Varon et al., 2019; Irakulis-
Loitxate et al., 2022; Lauvaux et al., 2022). A more com-
plete accounting of the loss rate in China from gas production
would factor in the effect of international trade.

4.3 Livestock

Our estimate of Chinese livestock emissions is higher than
that of any previous study (Fig. 7). This is because our inver-
sion corrects livestock emissions upward in northwestern and
northeastern China, where existing bottom-up inventories
show weak emissions (Lin et al., 2021). Previous GOSAT in-
versions had poor observational coverage over these regions
(Fig. 5 in Qu et al., 2021), and their inversion solutions hence
cannot depart sufficiently from the low bottom-up inventories
used as prior estimates. However, TROPOMI observations
provide strong constraints as illustrated by the high averag-
ing kernel values (Fig. 3).

4.4 Waste

We estimate higher waste emissions than the 2010 Peng et
al. (2016) inventory and the 2014 UNFCCC report, and we
attribute this in part to the rapid development of wastew-
ater treatment in China. China has enacted major policies
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on water pollution prevention since 2014 (Xu et al., 2020),
including new standards for sewage discharge (Han et al.,
2016). The number of wastewater treatment plants increased
by 44 % from 2014 to 2019 (Xu et al., 2020). Solid waste
generation has also increased in the past decade (Sheng et
al., 2021), but an increasing percentage is incinerated rather
than landfilled (Liu et al., 2021).

5 Conclusions

We estimated 2019 methane emissions in China by high-
resolution inversion of TROPOMI satellite observations. Our
inversion uses as prior estimate the Chinese national inven-
tory reported to the UNFCCC so that our results are directly
relevant for evaluating and improving that inventory.

Our inversion uses an analytical solution to the Bayesian
inference of methane emissions from the TROPOMI obser-
vations, providing closed-form statistics on posterior errors
and information content as part of the solution. It optimizes
a 600-member Gaussian mixture model (GMM) of emis-
sions, in which concentrated source regions are quantified at
up to 0.25◦× 0.3125◦ (≈ 25× 25 km2) resolution while re-
gions with weak emissions are spatially aggregated. We as-
sume log-normal error distributions for the prior emissions,
which allows better representation of the high-tailed compo-
nent. The Jacobian sensitivity matrix constructed for our ana-
lytical solution enables immediate generation of an inversion
ensemble to explore the dependence of the solution on uncer-
tainties in inversion parameters. This ensemble is combined
with the posterior error covariance matrix of the base inver-
sion to provide a conservative estimate of errors on inferred
emissions including from different sectors. Independent eval-
uation of inversion results with surface sites from the NOAA
GLOBALVIEWplus CH4 ObsPack v4.0 database shows sig-
nificant improvement in the ability to fit the observations.

We estimate from the inversion a total emission for
China of 70.0 (61.6–79.9) Tg a−1, where the parentheses in-
dicate the uncertainty ranges. Total anthropogenic emission
for China is 65.0 (57.7–68.4) Tg a−1 including 16.6 (15.6–
17.6) Tg a−1 from coal, 2.3 (1.8–2.5) Tg a−1 from oil,
0.29 (0.23–0.32) Tg a−1 from gas, 17.8 (15.1–21.0) Tg a−1

from livestock, 9.3 (8.2–9.9) Tg a−1 from waste, 11.9 (10.7–
12.7) Tg a−1 from rice paddies, and 6.7 (5.8–7.1) Tg a−1

from other sources. Our inferred total anthropogenic emis-
sion for China is 21 % higher than the national inven-
tory reported by the Chinese government to the UNFCCC
(53.6 Tg a−1). This reflects upward corrections to emissions
from oil (+147 %), gas (+61 %), livestock (+37 %), waste
(+41 %), and rice paddies (+34 %), and a downward correc-
tion in coal emissions (−15 %).

Our estimate of anthropogenic Chinese emissions is at the
high end of the range of past inversion studies (43–62 Tg a−1)
that used the much sparser GOSAT satellite observations,
coarser resolution, and versions of the EDGAR inventory as

prior estimates. We find in particular higher emissions from
coal, livestock, and waste. The higher emission from coal
may reflect our improved accounting of sources in south-
ern China (Sheng et al., 2019) and a higher spatial resolu-
tion that allows us to better separate emissions from coal and
rice paddies (Qu et al., 2021). Our upward correction to live-
stock emissions is mostly in northwestern and northeastern
China, where TROPOMI provides much denser information
than was previously achievable from GOSAT. Our high esti-
mate of emissions from waste may be driven in part by the
large increase in wastewater treatment plants in China over
the past decade.

Our upward corrections relative to the Chinese govern-
ment inventory are largest for oil and gas, even though
the contributions from these two sectors to total national
methane emissions are still small compared with other sec-
tors. We find high emissions from oil production in the
same locations where Lauvaux et al. (2022) identified “ultra-
emitters” in the TROPOMI data, suggesting that much of
these emissions originate from malfunctioning or poorly op-
erated equipment. Most of the gas emissions in China are
from distribution, reflecting low emission factors from gas
production but also a large share of imported gas. Emis-
sion from gas may increase in the future as China undergoes
a coal-to-gas transition in energy policy (Qin et al., 2018)
with increasing domestic gas production. We derive a life-
cycle loss rate of 1.7 % (1.3 %–1.9 %) from gas production
in China, lower than the 3.2 % break-even point for a coal-
to-gas transition to be beneficial for climate (Alvarez et al.,
2012). However, this does not account for imported gas from
countries such as Turkmenistan where emission per unit of
gas production is exceedingly high.

Code availability. The code for the GEOS-Chem model
is available at http://wiki.seas.harvard.edu/geos-chem/index.
php/Downloading_GEOS-Chem_source_code (GEOS-Chem,
2022a), and the description of the model is available at
http://wiki.seas.harvard.edu/geos-chem/index.php/Main_Page
(GEOS-Chem, 2022b).

Data availability. The TROPOMI satellite observa-
tions version 2.02 are available at http://www.tropomi.
eu/data-products/methane (TROPOMI, 2021). The
GOSAT methane retrievals version 9.0 are available at
https://doi.org/10.5285/18ef8247f52a4cb6a14013f8235cc1eb
(Parker and Boesch, 2020). The ObsPack GLOBALVIEW-
plus CH4 ObsPack v4.0 data product is available at
https://gml.noaa.gov/ccgg/obspack/data.php (NOAA, 2021).
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