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Abstract. Understanding carbon sources and sinks across the Earth’s surface is fundamental in climate science
and policy; thus, these topics have been extensively studied but have yet to be fully resolved and are associ-
ated with massive debate regarding the sign and magnitude of the carbon budget from global to regional scales.
Developing new models and estimates based on state-of-the-art algorithms and data constraints can provide valu-
able knowledge and contribute to a final ensemble model in which various optimal carbon budget estimates are
integrated, such as the annual global carbon budget paper. Here, we develop a new atmospheric inversion system
based on the 4D local ensemble transform Kalman filter (4D-LETKF) coupled with the GEOS-Chem global
transport model to infer surface-to-atmosphere net carbon fluxes from Orbiting Carbon Observatory-2 (OCO-2)
V10r XCO2 retrievals. The 4D-LETKF algorithm is adapted to an OCO-2-based global carbon inversion system
for the first time in this work. On average, the mean annual terrestrial and oceanic fluxes between 2015 and
2020 are estimated as − 2.02 and − 2.34 GtC yr−1, respectively, compensating for 21 % and 24 %, respectively,
of global fossil carbon dioxide (CO2) emissions (9.80 GtC yr−1). Our inversion results agree with the CO2 at-
mospheric growth rates reported by the National Oceanic and Atmospheric Administration (NOAA) and reduce
the modeled CO2 concentration biases relative to the prior fluxes against surface and aircraft measurements. Our
inversion-based carbon fluxes are broadly consistent with those provided by other global atmospheric inversion
models, although discrepancies still occur in the land–ocean flux partitioning schemes and seasonal flux ampli-
tudes over boreal and tropical regions, possibly due to the sparse observational constraints of the OCO-2 satellite
and the divergent prior fluxes used in different inversion models. Four sensitivity experiments are performed
herein to vary the prior fluxes and uncertainties in our inversion system, suggesting that regions that lack OCO-2
coverage are sensitive to the priors, especially over the tropics and high latitudes. In the further development of
our inversion system, we will optimize the data-assimilation configuration to fully utilize current observations
and increase the spatial and seasonal representativeness of the prior fluxes over regions that lack observations.
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1 Introduction

The atmospheric concentration of carbon dioxide (CO2)
reached 414.7 parts per million (ppm) in 2021, rising to 49 %
above the preindustrial level (Friedlingstein et al., 2022); this
increased CO2 continuously enhances the greenhouse effect
and global warming. To predict and mitigate climate change,
it is of critical importance to understand how much CO2 is
released and absorbed by human and natural systems, where
these exchanges occur, and how these carbon fluxes respond
to anthropogenic and natural forcings (Canadell et al., 2021).
Atmospheric CO2 measurements have indicated that on av-
erage, half of the CO2 emitted by humans from fossil fuels
and land-use changes globally (Tian et al., 2021) is taken up
by the oceans and land each year (Ciais et al., 2019), and
the spatiotemporal distributions of global and regional car-
bon budget must be further reconstructed and analyzed us-
ing increasingly sophisticated bottom-up and top-down ap-
proaches.

Top-down approaches, unlike bottom-up approaches in
which carbon sources and sinks are simulated by process-
based models, infer carbon fluxes from observed spatiotem-
poral CO2 concentration gradients within each carbon reser-
voir (Gurney et al., 2002). Surface fluxes are estimated by
conducting data inversions using atmospheric transport mod-
els in a Bayesian framework to correct prior carbon fluxes to
match measured CO2 concentrations within the error struc-
tures of the priors and observations (Ciais et al., 2010). Var-
ious global CO2 atmospheric inversion systems have been
developed over the past decades, and these systems differ in
their associated transport models, assimilated observations,
and inversion algorithms. Different inversion systems tend
to estimate consistent global total net carbon fluxes due to
the carbon mass balance being constrained by global atmo-
spheric measurements. However, large discrepancies have
been reported at fine spatiotemporal scales (e.g., monthly
zonal averages), and these discrepancies have urged scien-
tists to organize community-wide inverse model intercom-
parisons to identify and mitigate gaps in the understanding
of carbon cycle dynamics. Such international collaboration
efforts include the Atmospheric Tracer Transport Model In-
tercomparison 3 (TransCom 3) (Gurney et al., 2003), the RE-
gional Carbon Cycle Assessment and Processes (RECCAP)
(Peylin et al., 2013; Ciais et al., 2022), the Orbiting Carbon
Observatory-2 Model Intercomparison Project (OCO-2 MIP)
(Crowell et al., 2019), and many other inverse model inter-
comparison studies (Chevallier et al., 2014; Houweling et al.,
2015; Thompson et al., 2016).

Global carbon inversion estimates tend to converge with
these preceding intercomparison projects, although discrep-
ancies and uncertainties still exist and persist today (Basu
et al., 2018; Gaubert et al., 2019; Bastos et al., 2020). Fur-
ther atmospheric inversion improvements could be obtained
through technological advancements of the observations,
data-assimilation techniques, atmospheric transport models,

prior fluxes, and associated error statistics. The recently ac-
celerated expansion of carbon measurement networks (e.g.,
ground-, aircraft-, and space-based platforms) has enhanced
our capabilities to constrain and evaluate atmospheric inver-
sion models. Most remarkably, the continuous improvements
in CO2 column retrievals from satellites such as the Orbiting
Carbon Observatory-2 (OCO-2) (Eldering et al., 2017) have
substantially promoted satellite-based carbon inversion esti-
mates, which are now comparable to surface measurement-
based inversions in terms of their credibility (Chevallier et
al., 2019). Further developments associated with the funda-
mental roles of carbon atmospheric inversions in climate sci-
ence and policymaking as well as the current large model
spread are still urgently required. The utilization of rapidly
evolving satellite retrievals in combination with the latest
transport models and data-assimilation techniques represents
a future direction to improve our understanding of global and
regional carbon cycle.

In this study, we develop a new global CO2 atmospheric
inversion system based on the 4D local ensemble transform
Kalman filter (4D-LETKF) coupled with the GEOS-Chem
global transport model to estimate surface-to-atmosphere net
carbon fluxes from 2015 to 2020. The LETKF is a variant
of the ensemble Kalman filter (Hunt et al., 2007) and has
been applied in various atmospheric data-assimilation stud-
ies demonstrating its efficiency and accuracy (Houtekamer
and Zhang, 2016). In LETKF, the analysis state can be solved
at each model grid independently, and only the observations
within a specified local area around each model grid are as-
similated. Several studies have assessed the impact of as-
similating satellite data on CO2 flux inversions based on the
4D-LETKF algorithm through the observation system sim-
ulation experiments (e.g., Miyazaki et al., 2011; Liu et al.,
2019). Here, for what is, to our knowledge, the first time,
we adapt the 4D-LETKF algorithm to establish a global car-
bon inversion system that is constrained by realistic space-
based retrievals of the column-averaged dry-air mole frac-
tion of CO2 (XCO2). The latest OCO-2 V10r bias-corrected
XCO2 retrievals (OCO-2 Science Team, 2020) are assimi-
lated into our inversion system. We conduct a comprehen-
sive evaluation of our carbon inversion results through (1) an
independent evaluation against surface- and aircraft-derived
CO2 measurements by latitude, (2) four sensitivity exper-
iments with varied prior fluxes, error structures, and data-
assimilation window length, and (3) comprehensive compar-
isons with other state-of-the-art inversion model estimates to
investigate both the consistencies and inconsistencies among
the models and explore their possible drivers. Since our in-
version system is built upon a new inversion algorithm and
the latest OCO-2 retrievals, it can contribute to an ensemble
of existing global CO2 inversions and help constrain carbon
inversion model spread and reduce uncertainties.

In the remainder of this paper, the utilized configurations,
models, data inputs, and observation-based evaluations as-
sociated with the inversion system are described in Sect. 2,
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and the CO2 budget inversion estimates are analyzed at the
global and regional scales in Sect. 3. The sensitivity inver-
sion results, the model limitations, and future perspectives
are presented and discussed in Sect. 4, and Sect. 5 contains a
summary of the findings obtained in this study.

2 Data and methods

2.1 Carbon flux inversion system

We developed a Bayesian atmospheric inversion system
(Fig. 1) to infer daily gridded surface carbon fluxes (exclud-
ing fossil fuel and biomass burning emissions, which were
prescribed) from OCO-2 XCO2 retrievals. This system was
built upon the GEOS-Chem global transport model coupled
with the 4D-LETKF algorithm (Hunt et al., 2007) and is anal-
ogous to identifying a weight that linearly combines the en-
semble members of carbon fluxes to obtain best-fitting CO2
observations. Our system assimilates OCO-2 XCO2 on an
ongoing basis and optimizes carbon fluxes on the first day
of each data-assimilation window for each grid cell indepen-
dently by minimizing a cost function as follows (Eq. 1):

J (x)=
(
x− xb

)T

B−1
(
x− xb

)
+ (y−H (x))T R−1

(y−H (x)) , (1)

where x is a control vector consisting of variables to be op-
timized (i.e., the scale factors of the surface fluxes in each
grid cell), xb is a prior guess corresponding to the control
vector x with errors represented by a covariance matrix B,
y is an observation vector that gathers the OCO-2 XCO2
retrievals, R represents the error covariance matrix, and H

is the observation operator, which calculates the OCO-2-
equivalent XCO2 value from the GEOS-Chem simulations,
OCO-2 XCO2 prior, and column-averaging kernel. The cost
function J (x) measures the differential surface carbon fluxes
between the prior (xb) and optimized (x) estimates plus the
difference in the XCO2 fields between the OCO-2 observa-
tions (y) and GEOS-Chem simulations (H (x)); these two
terms are weighted using the prior errors (B) and observa-
tion errors (R), respectively.

In each data-assimilation window, the control vector (x) is
optimized through Eqs. (2)–(5) as follows (Hunt et al., 2007):

x̄a
= x̄b

+Xbw̄a, (2)

Xa
= Xb

[
(k− 1) P̃a

]1/2
, (3)

w̄a
= P̃a

(
Yb
)T

R−1
(
yo
− ȳb

)
, (4)

P̃a
=

[
(k− 1)I+

(
Yb
)T

R−1Yb

]−1

, (5)

where a and b represent the posterior and prior state, re-
spectively, k represents the ensemble size (i.e., 24), x̄ is

Figure 1. Modeling structure of the carbon flux inversion system
developed in this study.

the ensemble mean of the control vector, X is the en-
semble perturbation matrix whose ith column represents
x(i)
− x̄{i = 1,2, . . .,k}, yo contains the assimilated OCO-

2 XCO2 within the data-assimilation window and localiza-
tion length, ȳb is the mean of a prior XCO2 field averaged
over yb(i)

=H (xb(i)) {i = 1,2, . . .,k} simulations, Yb is the
ensemble perturbation matrix whose ith column represents
yb(i)
− ȳb
{i = 1,2, . . .,k}, w̄a is a weight vector, P̃a is the

analysis covariance matrix, and I is the identity matrix.
The ensemble mean x̄b is calculated by obtaining the av-

erage optimized result from the 2 previous time steps and
a fixed value of 1 (Peters et al., 2007), thus propagating
the optimized information from 2 previous time steps to the
current state and representing a moving average smoothing
technique that suppresses variations in xb over time. The
prior covariance matrix B was constructed based on a nor-
mal distribution with the standard deviation of 3.0 within a
spatial correlation length of 2000 km, and the spatial cor-
relation of the prior flux errors between ocean and land is
set to zero in our inversion. The ensemble perturbation ma-
trix Xb was constructed through Cholesky decomposition to
B (i.e., B= Xb

(
Xb
)T

/ (k− 1)), and the ensemble members
xb(i)
{i = 1,2, . . .,k} were generated by adding the ensemble

mean x̄b to the ith column of Xb. The term w̄a is a weight
vector that specifies the linear combinations of ensemble per-
turbations Xb that are added to the prior mean x̄b to estimate
the posterior mean x̄a . The ensemble mean of x̄a is then used
to update the carbon fluxes on the current day, thus driving
another GEOS-Chem simulation to generate the initial CO2
concentration fields for the next data-assimilation cycle.

Our inversion system configuration is summarized in Ta-
ble 1. The data-assimilation window was set to 7 d based on
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the inversion system configurations of Zhang et al. (2015),
Liu et al. (2019), and Jiang et al. (2021). In each data-
assimilation cycle, the ensemble members xb(i) (with the en-
semble mean x̄b and perturbations Xb to approximate B) are
initialized on the first day of the data-assimilation window,
and the following 6 d use the same x̄b without perturbation.
The carbon fluxes representing the first day of each win-
dow are optimized based on the link between the modeled
XCO2 and observed XCO2 within the data-assimilation win-
dow. The GEOS-Chem model and prior fluxes are described
in Sect. 2.2 below, and Sect. 2.3 describes how the OCO-2
XCO2 observations and their uncertainties were assimilated.
In Sect. 2.4, we designed four sensitivity inversions to vary
the prior fluxes and prior uncertainty statistics and investi-
gate their influence on the inversion results. The procedure
followed to evaluate the posterior fluxes and independent ob-
servations are presented in Sect. 2.5.

2.2 Transport model and carbon fluxes

The GEOS-Chem is a global 3D chemical transport model
(Bey et al., 2001; https://geos-chem.seas.harvard.edu/, last
access: 1 January 2022) driven by meteorological fields ob-
tained from the Goddard Earth Observing System (GEOS) of
the National Aeronautics and Space Administration (NASA)
Global Modeling and Assimilation Office. The GEOS-Chem
model has been applied to develop global carbon inversion
systems by several research groups worldwide (Feng et al.,
2009; Deng et al., 2014; and Liu et al., 2021), and the re-
sulting systems vary according to their model versions, data-
assimilation methods, and utilized prior fluxes. Here, we
used GEOS-Chem v12.2.1 in our inversion system to simu-
late the global CO2 transport and relate surface carbon fluxes
to observed atmospheric CO2 gradients at a horizontal reso-
lution of 4◦ latitude×5◦ longitude, driven by GEOS-FP me-
teorology data. Such a spatial resolution is sufficient to cap-
ture large-scale atmospheric CO2 transport along with the as-
sociated spatiotemporal variability and can achieve a balance
between ensemble simulations and computational costs.

We distinguished among four CO2 flux categories in the
GEOS-Chem model, including fossil fuel fluxes, biomass
burning fluxes, ocean fluxes, and terrestrial biospheric fluxes.
The fossil fuel emissions from land and international bunker
sources were derived from the Open-source Data Inventory
for Anthropogenic CO2 (ODIAC, version 2020) dataset (Oda
et al., 2018) for 2014–2019, and we downscaled the dataset
from the monthly to hourly scale based on temporal scaling
factors obtained from the Temporal Improvements for Mod-
eling Emissions by Scaling (TIMES) database (Nassar et al.,
2013). The 2020 emissions were estimated by extrapolat-
ing daily 2019 emissions based on the emission growth rates
from 2019 to 2020 derived from the Carbon Monitor project
(Liu et al., 2020, https://carbonmonitor.org/, last access: 1
January 2022). The biomass burning emissions were ob-
tained from the Global Fire Emissions Database (GFED) 4.1s

(van der Werf et al., 2017) from 2014 to 2020; this database
provides monthly emissions of different fire types and daily
and 3-hourly temporal profiles. These monthly biomass burn-
ing emissions were downscaled to 3-hourly fluxes. Ocean–
atmosphere CO2 fluxes on a 3-hourly basis were obtained
from the pCO2-Clim prior of the CarbonTracker version
CT2019B (Takahashi et al., 2009; Jacobson et al., 2020). The
3-hourly terrestrial biospheric fluxes were derived from the
Simple Biosphere Model, version 4.2 (SiB4) global hourly
dataset (Haynes et al., 2021). We halved the gridded terres-
trial biospheric fluxes to dampen the seasonal cycle and then
integrated annual fluxes as zero over land based on the bal-
ance between gross primary production and respiration in the
SiB4 model, thus implying that the spatiotemporal variabil-
ities in inferred terrestrial fluxes from our inversion system
were mainly determined by the assimilated observations. The
2018 prior ocean and terrestrial biospheric fluxes were used
for the 2019 and 2020 inversions because CT2019B and SiB4
data were available up to 2018 at present.

2.3 Assimilated OCO-2 observations

The OCO-2 is the first dedicated CO2-monitoring satellite
designed by NASA; this satellite was launched in July 2014
(Eldering et al., 2017). It flies in a sun-synchronous, near-
polar orbit 705 km above the Earth’s surface with a repeat
cycle of 16 d and a local overpass time of approximately
01:30 pm. The OCO-2 satellite collects 8 adjacent cross-
track samples every 0.333 s (24 samples per second) at a
spatial resolution of 1.29 km× 2.25 km for each footprint
at nadir. We assimilated the OCO-2 Level 2 bias-corrected
XCO2 retrievals, retrospective processing V10r (OCO-2 Sci-
ence Team, 2020) in our inversion system. Figure 2 presents
the spatial and seasonal distributions of valid OCO-2 V10r
XCO2 retrievals over the 4◦× 5◦ GEOS-Chem grid cells be-
tween 2015 and 2020.

The high-density OCO-2 XCO2 retrievals were prepro-
cessed to generate 1 and 10 s averages before being assim-
ilated because the retrieval errors were closely correlated
both temporally and spatially (Crowell et al., 2019). First,
the “good” retrievals in the OCO-2 Lite files were selected
according to the “xco2_quality_flag” variable and filtered to
remove outliers in each orbit using the “3 times the standard
deviation” rule, i.e., XCO2 values whose differences from
their adjacent soundings deviated from the mean by more
than 3 times the standard deviation were filtered out and not
used in the subsequent data-assimilation process. Then, the
1 and 10 s averages and their uncertainties are computed us-
ing the formulas from Crowell et al. (2019). The 1 s averages
were computed from the selected good retrievals across each
1 s span along the OCO-2 tracks using the method described
by Crowell et al. (2019). The inverse error variance obtained
for each XCO2 retrieval was used to calculate a weighted
average for all related variables with the uncertainty repre-
sented by an average uncertainty of the adopted single sound-
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Table 1. Configuration of the atmospheric carbon inversion system developed in this study.

Model setup Configuration Main reference

Inversion general setup

Spatial scale Global –

Spatial resolution 4◦ latitude× 5◦ longitude –

Data-assimilation window 7 d Zhang et al. (2015), Liu
et al. (2019), and Jiang et
al. (2021)

Carbon flux optimization The first day of each data-assimilation window –

Horizontal localization length 1200 km –

Bayesian inversion algorithm 4D-LETKF Hunt et al. (2007)

Ensemble size 24 –

Time period September 2014 to December 2020 –

Transport model

Model name and version GEOS-Chem v12.2.1 https://geos-chem.seas.harvard.
edu/ (last access: 1 January
2022)

Meteorological forcing GEOS-FP http://wiki.seas.harvard.
edu/geos-chem/index.php/
GEOS-FP (last access:
1 January 2022)

Spatial resolution 4◦ latitude× 5◦ longitude× 47 levels –

Carbon flux data Fossil fuel: ODIAC2020 and Carbon Monitor Oda et al. (2018) and Liu et
al. (2020)

Biomass burning: GFED 4.1 s van der Werf et al. (2017)

Ocean flux: The pCO2-Clim prior of CT2019B Jacobson et al. (2020), Taka-
hashi et al. (2009)

Biosphere flux: Simple Biosphere Model, version 4.2 Haynes et al. (2021)

Initial CO2 concentration field CT2019B Jacobson et al. (2020)

Prior information

Control vector (xb) Scale factors for daily gridded surface carbon fluxes excluding
fossil fuel and biomass burning emissions

–

Ensemble mean (x̄b) Average of three values including the optimized results from the
2 previous time steps and a fixed value of 1

Peters et al. (2007)

Error covariance of xb Normal distribution with a standard deviation of 3.0 –

Observational constraint

Satellite observation OCO-2 V10r bias-corrected XCO2 retrievals OCO-2 Science Team (2020)

Processing method First 1 s average and then 10 s average Crowell et al. (2019)

Error covariance of 10 s average Average uncertainty of the 1 s XCO2 averages, which were
computed as averages of adopted individual soundings

Crowell et al. (2019)

Uncertainty inflation factor 1.8 over land and 1.4 over oceans –
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Figure 2. Spatial and seasonal distributions of the valid OCO-2 XCO2 retrievals between 2015 and 2020. The numbers of days with valid
OCO-2 XCO2 retrievals (xco2_quality_flag= 0) in each GEOS-Chem 4◦× 5◦ grid cell are shown for the periods spanning (a) March–May,
(b) June–August, (c) September–November, and (d), and December–February. The values shown here represent annual averages between
2015 and 2020.

ings. Finally, 10 s averages were computed across each 10 s
span (approximately corresponding to a ground track 70 km
in length) by weighting the 1 s averages by their inverse vari-
ance values. The uncertainty of these 10 s averages was es-
timated as an average uncertainty for the adopted 1 s aver-
ages and was inflated by factors of 1.8 and 1.4 over land and
oceans, respectively; the results thus accounted for the rep-
resentation errors that arose due to the mismatches between
the GEOS-Chem model and assimilated OCO-2 observation
resolutions. The 10 s averages were then assimilated to our
inversion system while assuming independence among the
different 10 s spans.

2.4 Sensitivity inversion experiments

We performed four inversion sensitivity experiments using
different prior fluxes, uncertainty configurations, and data-
assimilation window lengths to investigate the influence of
these factors on the resulting carbon inversions (Table 2).
Based on the reference inversion, we reduced and increased
the standard deviations of the normal distributions used to
represent the error structures of xb in sensitivity experiments
no. 1 (S_exp1) and no. 2 (S_exp2), respectively, to quantify
the influence of the ensemble spread of xb on the carbon in-

version results. In sensitivity experiment no. 3 (S_exp3), the
prior terrestrial biospheric fluxes from CT2019B were used;
these fluxes are based on the Carnegie-Ames-Stanford Ap-
proach (CASA) biogeochemical model, and the other con-
figurations remained the same as those used in the reference
inversion. The comparison between S_exp3 and our refer-
ence inversion illustrates the impact of different prior terres-
trial biospheric fluxes on the inversion results. In sensitiv-
ity experiment no. 4 (S_exp4), the data-assimilation window
length was doubled to 14 d compared to the reference inver-
sion, which tends to constrain fluxes based on more OCO-
2 observations in each data-assimilation window. All four
sensitivity inversions were performed considering the period
from September 2014 to December 2015, thus providing in-
version results in 2015 for use and comparison in our analy-
sis.

2.5 Evaluation of posterior fluxes

We compared the GEOS-Chem-modeled dry-air mole frac-
tions of CO2 based on posterior fluxes with independent
surface and aircraft measurements to evaluate the posterior
fluxes. These measurement data were not assimilated into
our inversion system. Such evaluation methods have been
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Table 2. Sensitivity inversion experiments conducted in this study.

Experiment Prior terrestrial Uncertainty configuration Assimilation Purpose of experiment
biospheric flux window

S_exp1 SiB4 model Normal distribution with a 7 d Analysis of the impact of smaller uncertainties
standard deviation of 1.0 on the carbon inversion results

S_exp2 SiB4 model Normal distribution with a 7 d Analysis of the impact of larger uncertainties
standard deviation of 5.0

S_exp3 CASA model used Normal distribution with a 7 d Analysis of the impact of different prior fluxes
by CT2019B standard deviation of 3.0

S_exp4 SiB4 model Normal distribution with a 14 d Analysis of the impact of data-assimilation
standard deviation of 3.0 window length

widely used to evaluate global carbon budget estimates in-
ferred from atmospheric inversion (Chevallier et al., 2019;
Crowell et al., 2019). The evaluation observation datasets
were obtained from the CO2 GLOBALVIEWplus v7.0 Ob-
sPack database (Cooperative Global Atmospheric Data Inte-
gration Project, 2021), which is maintained by the Earth Sys-
tem Research Laboratory (ESRL) of the National Oceanic
and Atmospheric Administration (NOAA) (https://www.esrl.
noaa.gov/gmd/ccgg/obspack/, last access: 1 January 2022).
The ObsPack framework (Masarie et al., 2014) archives di-
rect atmospheric greenhouse gas measurements from differ-
ent laboratories to support carbon cycle modeling research.
We collected flask sample measurements from 52 stations
(Table S1) at altitudes lower than 3000 m and aircraft mea-
surements from 3 programs (i.e., ABOVE, ACT, and TOM,
please see Table S2) between 2015 and 2020. To perform
the evaluation, GEOS-Chem model-simulated CO2 concen-
trations were sampled at the locations and times correspond-
ing to the observation data points to calculate the multiannual
mean bias and root mean square error (RMSE) values by sea-
son and by latitude band.

In addition, we collected surface carbon flux estimates
from different atmospheric inversion models, including
NOAA’s CT2019B (Jacobson et al., 2020), the Copernicus
Atmosphere Monitoring Service (CAMS) model versions
v20r2 and v20r3 (Chevallier et al., 2005), Jena CarboScope
version sEXTocNEET_v2021 (Rödenbeck et al., 2018), and
the Carbon Monitoring System Flux (CMS-Flux) (Liu et al.,
2021). These carbon budget products were built upon dif-
ferent atmospheric inversion frameworks that vary with dif-
ferent transport models, observation constraints, and data-
assimilation techniques. We performed comprehensive com-
parisons at both the global and regional scales to evaluate our
inversion estimates.

3 Results

3.1 Global carbon budget

The annual global carbon budgets derived using our inver-
sion system are shown for 2015–2020 in Table 3. The mean
annual terrestrial flux, i.e., the sum of the net ecosystem
exchange (NEE) (− 3.91 GtC yr−1) and fire (1.88 GtC yr−1)
fluxes, was estimated as − 2.02 GtC yr−1, and the mean an-
nual oceanic flux was estimated as − 2.34 GtC yr−1. On av-
erage, the terrestrial and oceanic fluxes compensated for
21 % and 24 %, respectively, of the global fossil CO2 emis-
sions (9.80 GtC yr−1), with the remaining 55 % of fos-
sil CO2 emissions (5.44 GtC yr−1) remaining in the atmo-
sphere. Our inversion results agreed with NOAA’s surface
measurement-based atmospheric CO2 growth rates (https:
//gml.noaa.gov/ccgg/trends/gl_gr.html, last access: 1 Jan-
uary 2022); this source reported average annual growth of
5.39 GtC yr−1 from 2015 to 2020 based on the conver-
sion factor of 2.124 GtC ppm−1 (Friedlingstein et al., 2022).
The derived bias of 0.05 GtC yr−1 was slightly lower than
the bias range of the atmospheric inversion models (0.06–
0.17 GtC yr−1) that participated in the Global Carbon Budget
2021 (GCB2021) project (Friedlingstein et al., 2022). The
broad consistency between our inversion results and the at-
mospheric CO2 growth rate from measurement suggests that
the net atmosphere–surface exchange of CO2 was well con-
strained by our inversion system.

The global carbon budget partitioning results are shown in
Fig. 3, including our reference inversion results, other state-
of-the-art atmospheric inversion estimates, and the ensemble
estimates from GCB2021 (riverine flux-adjusted) for 2015–
2018, i.e., the common period when all of these data were
available. The integrated land (with fossil CO2 emissions)
and ocean fluxes were scattered around the diagonal purple
line denoting the atmospheric growth rate in Fig. 3a, sug-
gesting that the global-scale CO2 fluxes were conserved and
well-constrained in all of the considered inversion models,
although these models assimilated different CO2 observa-
tions using various strategies. Our inversion system used a
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Table 3. Global anthropogenic CO2 budget from 2015–2020 derived from our reference inversion results and NOAA’s atmospheric CO2
growth rate. All values are in GtC yr−1.

2015 2016 2017 2018 2019 2020 2015–2020d

Fossil CO2 emissions 9.63 9.67 9.79 10.01 10.06 9.61 9.80

NEEa
−3.48 −3.03 −4.30 −4.55 −4.03 −4.05 −3.91

Terrestrial fluxes Fire 2.10 1.74 1.79 1.70 2.14 1.83 1.88
Net fluxb

−1.39 −1.29 −2.51 −2.85 −1.89 −2.22 −2.02

Oceanic fluxes −2.33 −1.80 −2.77 −2.63 −2.28 −2.21 −2.34

Growth rate in atmospheric CO2 5.91 6.58 4.51 4.54 5.89 5.19 5.44

NOAA’s CO2 growth ratec 6.24 6.01 4.55 5.08 5.39 5.01 5.39

a NEE represents the net ecosystem exchange. b Net flux represents the sum of the NEE and fire fluxes. c NOAA’s CO2 growth rates were
obtained from https://gml.noaa.gov/ccgg/trends/gl_gr.html (last access: 1 January 2022) and were estimated based on the conversion factor of
2.124 GtC ppm−1 (Friedlingstein et al., 2022). d Annual average estimates between 2015 and 2020.

relatively large prior for land fluxes involving a combination
of prescribed biomass burning emissions (∼ 1.80 GtC yr−1)
and annually zero terrestrial biospheric fluxes, while the
other inversion models used annually zero or negative prior
natural land fluxes (Fig. 3b). Despite the large prior land
fluxes used by our model (denoted by the open red circles
shown in Fig. 3a and b), our inversion system successfully
corrected the global fluxes to match the atmospheric CO2
growth rates (the solid red circles in Fig. 3a and b). The
major discrepancies derived from different inverse models
involved the partitioning scheme between land and ocean
fluxes. Our inversion results, as well as CAMS and Jena, es-
timated smaller land fluxes and ocean uptakes than CMS-
Flux and CT2019B. The GCB2021 estimates are compara-
ble to our inversion estimates but present a large budget im-
balance (− 0.63 GtC yr−1 averaged between 2015 and 2018)
due to model deficiencies (Friedlingstein et al., 2022); this
imbalance explained why the purple circles representing the
GCB2021 estimates were not located on the purple lines in
Fig. 3a and b.

The differences among inversion-based global carbon bud-
get estimates are mainly attributed to the natural components,
not fossil fuel emissions, as illustrated by the large spread of
natural fluxes (without the prescribed fossil CO2 emissions)
in Fig. 3b. This finding differs from previous intercompari-
son studies in which global atmospheric CO2 inverse mod-
els were shown to disagree on fossil fuel priors (Gaubert et
al., 2019). All of the atmospheric inversion models shown
in Fig. 3 adopted consistent fossil CO2 priors with an an-
nual average of 9.7–10.0 GtC yr−1 from 2015 to 2018, ben-
efiting from the community efforts to constrain uncertain-
ties associated with fossil fuel emissions and converge on
global total carbon sinks. However, the land–ocean partition-
ing schemes of natural fluxes are much more uncertain and
can reflect spreads up to 1.6 GtC yr−1 (Fig. 3b), comparable
with the uncertainties associated with the land–ocean parti-
tioning scheme due to transport model differences reported

by Basu et al. (2018). Moreover, we found that the global
oceanic fluxes seemed to be largely unchanged relative to
the ocean priors used in different inverse models (Fig. 3b),
likely due to the weak observational constraints over oceans.
The usage of prior ocean fluxes that differ by 1.1 GtC yr−1

among inverse models thus plays an important role in deter-
mining the land–ocean partitioning schemes of global fluxes
in atmospheric inversion results.

3.2 Regional carbon budget

3.2.1 Latitudinal distribution of fluxes

The partitioning divides between the northern extrat-
ropics (23–90◦ N) (NET) and the tropics (23◦ S–23◦ N)
(T)+ southern extratropics (90–23◦ S) (SET) are illustrated
in Fig. 3c and d. The integrated fluxes from NET and
T+SET are anticorrelated and scattered around the global
atmospheric growth rate of CO2 minus the fossil CO2 emis-
sions listed in GCB2021 (the diagonal purple line in Fig. 3c),
suggesting that the global total natural fluxes were well-
constrained by atmospheric inversion. Our inversion results
suggest that NET and T+SET represent average natural
fluxes of − 3.5 and − 0.9 GtC yr−1, respectively, between
2015 and 2018, both of which lie within the ensemble of
different inversion model estimates (Fig. 3c and d). Land
fluxes dominate over ocean fluxes in NET, which are esti-
mated as − 2.6 and −0.9 GtC yr−1, respectively, on average
between 2015 and 2018. However, in T+SET, ocean fluxes
(−1.4 GtC yr−1) dominate over land fluxes (0.6 GtC yr−1),
because the area of ocean is much larger than land in this re-
gion. The differences among inversion model estimates could
be attributed to land–ocean partitioning by latitude, although
the discrepancies in posterior fluxes derived are largely re-
duced compared to the prior fluxes after assimilating the
OCO-2 CO2 observations. The GCB2021 results tended to
give larger land sinks than all of the atmospheric inversion
models except for CAMS (Fig. 3d), although the large bud-
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Figure 3. Global carbon flux partitioning schemes between the land and ocean and among different latitudinal bands for 2015–2018. The
atmospheric inversion results are represented by solid circles (representing posterior fluxes) and open circles (representing prior fluxes (if
any)). The red circles represent the carbon flux estimates derived from our reference inversion results; the blue circles represent the results of
the CAMS versions v20r2 and v20r3 (Chevallier, et al., 2005); the orange circles represent the Jena CarboScope version sEXTocNEET_v2021
results (Rödenbeck et al., 2018); the green circles represent the CMS-Flux results (Liu et al., 2021); and the pink circles represent the results
of the NOAA CarbonTracker version CT2019B (Jacobson et al., 2020). The purple circles in panels (a) and (b) represent the GCB2021-
derived (riverine flux-adjusted) estimates (Friedlingstein et al., 2022). The purple line and equation in each panel represent the sum of the x

and y variables derived from GCB2021, and the gray shaded area represents the error equivalent to 1 standard deviation. The purple lines
thus have a slope of −1, and any deviation perpendicular to these purple lines indicates disagreements in the GCB2021 estimates, including
the purple circles in panels (a) and (b) derived from the GCB2021 results due to carbon budget imbalances.

get imbalance of GCB2021 complicated the interpretation
of these large flux discrepancies. The disagreements among
multiple inversion models over latitude indicated the exis-
tence of substantial uncertainties in the regional carbon bud-
get estimates.

3.2.2 Regional distribution of fluxes

Figure 4 presents the spatial distribution of the natural fluxes
derived from our reference inversion model, including both
prior and posterior annual average fluxes between 2015 and
2020. We estimated a net land carbon flux of −2.4 GtC yr−1

between 2015 and 2020 over the Northern Hemisphere; this
value was slightly larger than the −2.1± 0.5 GtC yr−1 esti-
mate obtained from 2000 to 2010 by Ciais et al. (2019) based
on a two-box atmospheric inversion model. Figure 4 shows

that large carbon sinks are located in the northern forests and
woodlands over the eastern USA, Asia, and Europe, as well
as in the tropical evergreen forests over South America and
Africa (Fig. 4c). Since the prior biospheric annual flux was
integrated as zero over land globally (Fig. 4a), the spatial dis-
tribution of the posterior carbon sinks was reconstructed only
by the assimilated OCO-2 XCO2 through atmospheric inver-
sion. When the biomass burning fluxes were added, as was
prescribed in our inversion system (Fig. 4b), we observed
large flux gradients over South America, southern Africa,
and the Eurasia boreal region in the posterior fluxes (Fig. 4d)
due to extensive savanna and forest fires (van der Werf et al.,
2017).

Over the 11 TransCom land regions (Fig. 5), our inversion
results were broadly consistent with the other atmospheric
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Figure 4. Spatial distribution of global natural carbon fluxes from 2015 to 2020. The annual average carbon fluxes derived from 2015 to
2020 are shown at a spatial resolution of 4◦ latitude× 5◦ longitude. Panel (a) displays the prior terrestrial biospheric+ oceanic fluxes used
in the reference inversion system. Panel (b) shows the prior terrestrial biospheric+ oceanic+fire fluxes (the fire fluxes were prescribed in
the inversion system). Panel (c) shows the posterior terrestrial biospheric+ oceanic fluxes derived from the reference inversion system. Panel
(d) shows the posterior terrestrial biospheric+ oceanic+fire fluxes.

inversion products, although we did observe an unsurpris-
ing lack of agreement due to large uncertainties in regional
flux estimates. Northern Africa, southern Africa, and South
American tropical regions all represent net carbon sources
due to the substantial fire emissions, especially from for-
est fires, in these regions. Large net carbon uptakes occur
over North America, Eurasia, and Europe, where our inver-
sion model estimated annual average fluxes of − 0.3, − 1.4,
and − 0.9 GtC yr−1, respectively. Further, these estimates
broadly agreed with the ensemble of surface observation-
based atmospheric CO2 inversions derived between 2001
and 2004 (Peylin et al., 2013), which provided flux values
of −0.7±0.5, −1.1±0.4, and −0.4±0.5 GtC yr−1, respec-
tively, over these three regions. Our inversion model seemed
to estimate slightly lower fluxes over the boreal and temper-
ate regions in North America than the other inversion mod-
els. The OCO-2 land observations were limited to lower lat-
itudes during fall and winter in the Northern Hemisphere
(Fig. 2), and the retrieval biases increased with the solar and
satellite zenith angles (O’Dell et al., 2018). We would there-
fore speculate that the sampling and retrieval biases of the

OCO-2 satellite at high latitudes weakened the capability of
our inversion system to constrain land fluxes over boreal re-
gions. Since total net natural fluxes are conserved globally,
flux overestimations of similar magnitudes in other regions
typically compensate for flux underestimations in particular
regions through the atmospheric inversion process, thus re-
sulting in large variations in regional flux estimates among
different inversion models.

3.3 Seasonal cycle of carbon fluxes

The different atmospheric inversion systems analyzed herein
presented broadly consistent phases (source-to-sink transi-
tions) and amplitudes (peak-to-trough differences) of the sea-
sonal natural land flux cycle, except over the tropical re-
gion (23◦ S–23◦ N) (Fig. 6). Predominant sinks were iden-
tified over the Northern Hemisphere during the growing sea-
son, with maximum monthly sinks occurring in July (Fig. 6a
and b). The prior flux used in our inversion system re-
vealed a smaller carbon uptake in July (the dashed red curves
in Fig. 6a and b); this peak is substantially enlarged (the
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Figure 5. Terrestrial natural land fluxes derived over the 11 TransCom land regions from 2015 to 2018. Each atmospheric inversion is
represented by bars showing the posterior natural land flux (i.e., terrestrial biospheric+fire fluxes) averaged between 2015 and 2018 in each
TransCom land region; the black lines represent the median values of all six inversion estimates. The colors of the atmospheric inversion
models are the same as those shown in Fig. 3, and the references for each inversion model are included in the caption of Fig. 3.

Figure 6. Seasonal cycle amplitudes of natural land fluxes over different latitudinal bands from 2015 to 2018. The global natural land
fluxes (i.e., terrestrial biospheric+fire fluxes) averaged between 2015 and 2018 were split into four zonal bands: (a) northern high latitudes
(50–90◦ N), (b) northern mid-latitudes (23–50◦ N), (c) tropics (23◦ S–23◦ N), and (d) southern extratropics (90–23◦ S). Each atmospheric
inversion result was represented by solid curves (posterior flux) and dashed circles (prior flux (if any)). The colors of the atmospheric
inversion models are the same as those shown in Fig. 3, and the references for each inversion model are listed in the caption of Fig. 3.

solid red curves in Fig. 6a and b) in the posterior fluxes
after assimilating OCO-2 XCO2. During fall and winter in
the Northern Hemisphere, the shift from sink to source is
consistently reproduced by different atmospheric inversion
models, although the satellite-based posterior fluxes tend
to follow the pattern of the prior due to a lack of valid
OCO-2 XCO2 retrievals over the 50–90◦ N region (Fig. 2c

and d). Overall, satellite-based inversions (e.g., our inver-
sion model, CAMS v20r3, and CMS-Flux) tended to dif-
fer from the surface-based inversions (e.g., CAMS v20r2,
CT2019B, and Jena) regarding the output peak sink estimates
in the growing season. The satellite-based inversions esti-
mated carbon fluxes of − 1.28 to − 1.38 GtC month−1 over
50–90◦ N in July (Fig. 6a), and these values were slightly
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smaller than the surface-based inversion estimates (− 1.58
to − 1.83 GtC month−1). Over the 23–50◦ N latitudinal band
(Fig. 6b), the satellite-based inversions estimated larger car-
bon uptake magnitudes (− 0.94 to − 1.19 GtC month−1)
in July than the surface-based inversions did (− 0.82 to
− 0.98 GtC month−1).

The peaks and troughs identified in the carbon fluxes over
the tropics (23◦ S–23◦ N) were not consistently represented
by different atmospheric inversion models (Fig. 6c), indicat-
ing the need for collective efforts to improve tropical carbon
budget estimates. A small seasonal cycle amplitude was re-
vealed by our inversion results, CT2019B, and Jena, while
the CMS-Flux and the two CAMS inversion models all pre-
sented relatively large seasonal cycle amplitudes. These sub-
stantial discrepancies could potentially be attributed to a lack
of strong CO2 observational constraints and the difficulty of
accurately simulating atmospheric transport processes in the
tropics. The OCO-2 satellite is expected to provide broad
coverage but is greatly hindered by cloud coverage during
the wet season and aerosol pollution from biomass burning
during the dry season in the tropics. In addition, in previous
satellite-based inversions, researchers preferred not to use
OCO-2 ocean glint observations due to known uncertainty
issues (O’Dell et al., 2018), which substantially reduced the
number of assimilated OCO-2 observations over the tropics.
The OCO-2 V10r satellite retrievals are thought to have im-
proved these ocean glint observations, which were used as
observational constraints in our inversion system. Over the
mid- to high latitudes of the southern atmosphere (90–23◦ S),
where much less land is present, the natural land flux inver-
sion estimates did not depart largely from the priors and were
highly consistent among different inversion models (Fig. 6d).

Over the 11 TransCom regions, our inversion results ex-
hibited seasonal cycle amplitudes similar to those of the other
analyzed inversion models (Fig. 7). The peak summertime
drawdown of fluxes in the northern ecosystems, which rep-
resents the deeper sinks during the growing season, is con-
sistently constrained by different inversion systems over the
North American boreal (Fig. 7a), North American temper-
ate (Fig. 7b), Eurasian boreal (Fig. 7g), Eurasia temperate
(Fig. 7h), and European (Fig. 7k) regions. However, these
regions reveal relatively large ensemble spreads in their car-
bon source estimates during fall and winter due to the sparse
satellite observational constraints and divergent seasonal am-
plitudes of the prior fluxes used in the inversion process,
which finally result in large discrepancies in the annual flux
estimates. For example, our inversions exhibited relatively
small annual fluxes over the North American boreal region
compared to the other inversion estimates (Fig. 5), and this
was mainly due to the larger carbon sources derived between
September and February (Fig. 7a). We also observed sub-
stantial disagreements in the seasonal cycle of the flux am-
plitude over the South American tropical (Fig. 7c), tropical
Asia (Fig. 7i), and Australian (Fig. 7j) regions; these am-
plitudes were found to be close to carbon neutral based on

the ensemble of different inversion models (Fig. 5) but di-
verged widely with regard to their annual and monthly flux
estimates.

3.4 Evaluation with CO2 measurements

The GEOS-Chem-modeled XCO2 outputs based on posterior
fluxes matched the OCO-2 XCO2 retrievals in terms of both
their magnitudes (Fig. S1) and trends (Fig. S2), thus suggest-
ing that our inversion system was effectively constrained by
the assimilated OCO-2 XCO2 values. The modeled RMSEs
of the posterior fluxes against the OCO-2 XCO2 values were
constrained by our inversion system (Fig. S1). The posterior
simulations (the red curves in Fig. S2) corrected the over-
estimated prior-modeled XCO2 values (the blue curves in
Fig. S2) compared to the OCO-2 observations (black curves
in Fig. S2) by adding terrestrial carbon uptake to the prior
flux. Regarding the trends and interannual variability, the
simulations driven by prior fluxes overestimated the increas-
ing XCO2 over the Northern and Southern hemispheres, and
this was corrected in our inversion system by increasing the
terrestrial carbon sinks from 2015 to 2020 (Table 3).

The atmospheric CO2 concentration measurements ob-
tained at surface (Table S1) and by aircraft (Table S2) net-
works both confirmed that the CO2 values modeled based on
posterior fluxes (the red curves in Fig. 8) were improved rela-
tive to those based on prior fluxes (the blue curves in Fig. 8);
thus, this process substantially reduced the biases (Fig. 8a–
c) and RMSEs (Fig. 8d–f) compared to the CO2 observa-
tions with regards to both latitude and altitude. The daily,
seasonal, and interannual variations in surface CO2 concen-
trations were reproduced in the posterior flux-based simu-
lations, as illustrated by the six selected stations (Fig. S3)
that varied by latitude and altitude and provided continu-
ous measurement records between 2015 and 2020. The com-
parisons with aircraft observations in the free troposphere
(above 3000 m) showed slightly smaller biases (Fig. S4) be-
cause these measurements were less affected by local sources
(Chevallier et al., 2019). The evaluations conducted at the
three atmospheric layers all presented large RMSEs in NET
(Fig. 8), suggesting that the inversion estimates of CO2 fluxes
in this region tended to have relatively larger uncertainties
than the other latitudes; this finding was consistent with the
atmospheric inversion ensemble assessment of Crowell et
al. (2019). The NET are dominated by land but lack ade-
quate, high-quality OCO-2 XCO2 retrievals during fall and
winter, therefore contributing weak observational constraints
to the flux outputs.

4 Discussion

4.1 Influence of prior fluxes and uncertainties

The sensitivity inversion results diverged with regard to the
land and oceanic fluxes (Table 4), although all inversion re-
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Figure 7. Seasonal cycle amplitudes of the natural land fluxes derived over the 11 TransCom land regions from 2015 to 2018. Each atmo-
spheric inversion is represented by a solid curve representing the posterior natural land flux (i.e., terrestrial biospheric+fire fluxes) averaged
between 2015 and 2018; the colors are the same as those shown in Fig. 3. The references for each inversion model are listed in the caption
of Fig. 3.

Figure 8. Comparisons of GEOS-Chem-modeled dry-air mole fractions of CO2 with surface and aircraft measurements. The simulations
driven by the prior (blue curves) and posterior (red curves) fluxes of our reference inversions between 2015 and 2020 were evaluated against
surface flask observations (a, d), aircraft observations obtained below 3000 m a.s.l. (b, e), and aircraft observations obtained above 3000 m (c,
f) to derive the model biases (a–c) and RMSEs (d–f). The surface and aircraft measurement programs are summarized in Tables S1 and S2,
respectively.

sults agreed with the NOAA’s atmospheric CO2 growth rates,
suggesting that the prior fluxes associated with uncertain-
ties altered the global carbon budget partitioning scheme in
the atmospheric inversion results. The global NEE derived
from our reference inversion model was − 3.48 GtC yr−1 in
2015; this value was substantially different from the S_exp1–

S_exp4 estimates (− 2.99 to −3.83 GtC yr−1). The global
oceanic flux inversion estimates were adjusted accordingly in
each inversion to match the atmospheric CO2 growth rates.
Based on the evaluations performed using surface CO2 mea-
surements (Fig. S5), our reference inversion results presented
slightly smaller biases and RMSEs in the modeled CO2 over

https://doi.org/10.5194/acp-22-10769-2022 Atmos. Chem. Phys., 22, 10769–10788, 2022



10782 Y. Kong et al.: Global and regional carbon budget for 2015–2020 inferred from OCO-2

the tropics and northern latitudes than S_exp1, S_exp2, and
S_exp4. The prior fluxes used in S_exp3 were derived from
the CASA model (Table 2), and this experiment exhibited
better performances in the northern mid-latitudes but pre-
sented larger biases and RMSEs than the reference inversion
in the northern high latitudes, possibly due to weaker con-
straints associated with satellite observations and inappro-
priate prior fluxes used in this region. Increasing the data-
assimilation window length to 14 d (S_exp4) slightly in-
creased the global NEE and decreased the oceanic fluxes
(Table 4), while the inversion model performance evaluated
with surface measurement of CO2 concentrations are not im-
proved (Fig. S5).

The TransCom land regions showed different sensitivities
to the prior fluxes used in the atmospheric inversion process
at the annual (Fig. 9) and monthly (Fig. 10) timescales. For
example, the flux estimates were broadly consistent among
different inversion experiments over the Eurasia temperate
region and Europe, where the inversions were not as sensitive
as other regions to prior information due to the stronger ob-
servational constraints of the OCO-2 satellite measurements
over mid-latitudinal areas. The sensitivity inversion estimates
of fluxes are also broadly consistent over southern Africa, the
Eurasia boreal region, and Australia. In contrast, the flux es-
timates over the North American boreal and North American
temperate regions differed greatly in their signs and magni-
tudes across sensitivity inversions because the atmospheric
inversion system not only gave more weight to the prior
information but also represented the residual fluxes result-
ing from global optimization over these regions due to the
weak observational constraints available in fall and winter
(Fig. 10a and b). Large differences were also evident over the
tropics (e.g., the South American tropical region, northern
Africa, and tropical Asia) due to cloud- and aerosol-caused
gaps in the satellite observations. In S_exp3, the amplitude
in the seasonal cycle of carbon fluxes in the South American
tropical (Fig. 10c), northern Africa (Fig. 10e), and tropical
Asia (Fig. 10i) regions changed substantially compared to the
other inversions, thus illustrating the large influence of prior
fluxes on regional atmospheric inversions over the tropics.

4.2 Limitations and future perspectives

Atmospheric inversions are inherently ill-constrained due to
the sparseness and uneven distribution of CO2 observations;
additionally, these shortcomings are exacerbated by uncer-
tainties in the process by which fluxes are associated with
CO2 concentrations in atmospheric transport model simula-
tion. In the regions and months that lack adequate quality
observations, the prior information tends to be given more
weight when estimating fluxes through inversion. Given the
global optimization strategy of atmospheric inversions, the
uncertainties associated with flux estimates over a given re-
gion can be propagated into another region representing a
residual resulting from matching global observational con-

straints. Our analysis suggests that regional and monthly flux
estimations are divergent across different atmospheric inver-
sion models and even among the results of the same model
under different configurations, although these monthly flux
estimates can be integrated to estimate consistent global
fluxes in line with the atmospheric growth rate of CO2. Our
sensitivity inversions further revealed the considerable sen-
sitivities of the regional inversion fluxes to the prior fluxes
and their uncertainties, thus illustrating the difficulties asso-
ciated with the consistent optimization of carbon fluxes from
the global to the regional scale.

The ensemble methods such as 4D-LETKF used in this
study have a major advantage over the adjoint-based vari-
ational methods (e.g., 4D-Var) in system development sim-
plification, but the limited ensemble size and the short spa-
tiotemporal localization window could reduce the estimation
accuracy when there is a lack of sufficient CO2 observations
(Chatterjee and Michalak, 2013; Liu et al., 2016). The 4D-
Var method uses an adjoint model to compute the sensitivity
of CO2 concentrations to surface fluxes, typically associated
with a long data-assimilation window of years (e.g., Cheval-
lier et al., 2005; Baker et al., 2006; Liu et al., 2016), which
is accurate but computationally expensive. The 4D-LETKF
algorithm relates surface carbon fluxes to CO2 observations
through ensemble simulations upon a short data-assimilation
window of hours to months (e.g., Kang et al., 2011; Peters et
al., 2005; Bruhwiler et al., 2005). The 4D-LETKF algorithm
was designed for easy implementation and computational ef-
ficiency (Hunt et al., 2007), making it easier and faster to
use in high-dimensional assimilation systems than the 4D-
Var method.

The explicit localization scheme in space and time for
4D-LETKF ensures the accuracy and efficiency of flux es-
timation based on a moderate size of ensemble members
(Miyoshi and Yamane, 2007), especially over regions with
sufficient observations. For example, the 4D-LETKF algo-
rithm can achieve carbon fluxes comparable to 4D-Var over
regions with dense CO2 observations (Liu et al., 2016).
However, over observation-sparse regions, the localization
scheme of 4D-LETKF makes it difficult to optimize fluxes
effectively, while the 4D-Var method can optimize carbon
fluxes based on observations over a broad region where CO2
concentrations are sensitive to fluxes. While increasing the
duration of the data-assimilation window and localization
length can improve 4D-LETKF performance in this case, it
can however impose a heavy computational burden. Alterna-
tively, several ensemble Kalman filter studies estimated car-
bon fluxes for ecoregions, which reduced the system dimen-
sions to minimize the impacts of sampling errors and the lack
of observational constraints on inversions (Peters et al., 2005;
Feng et al., 2009). In the future, with the increased availabil-
ity of satellite CO2 observations, the 4D-LETKF algorithm
has the potential to play a more important role in grid-scale
inversions.
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Table 4. Global anthropogenic CO2 budget for 2015 derived from our reference inversion results and four sensitivity inversion experiments.
All values shown here represent the global total fluxes for 2015 in GtC yr−1.

Reference inversion S_exp1 S_exp2 S_exp3 S_exp4

Fossil CO2 emissions 9.63 9.63 9.63 9.63 9.63

NEE −3.48 −3.01 −3.59 −2.99 −3.83
Terrestrial fluxes Fire 2.10 2.10 2.10 2.10 2.10

Net flux −1.39 −0.92 −1.49 −0.90 −1.73

Oceanic fluxes −2.33 −2.63 −2.02 −2.48 −1.94

Growth rate in atmospheric CO2 5.91 6.08 6.12 6.25 5.95

NOAA CO2 growth ratec 6.24 6.24 6.24 6.24 6.24

Figure 9. Terrestrial natural land fluxes over the 11 TransCom land regions derived from sensitivity inversions for 2015. The results of the
reference inversion and four sensitivity inversions (please see Table 2) are represented by bars denoting the posterior natural land fluxes (i.e.,
terrestrial biospheric+fire fluxes) in 2015 for each TransCom land region; the black lines represent the median values of all six inversion
estimates shown in Fig. 5 over the corresponding region and period.

Although our inversion system exhibited a good perfor-
mance based on the evaluations against independent obser-
vations, regional-scale uncertainties still exist due to the in-
version model limitations discussed above. The development
of an atmospheric inversion system is a continuing effort
that can benefit from developing new algorithms to improve
transport model simulations and data assimilations and from
increasing CO2 observation availabilities for data constraints
and evaluation processes. The future development of our in-
version system will include the following two aspects. (1) We
aim to optimize the inversion system configuration, includ-
ing the data-assimilation window and localization length,
which are currently empirically designed based on previ-
ous literature and simplified sensitivity tests. A longer data-
assimilation window or localization length could increase the
amount of observation data used to constrain local fluxes;
however, an appropriate configuration must be determined
through comprehensive sensitivity experiments and evalua-
tions, which are time-consuming but will be considered in
future work. (2) We hope to improve the regional and sea-
sonal representativeness of the utilized prior fluxes, espe-

cially those over regions that lack valid CO2 observations
(e.g., the northern high latitudes and the tropics). Biogeo-
chemical models that integrate process-based modules and
multiple observations can be used to improve the prior bio-
spheric fluxes and help to reduce model biases when simulat-
ing CO2 over mid- to high latitudes. The anthropogenic and
biomass burning fluxes were prescribed in our inversion sys-
tem, and these fluxes could be improved based on other inver-
sion production chains to assimilate satellite retrievals of co-
emitted short-lived reactive species, such as nitrogen dioxide
(NO2) (Zheng et al., 2020) and carbon monoxide (CO) (Liu
et al., 2017; Zheng et al., 2021).

5 Conclusions

Atmospheric inversions have the potential to significantly
improve our understanding of the carbon cycle at the global
and regional scales given their ability to integrate both prior
information and atmospheric observations. Here, we devel-
oped a Bayesian atmospheric inversion system based on the
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Figure 10. Seasonal cycle amplitudes of natural land fluxes over the 11 TransCom land regions derived from sensitivity inversions for 2015.
The results of the reference inversion and four sensitivity inversions (please see Table 2) are represented by solid curves denoting the posterior
natural land fluxes (i.e., terrestrial biospheric+fire fluxes) in 2015; the colors are the same as those shown in Fig. 9.

4D-LETKF algorithm coupled with the GEOS-Chem model;
this system was constrained by OCO-2 XCO2 retrievals. To
the best of our knowledge, this work represents the first time
that the 4D-LETKF algorithm was adapted to a global car-
bon inversion system that assimilated OCO-2 data. With this
newly developed inversion system, we inferred global grid-
ded carbon fluxes from the latest OCO-2 V10r retrievals and
investigated their magnitudes, variations, and partitioning
schemes to understand the global and regional carbon bud-
gets between 2015 and 2020. The resulting inversion-based
carbon budgets agreed with the NOAA-observed CO2 atmo-
spheric growth rates and substantially improved the mod-
eled CO2 concentrations across latitudinal bands compared
with the independent ground- and aircraft-based observa-
tions. Our global and regional carbon flux inversion estimates
were broadly consistent with the other state-of-the-art atmo-
spheric inversion models and the ensemble estimates derived
from GCB2021, although discrepancies were still evident in
the partitioning schemes between the natural land and ocean
fluxes and the amplitude of the seasonal flux cycle over the
TransCom land regions; these discrepancies could mainly
be attributed to the sparse observational constraints resulting
from the sampling and retrieval biases of the OCO-2 satel-
lite and the divergent prior fluxes used in different inversion
systems. We further investigated the robustness of and un-
certainties in our inversion results through four sensitivity
inversion tests that varied with regard to the utilized prior
fluxes, applied uncertainties, and data-assimilation window
length; the results indicated that the reference inversion re-
sults represented the optimal configuration in the current in-

version framework. Additionally, our sensitivity inversions
suggested that regions in which OCO-2 coverage is lack-
ing are sensitive to the prior flux configuration, especially
the tropics and northern high latitudes. The sensitivity inver-
sion evaluations, as well as the comparisons with previous in-
version models and data products, highlighted the dedicated
future developmental direction of our atmospheric inversion
system, representing a continuous and ongoing effort.
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