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Abstract. Urban conurbations of East Africa are affected by harmful levels of air pollution. The paucity of local
air quality networks and the absence of the capacity to forecast air quality make difficult to quantify the real level
of air pollution in this area. The CHIMERE chemistry transport model has been used along with the Weather
Research and Forecasting (WRF) meteorological model to run high-spatial-resolution (2× 2 km) simulations of
hourly concentrations of particulate matter with an aerodynamic diameter smaller than 2.5 µm (PM2.5) for three
East African urban conurbations: Addis Ababa in Ethiopia, Nairobi in Kenya, and Kampala in Uganda. Two
existing emission inventories were combined to test the performance of CHIMERE as an air quality model for a
target monthly period in 2017, and the results were compared against observed data from urban, roadside, and
rural sites. The results show that the model is able to reproduce hourly and daily temporal variabilities in aerosol
concentrations that are close to observed values from urban, roadside, and rural environments. CHIMERE’s
performance as a tool for managing air quality was also assessed. The analysis demonstrated that, despite the
absence of high-resolution data and up-to-date biogenic and anthropogenic emissions, the model was able to
reproduce 66 %–99 % of the daily PM2.5 exceedances above the World Health Organization (WHO) 24 h mean
PM2.5 guideline (25 µg m−3) in the three cities. An analysis of the 24 h average PM2.5 levels was also carried out
for 17 constituencies in the vicinity of Nairobi. This showed that 47 % of the constituencies in the area exhibited a
poor Air Quality Index for PM2.5 that was in the unhealthy category for human health, thereby exposing between
10 000 and 30 000 people per square kilometre to harmful levels of air contamination.

1 Introduction

The world’s population has grown rapidly by 1 billion peo-
ple over the last 12 years, reaching 7.9 billion in 2021. The
World Population Prospects (WPP) made by the United Na-
tions (UN) suggest a continuing annual increase of 1.8 %,
meaning that the global population will reach 8.5 billion by
2030, 9.7 billion by 2050, and 11.2 billion by 2100 (UNEP,
2019). The African continent is predicted to have the fastest

growing population rate in the world, and it is projected to
double between 2010 and 2050, surpassing 2 billion (UN-
WPP, 2019). In addition to this, a 60 % increase in popula-
tion has been predicted by 2050, specifically in urban areas
(UN-WPP, 2019).

The populations in countries in sub-Saharan East Africa
(SSEA) increased drastically from 1991 to 2019. During
that period of time, according to data from the World Bank
database (World Bank Open Data, 2022), the Kenyan popu-
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lation grew from 24 to 52 million, the Ugandan population
grew from 17 to 44 million, and the Ethiopian population
grew from 50 to 112 million. These increases in population
were accompanied by a similar rate of increase in road trans-
port, industrial activities, and in the use of solid fuels (e.g.
woods, charcoal, and agricultural residues) for cooking pur-
poses in urban areas (Bockarie et al., 2020; Marais et al.,
2019).

As a result of these population increases, the air quality
of urban areas in these countries, which has historically been
influenced by the large presence of seasonal biomass burning
emissions (Haywood et al., 2008; Lacaux, 1995; Liousse et
al., 2010; Thompson et al., 2001), is progressively degrading
(Marais and Wiedinmyer, 2016). This, in combination with
the expanding urban population, has greatly increased the ex-
posure of citizens to harmful particulate matter (PM) pollu-
tion with an aerodynamic diameter smaller than 10 (PM10)
and 2.5 µm (PM2.5) (Gatari et al., 2019; Kinney et al., 2011;
Li et al., 2017; UN-Habitat, 2017).

Several diseases have been attributed to PM exposure in
SSEA, including cardiovascular and cardiopulmonary dis-
eases, cancers, and respiratory deep infections (Dalal et
al., 2011; Mbewu and Mbanya, 2006; Parkin et al., 2008).
In 2012, the World Health Organization (WHO) estimated
that 176 000 deaths in SSEA were directly connected to
air pollution (WHO, 2012). Modelling studies have also
found that exposure to outdoor air pollution has led to
626 000 disability-adjusted life years (DALYs) in SSEA
alone (Amegah and Agyei-Mensah, 2017), highlighting that
these numbers could be much higher considering the limited
amount of air quality data emanating from the region that are
available for research purposes.

Considering the likely severe impacts of air pollution on
human health in SSEA, the research interest in understand-
ing air pollution trends in East Africa has increased in recent
years. Many researchers have analysed the levels of contam-
ination using short-term measurement campaigns (Amegah
and Agyei-Mensah, 2017; deSouza et al., 2017; Egondi et
al., 2013; Gaita et al., 2014; Gatari et al., 2019; Kume, 2010;
Ngo et al., 2015; Pope et al., 2018; Schwander et al., 2014;
van Vliet and Kinney, 2007; Singh et al., 2021). Other stud-
ies have observed annual average PM2.5 concentrations in the
order of 100 µg m−3, quantified in a small number of urban
areas, in SSEA (Brauer et al., 2012). These levels are about
4 times higher than the 24 h average and 10 times higher than
the annual average WHO guideline values for PM2.5 (Avis
and Khaemba, 2018; WHO, 2016), and they underline that
air pollution is a serious problem in this area of the world. A
recent study by Singh et al. (2020), using visibility as a proxy
for PM, showed that air quality in Addis Ababa, Kampala,
and Nairobi has degraded alarmingly over the last 4 decades.

The lack of long-term air quality monitoring networks in
many African countries has made it difficult to acquire reli-
able long-term air quality data (Petkova, 2013; Pope et al.,
2018; Singh et al., 2020), and little is currently known about

the levels of air contamination in the region’s large urban
conurbations (Burroughs Peña and Rollins, 2017). However,
the paucity and sometimes complete absence of reliable data
on air pollution levels make it difficult to quantify the magni-
tude of the problem. Consequently, it is difficult for local and
national authorities to plan possible improvement measures
for the mitigation of anthropogenic emissions. Even if impor-
tant steps forward have been made to improve the knowledge
available regarding anthropogenic emissions and the emis-
sion inventories for Africa used for numerical simulations
and forecasts of air quality (Assamoi and Liousse, 2010; Li-
ousse et al., 2014; Marais and Wiedinmyer, 2016), the lack of
surface observations to validate the emission magnitude and
the simulated concentrations make these inventories suscep-
tible to large error.

In this work, we test a meteorological and a chemistry
transport model (CTM) to simulate the hourly urban and
rural levels of PM2.5 in three SSEA urban conurbations
during a monthly period in 2017. We present the valida-
tion results for both models for the capital cities of Kenya,
(Nairobi), Ethiopia (Addis Ababa), and Uganda (Kampala)
against observational data. For Nairobi, we compare model
outputs with observations from rural and roadside site obser-
vations collected during the “A Systems approach to Air Pol-
lution in East Africa” research project (ASAP-East Africa –
https://www.asap.uk.com/ (last access: 14 May 2022), here-
after called ASAP) (Pope et al., 2018). For Addis Ababa and
Kampala, the model was validated using hourly observations
of PM2.5 collected by the respective US embassies.

We also assess the suitability of the CTM as a decision
support tool for policymakers to plan possible mitigation
policies oriented to quantify the real level of air pollution in
urban areas as well as the human exposure to PM2.5. Specif-
ically, in terms of the accuracy of the model, we estimate
the daily WHO threshold limit exceedances of PM2.5 in the
three urban conurbations. Finally, for the particular case of
Nairobi, we evaluate the average air quality indices by local
constituency for the whole analysis period, giving new in-
sight into the real level of air contamination in Nairobi and
into the relative population exposed to harmful levels of air
contamination.

2 Material and methods

The meteorological and chemistry transport models em-
ployed in this work have been configured to simulate hourly
weather parameters and concentrations of PM2.5 using avail-
able input data for the simulations and using observations
from the real world for the validation. The observations for
the validation of both models are available from different
providers; therefore, they have different temporal frequencies
and, in the case of PM2.5 observations, come from different
environments (rural, urban, and roadside sites). No vertical
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Figure 1. The spatial distribution of the PM2.5 emissions from
the DICE–EDGAR merged emission inventory for East Africa for
the WRF domain at a 18× 18 km resolution. The continuous white
lines show the location of the first nested domain at a 6× 6 km res-
olution used in WRF–CHIMERE. The dashed white squares give
the locations of the second nested domains at a 2× 2 km resolu-
tion centred on Addis Ababa (Ethiopia, white triangle), Kampala
(Uganda, white square), and Nairobi (Kenya, white circle) used for
WRF–CHIMERE.

observations were available for the validation of both mod-
els.

2.1 The Weather Research and Forecasting (WRF)
meteorological model

The Weather Research and Forecasting (WRF) model is a
numerical model for weather predictions and atmospheric
simulations that is used both commercially and for research
purposes, including by the US National Oceanic and Atmo-
spheric Administration (Powers et al., 2017; Skamarock et
al., 2008).

WRF was employed to drive the meteorology for
CHIMERE using three geographical domains at different
resolutions (from 18× 18 to 2× 2 km) that were vertically
divided into 30 levels, 9 of which were below 1500 m.
The first external domain has an 18× 18 km spatial resolu-
tion (Fig. 1), with three nested domains at a 6× 6 km res-
olution centred on the three countries of interest (Fig. 1,
white squares). Three further nested domains with a 2× 2 km
resolution centred on Addis Ababa, Kampala, and Nairobi
(Fig. 1, white dashed squares; Fig. 2) are the focus of the
analysis.

The configuration adopted for the WRF simulations has
been chosen according to previous work focused on East
Africa (Kerandi et al., 2016, 2017; Pohl et al., 2011) and

is summarised in Table 1. The Yonsei University Scheme
(YSU – Hong et al., 2006) was chosen to represent the
planetary boundary layer while the Community Atmosphere
Model (CAM – Collins et al., 2004) was used for the long-
and short-wave radiation scheme. Initial and boundary condi-
tions for the external coarse domain at 18× 18 km were ob-
tained from the National Centers for Environmental Predic-
tion (NCEP) Final (FNL) Operational Global Analysis data
(Wu et al., 2002). Boundary condition for the first (6× 6 km)
and second (2× 2 km) nested domains were taken from the
respective parent domains using a two-way nesting approach.
This process enables the lateral conditions for the internal
domains to be calculated from the outputs of the respective
parent domains at lower resolution at every time step of the
simulation.

The land use option chosen for the simulations was NOAH
(Tewari et al., 2004), while the WRF single–moment 3–class
scheme (WSM3) for clouds and ice proposed by Hong et
al. (2004) was chosen for the reproduction of the microphys-
ical processes in WRF.

2.2 The CHIMERE chemistry transport model

CHIMERE, version 2017r4 (Mailler et al., 2017), is an Eule-
rian numerical model for reproducing three-dimensional gas-
phase chemistry and aerosol processes of formation, disper-
sion, and wet and dry deposition over a defined domain with
flexible spatial resolutions. CHIMERE has been used for a
number of comparative research studies of ozone and PM10
from the continental scale, (Bessagnet et al., 2016; Zyryanov
et al., 2012) to the urban scale (van Loon et al., 2007; Vautard
et al., 2007; Mazzeo et al., 2018). Furthermore, the model
has been used for event analysis, scenario studies (Markakis
et al., 2015; Trewhela et al., 2019), forecasts, and impact
studies of the effects of air pollution on health (Valari and
Menut, 2010) and vegetation (Anav et al., 2011). The au-
thors highlight that version 2017r4 of CHIMERE is adopted
in this study, which was the most recent version available at
the time that the present work was realised.

The CHIMERE model has been used to simulate the first
nested domains at a 6× 6 km spatial resolution and the sec-
ond nested domains at a 2× 2 km spatial resolution. The
configuration adopted in this work uses initial and boundary
conditions from the LMDz-INCA global three-dimensional
chemistry transport model (Hauglustaine et al., 2004), for
both gaseous pollutants and aerosols, for the most external
domain at a 6× 6 km resolution, whereas the boundary con-
ditions are calculated from model outputs of the parent do-
mains for the most internal domains at a 2× 2 km resolution.
The complete chemical mechanism used for all of the simu-
lations was SAPRC-07-A (Carter, 2010), which can describe
more than 275 reactions of 85 species. SAPRC-07-A is the
most recent chemical mechanism available for CHIMERE
version 2017r4.
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Figure 2. The second nested domains at a 2× 2 km spatial resolution centred on the cities of (a) Addis Ababa (ETH2K), (b) Kampala
(UGA2K), and (c) Nanyuki and Nairobi (KEN2K) created using the WRF model outputs. The red dots represent the locations of PM2.5
measurements. The blue, yellow, and green dots refer to the location of the ground weather stations used for the meteorological validation
in Ethiopia, Uganda, and Kenya respectively. The numbers relate to the stations detailed in Table 2. Contour lines are relative to the height
(metres above ground level) from WRF outputs, and the colour scale applied to the maps in panels (a), (b), and (c) represents the 21 land use
classification classes adopted in WRF simulations. The description of each land use category is provided the legend.

Horizontal and vertical diffusion is calculated using the
approach suggested by Van Leer (1979), and the ISOR-
ROPIA thermodynamic equilibrium model (Nenes et al.,
1998) is used for the particle and gas partitioning of semi-
volatile inorganic gases. The model permits the calculation
of the thermodynamical equilibrium between sulfates, ni-
trates, ammonium, sodium, chloride, and water depending
upon temperature and relative humidity data.

Dry deposition and wet deposition are calculated in
CHIMERE. The particle dry-deposition velocities are cal-

culated as a function of particle size and density as well as
relevant meteorological variables, including deposition pro-
cesses, such as turbulent transfer, Brownian diffusion, im-
paction, interception, gravitational settling, and particle re-
bound (Zhang et al., 2001). Wet deposition is modelled us-
ing a first-order decay equation, as described in Loosmore
and Cederwall (2004).

Radiative transfer processes are accounted for in
CHIMERE using the Fast-JX model (Wild, 2000; Bian and
Prather, 2002). Fast-JX has also been applied in other mod-
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Table 1. Main configuration parameters adopted for the WRF–CHIMERE modelling system for all simulations.

WRFv3.9.1 configuration

Initial and boundary conditions GFS FNL reanalysis Wu et al. (2002)
PBL parameterisation YSU Hong et al. (2006)
SW and LW radiation scheme CAM Collins et al. (2004)
Land use NOAH Tewari et al. (2004)
Microphysics scheme WSM3 Hong et al. (2006)
Vertical levels 30 30

CHIMERE2017r4 configuration

Initial and boundary conditions LMDz-INCA Hauglustaine et al. (2004)
Anthropogenic emissions EDGARv3.4.1–DICE-Africa Crippa et al. (2018); Marais and Wiedinmyer (2016)
Biogenic emissions MEGAN Guenther et al. (2006)
Gas and aerosol partitioning ISORROPIA Nenes et al. (1998)
Secondary organic aerosols 1 Pun et al. (2006)
Radiative transfer Fast-JX Wild et al. (2000); Bian and Prather (2002)
Chemistry mechanism SAPRC-07-A Carter (2010)
Horizontal and vertical transport scheme VanLeer Van Leer (1979)
Vertical levels 30 30

The abbreviations used in the configuration column in the table are as follows: PBL – planetary boundary later, SW – short-wave, and LW – long-wave.

els (Voulgarakis, 2009; Real and Sartelet, 2011; Telford et
al., 2013). The photolysis rates calculated by the Fast-JX
model are validated both inside the limits of the boundary
layer (Barnard, 2004) and in the free troposphere (Voulgar-
akis, 2009).

Secondary organic aerosols (SOAs), including biogenic
and anthropogenic precursors, are modelled in CHIMERE as
described by Pun et al. (2006). SOA formation is represented
as a single-step oxidation of the precursors, differentiating
between hydrophilic and hydrophobic SOAs in the partition-
ing formulation. Finally, biogenic emissions were taken in
account within CHIMERE using MEGAN (Model of Emis-
sions of Gases and Aerosols from Nature) model outputs, as
described by Guenther et al. (2006).

2.3 Emission inventories

To correctly describe the impact of anthropogenic emis-
sions on the urban air quality of Nairobi, Kampala, and Ad-
dis Ababa, industrial and on-grid power generation emis-
sions from the Emissions Database for Global Atmospheric
Research inventory (hereafter referred to as EDGAR, ver-
sion 3.4.1) (Crippa et al., 2018) were combined with non-
industrial, prominent combustion sources from the Diffusive
and Inefficient Emission inventory for Africa (hereafter re-
ferred to as DICE) (Marais and Wiedinmyer, 2016).

EDGAR is a global inventory developed for the year 2012,
whereas DICE is a regional inventory for 2013. DICE
includes important sources in Africa (e.g. motorcycles,
kerosene use, open waste burning, and ad hoc oil refining,
among others) that are absent or misrepresented in global in-
ventories. Both inventories represent the most up-to-date an-

thropogenic emission information available for East Africa
at the time that the air quality model was used for this work.
Both inventories have a 0.1× 0.1◦ spatial resolution and pro-
vide annual totals of the anthropogenic emissions for relevant
gases and aerosols.

On the one hand, EDGAR provides emission data for
CO, NO, NO2, SO2, NH3, non-methane volatile organic
compounds (NMVOCs), black carbon (BC), organic carbon
(OC), PM10, and PM2.5 as annual totals divided by the sec-
tor according to the 1996 Intergovernmental Panel on Cli-
mate Change (IPCC) classification. All human activities with
the exception of large-scale biomass burning are included in
EDGAR (Crippa et al., 2018). On the other hand, DICE pro-
vides emissions from particular diffuse and inefficient com-
bustion emission sources (e.g. road transport, residential bio-
fuel use, energy production, and charcoal production and
use) for gaseous pollutants (CO, NO, NO2, SO2, NH3, and
NMVOCs) and aerosols (BC and OC). Seasonal biomass
burning, which is considered to be large pollution source in
Africa, is included in DICE as comparable emissions of black
carbon (BC) and higher emissions of NMVOCs. Emissions
from DICE were used to provide annual total emissions for
particular emission sources considered to be misrepresented
or missing in a global inventory such as EDGAR.

The preparation of the final emission inventory was carried
out in two steps. First, the DICE and EDGAR inventories
were merged, by pollutant and by sector, following the ap-
proach suggested by Marais and Wiedinmyer (2016). PM2.5
emissions are included in DICE as individual components of
OC and BC, but they need to be expressed as lumped PM2.5
in CHIMERE. Therefore PM2.5 was calculated as the sum
of OC (originally present in DICE), multiplied by a conver-
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Figure 3. Annual totals for the DICE–EDGAR merged emission
inventory for the year 2017 calculated using the 18× 18 km spatial
domain shown in Fig. 1.

sion factor (c = 1.4; following Pai et al., 2020) to represent
organic aerosol emissions, and summed with BC (originally
present in DICE), as follows:

PM2.5 = (OC× c)+BC. (1)

Secondly, the emisurf2016 preprocessor of CHIMERE was
used to scale the emissions from the original 0.1× 0.1◦

(∼ 10 km) resolution to the final resolution of each domain
simulated (6× 6 and 2× 2 km) using population density
data provided by the Socioeconomic Data and Applications
Centre (SEDAC; http://sedac.ciesin.columbia.edu/, last ac-
cess: 20 April 2022) as a proxy for the spatial distribution.
SEDAC provides population density maps at high resolution
(1× 1 km) for the years 2010, 2015, and 2020. The SEDAC
population density data calculated for most internal domains
at 2× 2 km (Fig. 2) suggest a total population of 7 million for
Nairobi, 4.8 million for Kampala, and 4.5 million for Addis
Ababa for 2010. These respective totals grow to 8.1, 5.9, and
5.0 million for 2015 and to 9.4, 7.3, and 5.7 million for 2020.
The original SEDAC data were used for a linear extrapola-
tion of the population density data to the target year 2017,
and they were employed by emisurf2016 for the spatial allo-
cation of the emissions. Additionally, emisurf2016 permitted
the temporal distribution of the original total annual emis-
sion rates according to seasonal, weekly, and daily variation
profiles. The resulting merged inventory (hereafter, DICE–
EDGAR) totals by pollutant and sectors for the most external
domain at a 18× 18 km resolution are shown in Fig. 3.

Biogenic emissions and mineral dust considered in this
work have been calculated in line by CHIMERE. The for-
mer are calculated using MEGAN model outputs, as de-
scribed by Guenther et al. (2006), whereas the latter are cal-
culated using the US Geological Survey (USGS) land use
database provided by CHIMERE. The soil is represented by
relative percentages of sand, silt, and clay for each model
cell. The USGS database, called STATSGO-FAO, accounts
for 19 different soil types recorded in the global database
with a native resolution of 0.0083× 0.0083◦. To have homo-

geneous data sets, the STATSGO-FAO data are regridded to
the CHIMERE simulation grids. For mineral dust emission
calculations, the land use is typically employed to provide a
desert mask specifying what surface is potentially erodible.

The emissions used in this work might not reflect the true
values due to missing emission sources and the mismatch be-
tween the simulated time period and the date of the emission
inventories. The lack of up-to-date national emission inven-
tories collected at a sufficient resolution, in addition to the
lack of research sources providing projections of emissions
for 2017, meant that it was not possible to generate more de-
tailed information about the anthropogenic sources of emis-
sions for East Africa.

It is noted that the time stamps of the anthropogenic emis-
sions and the validation period are different: the emissions
are relative to the year 2013, whereas the observation used
for the validation are for 2017. In the absence of additional
data and due to the lack of national or local mitigation poli-
cies in the three countries, we assume that the differences be-
tween the time stamps do not make a large difference to the
emission estimates. More detailed analysis of the emission
sources and the implementation of possible mitigation poli-
cies at national and local levels could change this situation in
the future.

Finally, we recall that one of the main objectives of the
present work is to evaluate the performance of the WRF and
CHIMERE models with respect to reproducing meteorology
and air pollution levels in urban conurbations using the most
up-to-date available data, thereby providing new insight into
the state of the art of numerical modelling for air quality
in this area of the world and highlighting possible improve-
ments for future works.

2.4 Weather and chemistry observations

The WRF and CHIMERE models have been validated
for a limited monthly period between 14 February and
14 March 2017. This period was chosen due to the availabil-
ity of continuous measurements for the validation of both
models. While WRF observations with a frequency from 3
to 6 h are available from the UK Met Office Integrated Data
Archive System (MIDAS) database (MetOffice, 2012) for
different locations, PM2.5 observations that last over 1 month
with a measurement frequency of 1 h from different environ-
ments (e.g. rural, urban, or roadside sites) are rarer.

The period chosen for the simulation of meteorology has
to be representative of the average weather conditions of
the analysed area and must avoid unusual weather condi-
tions (e.g. extreme events) that could impact the physical
and chemical processes described in the CTM as well as the
final concentrations of secondary pollutants simulated. The
February to March time period in East Africa does not have
extreme temperatures (mean temperature of approximately
10–25 ◦C depending on the country), and there is little rain-
fall that could affect the observations of weather conditions
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and PM2.5 concentrations (FEWS NET, 2022). These condi-
tions and the absence of alternative data covering a large time
frame for the validation of CHIMERE constrained the period
of simulation to the above-mentioned time span.

Observations of temperature, wind speed, and wind direc-
tion used for the validation of WRF were taken from the MI-
DAS database. Data from 11 weather stations, 3 respective
stations for the Ethiopian (hereafter ETH2K; Fig. 2a) and
Ugandan (hereafter UGA2K; Fig. 2b) domains and 5 for the
domain of Kenya (hereafter KEN2K; Fig. 2c), were used to
validate the simulations at a resolution of 2× 2 km (Table 2).

The ground stations are at different altitudes above sea
level to a maximum of 2355 m (e.g. the Harar Meda station in
Ethiopia – station no. 2 in Fig. 2a). The validation was per-
formed by comparing model outputs with observations for
the variables, namely surface temperature, wind speed and
wind direction, and relative humidity. The latter, which is
not originally available in the MIDAS data set, was calcu-
lated using the coefficients proposed by Alduchov and Es-
kridge (1996) based on hourly surface and dew point tem-
perature observed values and then compared with modelled
data obtained by WRF.

Hourly concentrations of PM2.5 were used for the val-
idation of CHIMERE for the three internal domains at
2× 2 km (Fig. 2). For the city of Nairobi, data from road-
side background site located at Tom Mboya Street were used
(1.28◦ S, 36.82◦ E), while data from the rural background
were provided by a site located in Nanyuki, Kenya (0.01◦ N,
37.07◦ E). Data from both field sites were obtained from the
field sampling campaign performed by Pope et al. (2018).
For the urban background locations of Addis Ababa and
Kampala, hourly PM2.5 concentrations were obtained from
the air quality monitoring stations of the two US embassies in
Ethiopia (9.05◦ N, 38.76◦ E) and Uganda (0.30◦ N, 32.59◦ E)
using optical counters. Data from Uganda and Ethiopia were
used to compare the configuration applied to CHIMERE for
Kenya with the two other countries (Table 2).

2.5 Statistical parameters

In this work, we use different statistical operators to eval-
uate the performance of the WRF and CHIMERE models
with respect to reproducing the main surface weather param-
eters and hourly and daily concentrations of PM2.5 in differ-
ent urban and rural environments. The statistical analysis for
both WRF and CHIMERE has been done by calculating the
statistics for each station individually and then averaging all
station together. The calculation has been done on the origi-
nal hourly values from observations and model outputs, and
it considers hourly values from the model only if the corre-
sponding hourly observation is present. The Pearson coeffi-
cient (R; Eq. 2), the index of agreement (IOA; Eq. 3), the
mean fractional bias (MFB; Eq. 4), and the mean fractional
error (MFE; Eq. 5) statistical parameters have been used for

the calculations.

R
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The MFB and MFE, in particular, are metrics specifically
used for the evaluation of the numerical system for atmo-
spheric chemistry and meteorology. They normalise the bias
and the error for each model–observation pair by the aver-
age of the modelled and observed values before taking the
final average. The advantages of these metrics are that the
maximum bias and errors are bounded and that the impact
of outlier data points are minimised. Moreover, the metrics
are symmetric, thereby giving equal weight to concentrations
that are simulated higher than observations and to concentra-
tions that are simulated lower than observations.

The MFB and MFE have been expressed in terms of model
performance “goals” and model performance “criteria” val-
ues, according to the methodology proposed by Boylan and
Russell (2006). The performance goal for the modelling
system is set as MFE≤ 50 % and MFB≤± 30 %. Within
this range, the model performance with respect to repro-
ducing the correct magnitude of the concentrations can be
considered good. A second larger range of values (called
criteria) is set as MFE≤ 75 % and MFB ≤± 60 %. Val-
ues within this range correspond to average model perfor-
mance. Finally, values within the range of MFE > 75 % and
−60 % > MFB >+60 % represent poor representation by
the model.

2.6 Model resolution and simulation design

The WRF and CHIMERE models run at spatial resolutions
of 18× 18, 6× 6, and 2× 2 km for meteorology and at 6× 6
and 2× 2 km for chemistry for the three East African do-
mains. However, the statistical analysis shown in the follow-
ing sections describes the validation results for the three in-
ternal domains at a resolution of 2× 2 km, as these are the
focus of the present work.

Ground weather stations from the MIDAS database, in-
cluded in the 2× 2 km domains of all countries, were anal-
ysed individually and are shown as the average of all stations.
The time series and wind roses are relative to the closest sta-
tions from the MIDAS database to each urban city centre of
the three capital cities, namely Addis-Bole (station no. 1 in
Table 2), Kampala (station no. 5 in Table 2), and Nairobi air-
port (station no. 7 in Table 2).
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Table 2. The UK Met Office ground weather stations used for the validation of the 2× 2km domains. “Station no.” corresponds to the
position of each station shown in Fig. 2a, b, and c including the PM2.5 observation points in the urban domains of Addis Ababa, Kampala,
and Nairobi used for the validation of CHIMERE model.

Station Domain Name Latitude Longitude Elevation
no.

1 ETH2K Addis-Bole 0.03◦ N 38.75◦ E 1900 m

2 Harar Meda 8.73◦ N 38.95◦ E 2355 m

3 Metehara 8.87◦ N 39.90◦ E 930 m
US embassy (PM2.5 – urban background) 9.05◦ N 38.76◦ E 1900 m

4 UGA2K Entebbe (airport) 0.05◦ N 32.45◦ E 1155 m

5 Kampala 0.32◦ N 32.62◦ E 1144 m

6 Jinja 0.45◦ N 33.18◦ E 1175 m
US embassy (PM2.5 – urban background) 0.30◦ N 32.59◦ E 1150 m

7 KEN2K Nairobi (airport) 1.32◦ S 36.92◦ E 1624 m

8 Embu 0.50◦ S 37.45◦ E 1493 m

9 Nakuru 0.27◦ S 36.10◦ E 1901 m

10 Nyeri 0.50◦ S 36.97◦ E 1759 m

11 Narok 1.13◦ S 35.83◦ E 2104 m
Tom Mboya Street (PM2.5 – roadside) 1.28◦ S 36.82◦ E 1795 m
Nanyuki (PM2.5 – rural background) 0.01◦ N 37.07◦ E 1947 m

Initially, the performance of CHIMERE was analysed for
the domain of Kenya for which hourly concentrations of
PM2.5 were taken from two different sites (roadside and ru-
ral) from the field sampling campaign described by Pope
et al. (2018). Secondly, the same configuration adopted for
Kenya was used for Ethiopia and Uganda to test both the ho-
mogeneity of the emission rates under different urban con-
ditions and the configuration chosen for CHIMERE under
different urban and environmental conditions. At this stage
of the validation, a daily threshold limit of 25 µg m−3 for
PM2.5, provided by WHO (WHO, 2005), was used to quan-
tify the number of exceedances observed and modelled by
CHIMERE for the three cities.

The validation process was hindered by the highly vari-
able quantity and quality of available meteorological data.
The majority of the weather observations are provided on a
3-hourly basis, with varying amounts of missing data. De-
spite this, the statistical evaluation of WRF was performed
by comparing model simulations and observations only when
the latter were available. We recall that the objective of this
work aims to test the performance of a modelling system with
respect to the simulation of air quality at high resolution for
East Africa, updating and/or using the available input data
available and assessing the possible adoption of these tools
for air quality policymaking with this extent of data.

3 Results and discussion

3.1 Validation of the WRF simulations

In order to assess the performance of WRF in simulating sur-
face temperature, relative humidity, wind speed, and wind
direction, the model simulation outputs were compared with
all of the available ground weather station data available for
the period of analysis (14 February to 14 March 2017).

3.1.1 Statistical evaluation of WRF performance

A statistical analysis, in terms of the mean fractional bias
(MFB), mean fractional error (MFE), index of agreement
(IOA), and Pearson coefficient (R), was carried out to com-
pare modelled and observed values for the domain at a
2× 2 km resolution by averaging the observed and modelled
values from all of the stations present in each domain (Ta-
ble 3). We recall that the number and location of the stations
is variable between the three domains (three respective sta-
tions for ETH2K and UGA2K and five stations for KEN2K).

The results of the statistical analysis show that WRF more
successfully reproduces the mean levels of surface tempera-
ture for the Ethiopian (ETH2K) and Ugandan (UGA2K) do-
mains, with a mean underestimation over the three domains
of 1.4 and 1.5 ◦C respectively, then for Kenya (KEN2K),
where it shows an underestimation of 4.1 ◦C. However, the
higher bias in surface temperature found in the average of all
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five Kenyan stations is highly driven by particularly poor rep-
resentation of this variable at the observation point of Narok
(station no. 11 in Fig. 2c), where the bias between the sim-
ulated and observed values is 10.9 ◦C. A reason for this bias
may be the fact that the location of the above-mentioned sta-
tion is at the highest altitude of all of the Kenyan weather sta-
tions (2104 m a.g.l.). Narok is located around 140 km west of
Nairobi, and the high bias in temperature should not have any
effect on the levels of temperature modelled in the capital of
Kenya, where the bias for the individual station of Nairobi
(station no. 7 in Fig. 2c) found was 1.3 ◦C.

WRF overestimates relative humidity by 0.2 % in KEN2K,
whereas it underestimates relative humidity by 6.4 % in
ETH2K and by 7.5 % in UGA2K (Table 3). Wind direction
for the three domains show the presence of northerly winds
in UGA2K, which is correctly captured by the model, with a
difference of around 4◦ in comparison with the observations;
an average easterly wind component in KEN2K, which is
partially reproduced by the model, that allocates the average
wind direction to a more south-easterly component, with a
difference of around 40.2◦; and a closer modelled and ob-
served average wind direction in ETH2K, with a difference
of 4.2◦ and a south-easterly prevailing wind component. The
observed and modelled wind speeds in UGA2K, KEN2K,
and ETH2K suggest a model overestimation of 0.9, 0.8, and
0.2 m s−1 respectively (Table 3).

The mean fractional error calculated for the three domains
is within the limit of the goal range for both surface tempera-
ture and relative humidity, with values between 30 and 35 for
the former and 11 and 27 for the latter variable. On the other
hand, the MFE values for wind speed and direction are more
variable depending on the domain. While MFE values for
wind direction were within the criteria range for all domains,
only KEN2K and ETH2K were within this range for wind
speed; the wind speed in UGA2K was found to be outside
of the acceptability range with respect to model performance
(Table 3).

The same analysis done taking the mean fractional bias in
account shows values within the goal range for surface tem-
perature for the three domains, although overestimated by
the model for UGA2K (0.17) and underestimated for ETH2K
(−5.38) and KEN2K (−24.25). The same behaviour was also
found for the relative humidity: it is underestimated in the
three domains but has MFB values within the goal criteria.
Finally, wind speed and direction are both found to be within
the MFB goal range for ETH2K, KEN2K shows values of
both variables within the criteria range, and UGA2K shows
wind direction values in the criteria range but wind speed val-
ues outside of the acceptability range with respect to model
performance (Table 3).

The calculated Pearson coefficient (R) shows the capabil-
ity of the model with respect to reproducing the minimum
and maximum peaks of different variable values. The R val-
ues were found to vary between 0.1 and 0.7 for the three
domains. The reproduction of the maximum and minimum

relative humidity values was better for ETH2K, where the R

value was found to be approximately 0.7, whereas the low-
est R values were found for UGA2K (0.3). A similar trend
was also found in the description of the surface temperature,
with better reproduction of the maximum and minimum val-
ues in ETH2K (0.6), followed by KEN2K (0.5) and UGA2K
(0.3). For wind speed, the highest R coefficient value was
found for KEN2K (0.5), and the lowest value was found for
for UGA2K (0.1). For wind direction, the highest R value
was found for UGA2K (0.3), while values of approximately
0.2 were found for the other two domains (Table 3).

Finally, the evaluation of the index of agreement (IOA)
shows values for surface temperature of between 0.31
(KEN2K) and 0.53 (ETH2K) and values for relative hu-
midity of between 0.44 and 0.47 for the three domains.
For wind speed and direction, the IOA varies between 0.39
(UGA2K) and 0.46 (ETH2K) for the former and between
0.26 (UGA2K) and 0.41 (KEN2K) for the latter. The com-
parison of the index of agreement between the three domains
suggests that model performance is better with respect to re-
producing drier areas such as ETH2K and KEN2K in com-
parison with UGA2K where the influence of the Lake Victo-
ria seems to impact the overall statistical analysis. The per-
formance of WRF with respect to reproducing the general
conditions of wind speed and direction between the three do-
mains is more variable.

3.1.2 Hourly variation in temperature and relative
humidity

The three Met Office stations providing weather observa-
tions closest to the urban areas of Addis Ababa, Kampala,
and Nairobi have been analysed individually in the form of
hourly time series of surface temperature and relative humid-
ity as well as wind roses for wind speed and direction.

The hourly surface temperature and relative humidity are
shown in Fig. 4 for the three ground weather stations closest
to the centre of the three cities: Addis-Bole (station no. 1
in Fig. 2a), Kampala (station no. 5 in Fig. 2b), and Nairobi
(station no. 7 in Fig. 2c).

The temperature range observed at the three stations was
between 9 and 27◦ C for Addis-Bole, between 16 and 31◦ C
for Kampala, and between 16 and 33◦ C for Nairobi. By in-
spection of Fig. 4, it can be seen that the WRF model is able
to reproduce the main diurnal cycle of variation in tempera-
ture and relative humidity for the three ground weather sta-
tions. Surface temperature peaks are slightly underestimated
by the model for the three stations, with a small mean bias at
the three stations of between −0.06 and −0.1◦ C. The high-
est agreement between the modelled and observed values is
for Kampala, whereas the model tends to almost systemati-
cally underestimate the diurnal peaks of surface temperature
for the Addis-Bole and Nairobi stations.

The mean relative humidity observed at the three stations
shows different ranges of excursion from the model predic-

https://doi.org/10.5194/acp-22-10677-2022 Atmos. Chem. Phys., 22, 10677–10701, 2022



10686 A. Mazzeo et al.: Evaluation of the WRF and CHIMERE models for the simulation of PM2.5 in East Africa

Table 3. Statistical analysis of relative humidity, surface temperature, wind speed, and wind direction averaged over all of the available
weather stations for the second nested domains of UGA2K, KEN2K, and ETH2K at a 2× 2 km resolution. The mean observed and modelled
values, the Pearson coefficient (R), the index of agreement (IOA), the mean fractional bias (MFB), and the mean fractional error (MFE) are
shown.

Relative humidity (%) Temperature (◦C)

UGA2K KEN2K ETH2K UGA2K KEN2K ETH2K

Observed mean 68.2 63.1 51.3 24.5 23.2 22.7
Modelled mean 60.7 63.3 44.9 23.0 19.1 21.3
MFB −21.52 −21.36 −33.02 0.17 −24.25 −5.38
MFE 30.08 32.25 35.56 12.50 27.94 11.34
IOA 0.44 0.44 0.47 0.43 0.31 0.53
R 0.3 0.4 0.7 0.3 0.5 0.6

Wind direction (◦) Wind speed (m s−1)

UGA2K KEN2K ETH2K UGA2K KEN2K ETH2K

Observed mean 6.8 91.5 104.0 2.5 2.7 3.5
Modelled mean 2.8 131.7 99.8 3.4 3.5 3.7
MFB 32.02 −30.57 −9.94 91.25 36.83 18.89
MFE 62.01 70.55 60.18 94.59 54.35 50.63
IOA 0.39 0.40 0.46 0.26 0.41 0.31
R 0.3 0.2 0.2 0.1 0.5 0.4

tions depending on the characteristics of the environment:
Addis-Bole station shows higher variation, from 15 % to
98 %; values at Nairobi station vary between 17 % and 98 %;
and values at Kampala vary between 19 % and 99 %. From
Fig. 4, it may be seen that relative humidity variation over
time is correctly captured by WRF for the Nairobi and Addis-
Bole stations; however, both the diurnal peaks and the night-
time minimum values seem not to be correctly reproduced
by the model, which tends to overestimate the former and
underestimate the latter with a bias of between −0.1 % and
0.004 %. Moreover, WRF appears systematically to underes-
timate the relative humidity for the Kampala station, show-
ing a mean negative bias. Different reasons could affect the
underestimation of the relative humidity at this station. The
sensitivity of the WRF model to the land use data (Teklay et
al., 2019) connected with the proximity of Kampala to Lake
Victoria, which is a massive inland body of water (surface
area of 68 800 km2), could influence the local variation in
relative humidity in ways which are not well reproduced by
the model. The influence of Lake Victoria and of the Kam-
pala’s complex topography on measurements of relative hu-
midity has previously been highlighted by Singh et al. (2020)
in relation to monthly visibility connected with PM levels. It
has to be noted that relative humidity was calculated from
surface temperature and dew point values, following Aldu-
chov (1996), and not directly sampled. A better agreement in
the simulation of relative humidity from WRF can be found
for the station of Entebbe (station no. 4 in Fig. 2b), where
the mean normalised bias shows a small underestimation of
0.04 %.

Wind speed and direction from the urban stations of Ad-
dis Bole (station no. 1 in Fig. 2a), Kampala (station no. 5 in
Fig. 2b), and Nairobi (station no. 7 in Fig. 2c) are shown in
Fig. 5 in the form of wind roses. For Nairobi, WRF can re-
produce average wind directions in close agreement with the
observed data for the analysed period, showing the predomi-
nant presence of north-north-easterly winds with high speed
(> 4.0 m s−1). Wind speed observations from the ground
weather station of Kampala also suggest a strong southerly
wind component (> 4.0 m s−1), while the model seems to re-
produce a similar magnitude with respect to wind speed but
with a larger range of directions, from the south-south-east to
the south-south-west. For Addis Ababa, WRF seems able to
capture and reproduce the main wind directions observed for
the simulated period (e.g. easterly and north-easterly winds).
However, slower winds (between 0.2 and 2.0 m s−1) with
a strong north-northeasterly component do not seem to be
replicated by the model for the station located inside the cap-
ital of Ethiopia.

The lower agreement in the reproduction of the wind speed
and direction for the Addis-Bole and Kampala stations can
be connected to the particular locations of both stations. The
difference in the location of the observations can, in fact,
influence rapid changes in the direction and speed that are
recorded locally but are not reproduced by the model. In the
case of Kampala, the Entebbe airport is located near the coast
of Lake Victoria where the local wind conditions are more
susceptible to variation and can be erroneously reproduced
by the model. In the case of Addis-Bole, the only station in
an urban area, the urban topography and possible canyon ef-
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Figure 4. Hourly time series of (a) surface temperature and (b) relative humidity for the closest ground weather stations to the urban centres
of Addis Ababa (station no. 1 in Fig. 2a), Kampala (station no. 5 in Fig. 2b), and Nairobi (station no. 7 in Fig. 2c). Comparisons between
the modelled values (blue lines) obtained from the 2× 2 km domains and hourly observations (orange spots) from the MIDAS database are
shown.

fects of the wind can be not well captured by the model; in-
stead, the model reproduces a more constant range of wind
speed and direction and does not account for quick variations
at low speed that are observed at the station.

The results obtained from the validation of the meteoro-
logical simulations performed over East African domains us-
ing WRF show that the model is, on average, able to repro-
duce all four of the considered variables, providing values
close to the observed data in the 2× 2 km domains, with vari-
able agreement between the three cities. The highest agree-
ment in the weather analysis has been found for surface tem-
perature, with similar biases to Kerandi et al. (2017), and rel-
ative humidity, similar to Pohl et al. (2011), which is suffi-
ciently accurate to be able to use these values for the physical
calculations done by the chemistry transport model.

Nevertheless, more detailed analysis of the urban weather
stations revealed discrepancies in the reproduction of relative
humidity and wind direction for Kampala station (UGA2K)
that could affect the deposition, removal, and transport pro-
cesses simulated by CHIMERE; this will be the subject of
future investigation in order to further improve the meteoro-
logical performance of WRF. Even if the bias found for some
variables in the calculation of the averaged statistics over all
stations was high, the individual weather stations close to the
urban areas of interest showed smaller bias values as well as
MFB and MFE values within the goal or criteria range of per-
formance; therefore, these values are considered acceptable
for the simulations.
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Figure 5. Averaged wind roses for the whole analysis period (14 February to 14 March 2017) from the closest ground weather stations to
the urban centres of Nairobi (station no. 7 in Fig. 2c), Kampala (station no. 5 in Fig. 2b), and Addis Ababa (station no. 1 in Fig. 2a) (MIDAS
observations, top row) and from WRF simulations (model outputs, bottom row).

3.2 Validation of the CHIMERE simulations

The CHIMERE validation focused on the hourly levels of
PM2.5 modelled at the two observation sites in the KEN2K
domain, which are representative of a respective roadside
site and a rural background site, and also at the urban back-
ground observational sites of the US embassies of Kampala
(UGA2K) and Addis Ababa (ETH2K). The performance of
CHIMERE was also analysed in terms of the mean fractional
error (MFE), the mean fractional bias (MFB), and the Pear-
son coefficient (R) against the different average PM2.5 con-
centration levels at the four observation points in order to
evaluate the response of the model with respect to reproduc-
ing low and high hourly concentration levels in comparison
to observed values.

The validation of CHIMERE was done for the domains
at the highest resolution (2× 2 km), despite the availability
of emissions at a similar spatial resolution. This choice was
motivated by the necessity to validate the reliability of the
model against observed data from particular locations with
different backgrounds. In order to better configure the model
to represent the different urban and rural environments, it is
necessary to consider the uncertainties in the model repre-
sentation with respect to an observation point. One cause of

uncertainty when comparing modelling outputs with obser-
vations is the difference between a point measurement and
a volumetric grid-cell-averaged simulated concentration (Se-
infeld and Pandis, 2016). On the one hand, the extent of a
measurement point, in fact, represents only the extent of the
nearby points or an average concentration in a specified area.
On the other hand, a surface-level modelling grid typically
has the highest resolution of 1 km with a vertical height of
between 20 and 40 m, and the concentration represented by
the model is the average over the entire grid cell.

In the particular case of the East African domains,
CHIMERE simulates concentration values representative of
an average of 36 km2 at a coarse resolution (e.g. 6× 6 km),
which is difficult to compare with observations taken at a par-
ticular point. If the spatial resolution is increased to 2× 2 km,
the average value inside each grid cell will be representative
of a smaller area (e.g. as 4 km2) whose average value can be
closer compared to an individual observation point.

3.2.1 Statistical evaluation of model performance

The absolute bias between mean observed and modelled
concentrations of PM2.5 shows a model overestimation by
between 0.01 and 3.7 µg m−3 for the KEN2K domain for
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Nanyuki and Nairobi respectively as well as for Addis Ababa
(0.6 µg m−3). On the contrary, the model underestimates
PM2.5 by 7.2 µg m−3 for the UGA2K domain (Kampala) (Ta-
ble 4).

The MFB and MFE for the two Kenyan observation points,
Nairobi (roadside site) and Nanyuki (rural site), were found
to be within the goal performance criteria in both cases, with
MFE values of ≤ 50 % and MFB values of ≤± 30 %. The
respective hourly MFB and MFE values were 4.88 and 25.39
for Nairobi and 3.36 and 8.33 for Nanyuki, while the respec-
tive values found for the daily analysis were 0.1 and 1.99 for
Nairobi and 1.08 and 4.73 for Nanyuki.

The MFB and MFE analysis for the urban background site
in Addis Ababa showed values within the range of the goal
criteria for both the hourly (2.93 and 29.99 for MFB and
MFE respectively) and daily analysis (8.23 and 2.86 respec-
tively). Finally, for the urban background site of Kampala,
the MFB was found to be within the goal criteria for both the
daily (−11.28) and hourly (−7.60) analysis; for the MFE,
the hourly analysis showed a value within the criteria range
(32.99), but the daily MFE value was within the goal perfor-
mance range (22.06) (Table 4).

The highest Pearson coefficient (R) values were found in
Nanyuki, with hourly and daily values of between 0.91 and
0.93. The roadside site of Tom Mboya Street in Nairobi had
R values of between 0.35 and 0.38, while the urban back-
ground sites of Addis Ababa and Kampala had lower agree-
ment at an hourly level (R values were between 0.10 and 0.29
respectively) than at a daily level (R values of between 0.42
and 0.30 respectively).

In general, the statistical analysis demonstrates that the
model can reproduce the daily pattern of the hourly changes
in concentrations for the two pollutants at the three ur-
ban/roadside sites and the rural site considered. The low
R coefficient values obtained for the urban domains at the
hourly level suggest that sources of anthropogenic emissions
affecting urban air quality are still missing from the current
emission inventory. Further work will be focused on the im-
provement of the magnitude of the emissions in order to bet-
ter match the observed levels of particulate matter concentra-
tions at the urban level. Nevertheless, considering the daily
average concentrations at the urban sites, the R coefficients
were found to be between 30 % and 42 %, suggesting that
CHIMERE better reproduces the concentrations of PM2.5 us-
ing daily values compared with hourly values.

The performance of CHIMERE varies between the
Kenyan, Ugandan, and Ethiopian domains. The performance
of the model has been optimised during the validation for
the simulation of hourly concentrations of PM2.5 in Kenya,
and the same configuration has been applied to the Ugandan
and Ethiopian domains in order to compare the reliability of
the model. The difference in performance can be connected
to different reasons: (1) the difference in the sampling meth-
ods used for the two sites in Kenya compared with the mea-
surements taken at the US embassies in Kampala and Addis

Ababa, and (2) the location of the observation sites in the
cases of the US embassies and/or the possible influence of
local sources not accounted for in the emission inventories.

The agreement between the simulated and observed val-
ues is highest at the Nanyuki site. This location was chosen
by Pope et al. (2018) as rural site in an area with minimum
local air pollution, which is useful to calculate the net ur-
ban increment by subtracting the rural background concen-
trations of Nanyuki from the urban concentrations in Nairobi.
Therefore, they intentionally chose a site that would experi-
ence very low average concentrations. The model is able to
reproduce this low level of contamination well (close to re-
ality), and it is also able to reproduce contamination peaks
on particular days in February that were probably generated
elsewhere (see Sect. 3.2.2).

The MFB and MFE analyses have also been conducted at
an hourly level, comparing modelling outputs and observa-
tions from all six sites in relation to the magnitude of hourly
concentrations (Fig. 6).

There are some MFB values outside of the criteria range
for PM2.5 for the urban sites of Addis Ababa and Kampala
and for the roadside site of Tom Mboya Street in Nairobi. In
terms of the upper limit (MFB > 60 %), these values tend to
be concentrated between 60 and 130 µg m−3 for Tom Mboya
Street, between 40 and 55 µg m−3 for Kampala, and between
13 and 59 µg m−3 for Addis Ababa (Fig. 6). A much smaller
number of MFB values for the Addis Ababa and Kampala
sites are less than the lower criteria limit, and these val-
ues tend to be for lower concentrations of between 10 and
26 µg m−3.

MFE values outside of the ranges of criteria are be-
tween 42–55 and 80–130 µg m−3 for Tom Mboya Street, be-
tween 43 and 60 µg m−3 for Kampala, and between 13 and
59 µg m−3 for Addis Ababa (Fig. 6). The latter two sites
present more variability in the MFB and MFE compared with
the two Kenyan sites where a common positive bias of the
model in reproducing the highest concentration levels is vis-
ible. Therefore, the reliability of the model is higher for the
Kenyan domain, for both the rural and roadside site, than for
the two urban background sites in Uganda and Ethiopia.

The overall performance of the model against different
concentration levels is summarised in Table 5. The PM2.5 re-
produced at the two sites in KEN2K shows a higher percent-
age of values within the MFB and MFE performance goals
for the rural site of Nanyuki than for Tom Mboya Street (e.g.
97 % compared with 69 % and 99 % compared with 88 % for
the MFB and MFE measures respectively). For the criteria
measure, the corresponding percentages for the respective
MFB and MFE measures are 2 % vs. 22 % and 1 % vs. 7 %
(Table 5).

The percentages for the urban sites of Kampala and Ad-
dis Ababa show a lower agreement between the model and
observations. For Kampala, according to the MFB measure,
48 % of the values are within the goal range, 37 % of the val-
ues are within the criteria range, and 15 % of the values are
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Table 4. Hourly and daily statistical evaluation of CHIMERE model performance for the cities of Nairobi against ASAP observed data and
against US embassy data for the cities of Addis Ababa and Kampala.

ASAP observations Nairobi PM2.5 (µg m−3) Nanyuki PM2.5 (µg m−3)
roadside rural

Daily Hourly Daily Hourly

Modelled mean 58.3 58.3 3.24 3.24
Observed mean 54.6 54.6 3.23 3.23
MFB 0.1 4.88 1.08 3.36
MFE 1.99 25.39 4.73 8.33
R 0.38 0.35 0.93 0.91

US embassy observations Addis Ababa – PM2.5 (µg m−3) Kampala – PM2.5 (µg m−3)
urban urban

Daily Hourly Daily Hourly

Modelled mean 18.7 18.7 36.2 36.2
Observed mean 18.1 18.1 43.4 43.4
MFB 8.23 2.93 −11.28 −7.60
MFE 2.86 29.99 22.06 32.99
R 0.42 0.10 0.30 0.29

outside of the acceptability range. For Addis Ababa, accord-
ing to the MFB criteria, 57 % of the values are within the
goal range, 30 % of the values are within the criteria range,
and 13 % of the values are outside of the acceptability range.
In terms of the MFE measure, 74 % and 80 % of values for
the two respective above-mentioned cities are within the goal
range, 16 % and 11 % within the criteria range, and 10 % and
9 % outside of the acceptability range (Table 5).

According to the methodology proposed by Boylan and
Russel (2006), the performance of a modelling system is
fairly good for PM2.5 representation if about 50 % of the
points are within the goal range and a large majority are
within the criteria range. From the analysis of the four sam-
pling sites, the MFB values within the goal range are 69 %
for Tom Mboya Street, 97 % for Nanyuki, 57 % for Addis
Ababa, and only 48 % for Kampala. Similarly, for the MFE
measure, the percentage of values within the goal range are
99 % for Nanyuki, 88 % for Tom Mboya Street, 80 % for Ad-
dis Ababa, and 74 % for Kampala. This demonstrates that the
performance of the model can be considered to be satisfac-
tory (Table 5).

Finally, the reason for the presence of values outside of the
criteria range at both high and low PM2.5 concentrations in
the Addis Ababa and Kampala simulations can be connected
to the representation of the original PM emissions in the com-
bined inventory. It is possible that CHIMERE is not able to
correctly reproduce all of the chemical processes involved in
the secondary formation of the inorganic and organic indi-
vidual components of PM2.5 with the extent of the present
input data. Moreover, the possible misrepresentation of lo-
cal emission sources not reproduced in DICE–EDGAR can
also affect the performance of the model. Finally, the differ-

ent locations of the urban background observation sites and
the sampling techniques for PM observation can also play a
key role in the correct detection of the concentrations.

3.2.2 Hourly variation in PM2.5 at urban and rural sites
in Kenya

The hourly modelled variation in the PM2.5 levels obtained
by CHIMERE compared with observations is shown for the
urban sampling site of Tom Mboya Street in Nairobi and for
the rural site of Nanyuki (Fig. 2c).

By inspection of Fig. 7 it can be seen that CHIMERE
is generally able to reproduce the daily variation in PM2.5
across the simulated period at both sites. The magnitude of
the emissions adopted seems to be suitable for both the road-
side area of Tom Mboya Street and the rural background
site of Nanyuki, with higher agreement shown by the lat-
ter. CHIMERE captures only part of the daily peak observed
at Tom Mboya Street, with a comparable magnitude but the
misrepresentation of some peaks. In particular, it models
higher hourly peaks than those observed, as previously men-
tioned in the MFB and MFE analysis.

The misrepresentation of some high peaks at Tom Mboya
Street is possibly due to a number of different reasons.
Firstly, is important to recall that the point measurements
and relative observed concentrations are representative of a
smaller portion of space compared with the grid cell concen-
trations modelled. In this particular case, the comparison is
between a roadside site subjected to possible additional lo-
cal sources of PM2.5 that are not accounted for in the emis-
sions and, thus, not correctly reproduced by CHIMERE. On
the other hand, a few of the modelled peaks were overesti-

Atmos. Chem. Phys., 22, 10677–10701, 2022 https://doi.org/10.5194/acp-22-10677-2022



A. Mazzeo et al.: Evaluation of the WRF and CHIMERE models for the simulation of PM2.5 in East Africa 10691

Figure 6. The hourly mean fractional bias (MFB) and mean fractional error (MFE) values calculated for the Tom Mboya Street and Nanyuki
(KEN2K), Kampala US embassy (UGA2K), and Addis Ababa US embassy (ETH2K) locations for the analysis period against hourly con-
centrations of PM2.5. The green lines represent the MFB range ±30 % and the MFE limit of 50 %, for which the model performance can be
considered reliable; the red lines represent the MFB range±60 % and the MFE limit of 75 %, for which model performance can be increased
by diagnostic analysis of the chemical precursors of PM2.5.

mated. This can be addressed by an improved temporal de-
scription of the emissions and their magnitude in comparison
to reality. As mentioned previously, the anthropogenic emis-
sions used in this work were the most up-to-date available
at the time, but there is inevitably some difference between
the measured data due to the temporal difference between
the inventories and the measurements. Nevertheless, there is
reasonable agreement between model outputs and observed
concentrations for the majority of the analysed period, high-

lighting the reliability of CHIMERE with respect to describ-
ing the hourly concentration trends for a roadside site with
expected high levels of PM2.5 contamination.

Similarly, at the rural site of Nanyuki, the model seems
to correctly reproduce the hourly variation in the concen-
trations during the whole period, only underestimating the
maximum peaks at the beginning of February and during the
last 4 days of simulation in March. (Fig. 7). The site shows
a different magnitude with respect to the concentrations of
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Table 5. The hourly mean fractional bias (MFB) and mean fractional error (MFE) percentage of points within the goal range (Goal),
within the diagnostic range (Criteria), and outside of the reliability criteria range (Out) from model outputs extracted from the four analysed
locations.

Location MFB MFE

Goal Criteria Out Goal Criteria Out
(%) (%) (%) (%) (%) (%)

Tom Mboya Street (KEN2K) 69 22 9 88 7 5
Nanyuki (KEN2K) 97 2 1 99 1 0
Kampala (UGA2K) 48 37 15 74 16 10
Addis Ababa (ETH2K) 57 30 13 80 11 9

Figure 7. The hourly time series for PM2.5 from (a) the roadside of Tom Mboya Street and (b) the rural site of Nanyuki based on CHIMERE
model output (blue line) and observed values from Pope et al. (2018) (red line) for the analysed period The simulation started on 14 February.
For the Tom Mboya Street site, only the period of time between 18 February and 14 March (period for which observations are available) is
shown in the time series.
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PM2.5 when comparing the February and March periods.
While hourly concentrations are around 3–4 µg m−3 between
4 and the 10 March, the concentrations of PM2.5 are more
than 2 times higher prior to and following to this period of
time. This behaviour is visible in both the observations from
the site (red line in Fig. 7b) and the model outputs obtained
using CHIMERE (blue line in Fig. 7b).

Nanyuki was chosen by Pope et al. (2018) as rural site in
a location with minimum influence from local air pollution.
Data from Nanyuki were used for the calculation of the net
urban increment via the subtraction of the rural background
concentration from Nanyuki from the urban concentrations
in Nairobi. The average concentrations of around 3–4 µg m−3

in the period between 4 and 10 March are rural background
levels in the absence of any external influence from meteoro-
logical parameters and in the absence of local sources. How-
ever, the presence of higher hourly peaks before and after the
4 to 10 March period can be linked to different reasons: the
presence of local emission sources contributing to the peaks
or the dispersion of polluted air masses from elsewhere to-
wards the site of Nanyuki.

It is important to note that the model and observations
seem to agree particularly well regarding the description
of the difference in magnitude between the different time
periods at the above-mentioned site, excluding the possi-
bility that the observed values can be influenced by local
emission sources not accounted for in the emission inven-
tory. It seems more likely, however, that those concentra-
tion levels are transported to Nanyuki from neighbouring ar-
eas with higher levels of PM2.5 contamination. To investi-
gate this possible role of PM2.5 dispersion towards Nanyuki,
we consider the closest MIDAS weather station to the sam-
pling area of Nanyuki, which is located in the town of Ny-
eri (0.43◦ S, 36.95◦ E; altitude 1916 m a.g.l.; station no. 10
in Fig. 2). Nyeri is only 60 km from the Nanyuki site and
is situated between Mount Kenya (0.10◦ S, 37.30◦ E; altitude
4341 m a.g.l.) to the west and the Aberdare Range (0.46◦ S,
36.69◦ E; altitude 3441 m a.g.l.).

The daily average concentrations observed at the Nanyuki
sampling site have been compared with the daily mean wind
speed and wind direction values observed at the Nyeri MI-
DAS station and with the daily mean values of wind speed
and wind direction modelled by WRF in Nanyuki (Fig. 8).
The period between 4 and the 10 March, when the daily
average concentrations of PM2.5 observed in Nanyuki were
around 2.2 µg m−3, corresponds to higher-wind-speed con-
ditions (between 4 and 5 m s−1) mainly coming from the
north-east (around 60◦). During the same period, the mod-
elled wind speed at Nyeri was low (between 1 and 2.5 m s−1)
and mainly consisted of a westerly component (between 220
and 300◦).

In the periods with higher average daily concentrations of
PM2.5, namely between 15 and 19 February and between
22 and 28 February 2017, the component of wind direc-
tion seems to be consistent in reproducing southern winds

(between 120 and 190◦) in both Nyeri (using observations)
and in Nanyuki (using model outputs) with wind speeds be-
tween 1.5 and 2.5 m s−1 in the first period and between 2 and
3 m s−1 in the second period.

The correspondence between the wind speed and direc-
tion during particular time periods and the vicinity of towns
could suggest the potential dispersion of pollutants from the
south, where the hotspot of Nyeri is located (upwind), to the
northern area of Nanyuki (downwind), in accordance with
the wind fluxes from south to north (from Nyeri) based on the
observations and WRF outputs extracted from the Nanyuki
location. The flux could also be driven by the location of
Nyeri, which is situated at the entrance of a basin between
two mountain ranges. On the other hand, during the period
of low concentrations between 4 and 10 March, high speed
north-easterly winds (around 60◦) were noted in Nanyuki
(around 4 m s−1), whereas lower-speed winds (between 1 and
2 m s−1) from more variable directions (between 170 and
300◦) were present in Nyeri, preventing the possible disper-
sion of pollutants.

The present analysis was done on the relationships be-
tween weather conditions and their relative correspondence
to the hourly and daily levels of PM2.5. Further analyses
are necessary to clarify the possible presence of additional
or alternative factors influencing the changes in observed
concentrations and concentrations modelled by CHIMERE.
The presence of possible precipitation events during the low-
concentration period could represent an alternative possible
reason for the change in concentrations; however, no precip-
itation was recorded during the period, according to Pope et
al. (2018), nor was any precipitation modelled by WRF in
that time period. Nevertheless, the lack of additional weather
observations at the sampling site of Nanyuki or midway be-
tween the two towns prevents any additional hypotheses from
being formulated in relation to the presence of possible pol-
lutant transport phenomena; this will be the subject of future
investigations. Further efforts will be oriented toward a more
detailed trajectory analysis of the winds as well as a more
detailed representation of the emission sources present in the
area in order to investigate possible transport effects in this
region.

The average PM2.5 concentrations for the entire simulation
period (between 14 February and 14 March 2017) are shown
for the domain centred over Kenya with a spatial resolution
of 2× 2 km (KEN2K; Fig. 9). The highest average concen-
trations during the monthly period are modelled in the urban
area of Nairobi (defined by the red dashed square in Fig. 9),
with the highest average values inside the city being around
80 µg m−3. The concentrations are spread, on average, in the
southwestern area of the city and on the northeastern side
of the city in the direction of the conurbation of Thika and
Makuyu. These towns became part of the Nairobi metropoli-
tan region in 2008 due to the rapid increase in population
and urbanisation of the area (UNEP, 2009), and they rep-
resent a large hotspot of PM2.5 emissions, with concentra-
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Figure 8. Comparison of daily observed values of wind speed (grey spots) and wind direction (grey lines) from the Nyeri MIDAS site
(station no. 10 in Fig. 2c), modelled daily wind speed (blue dots), and wind direction (blue lines) from the Nanyuki site with daily average
observations of PM2.5 (expressed in µg m−3, green columns) obtained from the sampling site of Nanyuki (upper red dot in Fig. 2c).

tions modelled between 20 and 30 µg m−3 on average over
the entire period. Other PM2.5 concentration hotspots found
in the domain are the city of Nakuru, with average concen-
trations of between 20 and 40 µg m−3, and the area between
Nyeri, Embu, Meru, and Siakago, with average concentra-
tions of around 20 and 30 µg m−3 (Fig. 9). The average of
the modelled concentrations in the area of Nanyuki is gener-
ally smaller, with the concentration not exceeding 10 µg m−3

over the whole area.

3.3 CHIMERE as an air quality management tool

The usefulness of CHIMERE as a decision support tool to
facilitate air quality management of large urban conurba-
tions in SSEA was investigated for the three domains, namely
KEN2K, UGA2K, and ETH2K, at a resolution of 2× 2 km.
Daily observations of PM2.5 for the three domains were com-
pared with modelled concentrations in terms of the number
of exceedances of the WHO limit of 25 µg m−3 that were
observed and captured by the model (Fig. 10). For the lim-
ited case of Nairobi, hourly average concentrations for the
whole monitored period were compared with Air Quality In-
dex data, and the spatial distribution of daily average concen-
trations in the constituencies was analysed, highlighting how
many areas of the city showed poor Air Quality Index values
during the analysed period (Fig. 11).

Daily concentrations of PM2.5 modelled by CHIMERE
were compared with the number of exceedances of the WHO
limit of 25 µg m−3 observed during the simulated period. Fig-
ure 10 shows the daily average concentrations for the three
cities at the sampling sites used for model validation. It can
be seen that Nairobi and Kampala have the highest number

Figure 9. The average PM2.5 concentration for the whole simulated
period for the KEN2K domain at a 2× 2 km spatial resolution. The
map shows the location of hotspots with higher average concen-
trations, as modelled by CHIMERE, for the entire period. The red
dashed square shows the urban domain of Nairobi analysed for the
Air Quality Index analysis in Sect. 3.3.

of exceedances of the WHO limits (24), followed by Addis
Ababa with only six observed exceedances. From Table 6,
it can be seen that CHIMERE provides sufficient accuracy
to detect PM2.5 exceedances of the WHO limits. In particu-
lar, CHIMERE was able to detect 67 % of the exceedance for
Addis Ababa with only two false positives, 91 % of the ex-
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Table 6. Summary of the number of observed and modelled PM2.5
exceedances of the WHO limits during the simulated period from
14 February to 14 March 2017.

Cities Exceedances of Exceedances of
WHO limits WHO limits

(observed) (modelled)

Nairobi 24 24
Addis Ababa 6 4
Kampala 24 22

ceedance for Kampala, and all of the exceedances for Nairobi
without any false positives.

The Air Quality Index (AQI) represents the conversion of
concentrations for fine particles, such as PM2.5, to a number
on a scale from 0 to 500 (Table 6). The higher the AQI value,
the greater the level of air pollution and the greater the health
concern. AQI values at or below 100 are generally thought of
as satisfactory. When AQI values are above 100, air quality
is unhealthy – at first for certain sensitive groups of people
(101–150) and then for everyone as AQI values get higher
(> 151) (EPA, 2012).

The daily average concentrations of PM2.5 during the anal-
ysis period (between 14 February and 14 March 2017) have
been averaged for the urban area of Nairobi (red square
in Figs. 9 and 11) and compared with the city constituen-
cies’ spatial extent according to data from the openAFRICA
data set (openAFRICA, 2018). According to the division,
17 are constituencies inside the Nairobi city boundaries
(Fig. 11). Averaged daily concentrations of PM2.5 show that
8 of the 17 constituencies had AQI values between 55.5 and
150.4 µg m−3 during the whole period. These areas are the
most central and urbanised of Nairobi. Starehe constituency
(station no. 13 in Fig. 11) contains the previously discussed
Tom Mboya Street sampling site (black spot in Fig. 11)
where the WHO limits for PM2.5 were systematically ex-
ceeded during the analysed period. According to the SEDAC
population density data, this area has a population density
of between 15 000 and 30 000 people per square kilometre
that are exposed to an AQI of between 151 and 200, cor-
responding to the “Unhealthy” category with respect to hu-
man health. Finally, the Langata constituency (magenta spot
in Fig. 11) has a population of 176 000 people and shows
average PM2.5 levels of 45 µg m−3, which is unhealthy for
sensitive groups of people.

Moreover, Nairobi has a number of natural areas on the
outskirts of city. Some particular locations, such as the
Karura Forest (yellow spot in Fig. 11) and the Ngong Road
Forest Sanctuary (blue spot in Fig. 11), show averaged daily
PM2.5 levels of around 50 and 55 µg m−3, corresponding to
an AQI of between 101 and 150 (e.g. unhealthy for cer-
tain sensitive groups of people). According to SEDAC data,
the population density is between 10 000 and 15 000 peo-

ple per square kilometre in this area. Similarly, on the south
side, near the entrance to the Nairobi National Park (1.36◦ S,
36.82◦ E; green spot in Fig. 11), the average daily levels
of PM2.5 are approximately 40 µg m−3, with AQI values
between 101 and 150 and a population density of around
10 000 people per square kilometre. This area (surface area
of 117 km2) has been impacted by a rapid urbanisation since
1973, with a consequent increase in human activity including
settlement, pastoralism, and agriculture (Ogega and Mbugua,
2019). This activity has already made it difficult for wildlife
to migrate to and from the Nairobi National Park as well as
resulting in a deterioration of air quality. The rapid increase
in the population density on the south side of Nairobi poses a
serious risk of increasing the pollution level or AQI, thereby
exposing more people to a harmful level of PM2.5.

4 Conclusions

The WRF and CHIMERE models were configured and val-
idated to simulate the PM air quality levels in eastern sub-
Saharan African urban conurbations.

In order to obtain updated anthropogenic emissions for
2017, the global EDGAR inventory and the DICE inventory
for Africa were merged and spatially distributed using pop-
ulation density data for the year 2017 obtained by linear ex-
trapolation.

WRF showed a variable capability with respect to repro-
ducing the main surface weather variables according to the
different conditions of the three domains. A lower agreement
between observations and the model was observed in Kam-
pala for relative humidity and wind speed. The analysis was
carried out on all surface meteorological stations available
from the MIDAS network on a 3-hourly basis. A further me-
teorological analysis extended to vertical profiles could re-
veal the possible limitations of the model; however, the ab-
sence of vertical meteorological data limited the analysis and
validation to ground level only.

CHIMERE was able to reproduce the daily levels of PM2.5
for the urban site of Nairobi as well as for the rural site of
Nanyuki. A total of 69 % of the MFB values and 88 % of
the MFE values were inside the highest confidence area for
Nairobi, and a total of 97 % and 99 % of the respective val-
ues were inside the highest confidence area for Nanyuki, at-
testing that the agreement between the observed and mod-
elled data was sufficient to allow for quantitative analyses of
daily average concentrations. Similar findings were also pro-
duced for the other two urban background domains of Ad-
dis Ababa (57 % for MFB and 80 % for MFE) and Kampala
(48 % for MFB and 74 % for MFE), despite different char-
acteristics and sources of observation being used for the val-
idation. The discrepancies observed in the hourly trends of
PM2.5 modelled by CHIMERE compared to observed values
from the urban sites suggest that further studies are needed in
the three urban areas. These studies are required to improve
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Figure 10. Daily concentrations of PM2.5 between 14 February and 14 March obtained from CHIMERE outputs from 2× 2 km domains
compared with US embassy daily totals for the cities of (a) Addis Ababa and (b) Kampala and with ASAP observations for the city of (c)
Nairobi. All three simulations have also been compared with the WHO threshold limit for PM2.5 concentrations (red line). For the case of
Nairobi, only observations from 18 February were available.

Figure 11. Map showing the urban area of the city of Nairobi (dashed square in Fig. 9). The constituency division of Nairobi in panel (a)
from the openAFRICA data set (openAFRICA, 2018) is compared with the average hourly concentrations of PM2.5 over the analysed period
in panel (b).
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the understanding of the typology and quantity of local emis-
sion sources, which are sometimes misrepresented or absent
in global emission inventories. This will enable the chemical
processes acting in the urban troposphere to be adequately
characterised, thereby allowing the determination of the ac-
tual air quality levels.

Nevertheless, using existing data sets, CHIMERE has
shown reliability with respect to reproducing both hourly and
daily levels of PM2.5, with hourly values largely inside the
range of reliability connected with the mean fractional bias
and error.

The merged emission inventory, DICE–EDGAR, despite
its low resolution, was able to return a correct magnitude for
the emissions regarding the representation of the urban and
rural contexts. Despite this, a few urban peaks observed in
Nairobi have been missed by CHIMERE or, in other cases,
misrepresented, highlighting the necessity of further efforts
in the creation of newer emission inventories for SSEA. In
the light of this, the possibility to develop local emission in-
ventories, ideally at high spatial resolution, would represent a
significant step forward in air quality research in this area of
the world. Nevertheless, with the extent of the present avail-
able data, CHIMERE showed enough robustness and relia-
bility to be adopted as a decision support tool for the man-
agement of air quality, as it correctly reproduced most of the
exceedances of the PM2.5 limits set by the WHO for all three
cities considered.

The analysis focused on the average concentrations of
PM2.5 for the domain of Kenya revealed that the metropoli-
tan area of Nairobi represents a big air pollution hotspot;
however, it also showed that small cities located on the out-
skirts of the capital of Kenya display worrying levels of at-
mospheric contamination. These levels of air pollution have
the potential capability to also affect rural areas where local
emissions are rare or not present. The phenomena of PM2.5
transport towards these areas, however, is still to be verified.
The work has also shown the presence of low and unhealthy
Air Quality Index values in 8 of the 17 constituencies in the
urban area of Nairobi as well as the relative population den-
sity exposed to harmful level of air contamination. Moreover,
a number of natural areas on the outskirts of Nairobi have
similarly low AQI levels and an increasing population, high-
lighting how the problem of poor urban air quality due to
rapid urbanisation, anthropogenic activity, and a lack of reg-
ulation can also detrimentally affect and deteriorate natural
habitats.

The present work represents a first step in the use of nu-
merical models for atmospheric chemistry simulations in
East Africa with a particular focus on urban conurbations.
The aim of this study was to assess the possibility of perform-
ing simulations with results that are close to observations in
order to open the road for more detailed works. The natu-
ral next step of the present research aims to refine both the
quantity and quality of the input data used for the validation
of the modelling system in order to improve the reliability

of the predictions. Moreover, a more detailed analysis of the
secondary inorganic and organic components of PM2.5 will
be conducted for the three domains. Finally, the performance
of CHIMERE will also be tested with respect to the repro-
duction of gaseous species in order to give a wider vision of
the capabilities and opportunities of numerical modelling in
this area of the world with the presently available data. Addi-
tional future efforts to improve the calibration and validation
of the modelling system, especially relating to meteorology,
will focus on assessing the dispersion dynamics of contami-
nants through urban centres and possible pollution transport
events from urban to rural areas. To this end, further work is
required by local East African authorities and research bod-
ies to improve the quantity and the quality of data for weather
and air quality simulations. However, in this work, we have
shown that currently available data are sufficient to carry out
simulations of air quality that can be used for the quantita-
tive evaluation of the anthropogenic emissions impact and to
support mitigation policies at the local level.

Data availability. The combined DICE–EDGAR an-
thropogenic emission inventory is available for down-
load from https://doi.org/10.25500/edata.bham.00000695
(Mazzeo, 2021). The CHIMERE model is available at
https://www.lmd.polytechnique.fr/chimere/2020_getcode.php
(Institut Pierre-Simon Laplace, Ecole Polytechnique, INERIS,
CNRS, 2022). The WRF model is available at https:
//www2.mmm.ucar.edu/wrf/users/download/get_sources.html
(Skamarock et al., 2008); weather observations used for the
validation of WRF were downloaded from the Met Office: http:
//catalogue.ceda.ac.uk/uuid/220a65615218d5c9cc9e4785a3234bd0
(Met Office UK, 2019). PM2.5 observational data for Nairobi
(Kenya) are available upon request from the corresponding authors
of Pope et al. (2018); PM2.5 observations for Addis Ababa
(Ethiopia) and Kampala (Uganda) are available from the respective
US embassies upon request.
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