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Abstract. Evaluating the influence of anthropogenic-emission changes on air quality requires accounting for
the influence of meteorological variability. Statistical methods such as multiple linear regression (MLR) models
with basic meteorological variables are often used to remove meteorological variability and estimate trends in
measured pollutant concentrations attributable to emission changes. However, the ability of these widely used
statistical approaches to correct for meteorological variability remains unknown, limiting their usefulness in the
real-world policy evaluations. Here, we quantify the performance of MLR and other quantitative methods using
simulations from a chemical transport model, GEOS-Chem, as a synthetic dataset. Focusing on the impacts of
anthropogenic-emission changes in the US (2011 to 2017) and China (2013 to 2017) on PM2.5 and O3, we show
that widely used regression methods do not perform well in correcting for meteorological variability and identi-
fying long-term trends in ambient pollution related to changes in emissions. The estimation errors, characterized
as the differences between meteorology-corrected trends and emission-driven trends under constant meteorology
scenarios, can be reduced by 30 %–42 % using a random forest model that incorporates both local- and regional-
scale meteorological features. We further design a correction method based on GEOS-Chem simulations with
constant-emission input and quantify the degree to which anthropogenic emissions and meteorological influ-
ences are inseparable, due to their process-based interactions. We conclude by providing recommendations for
evaluating the impacts of anthropogenic-emission changes on air quality using statistical approaches.

1 Introduction

Researchers and policymakers have long been interested in
understanding the anthropogenic drivers of trends in ob-
served air pollutant concentrations in order to inform air
quality policies. Declining trends in pollutant concentra-
tions such as particulate matter with diameters less than
2.5 µm (PM2.5) have been observed in many countries that
adopted policies to limit anthropogenic emissions such as
SO2 and NOx , including the US (McClure and Jaffe, 2018)

and China (Zhang et al., 2019). As the information on an-
thropogenic emissions is often unavailable or very uncer-
tain, researchers and policymakers often rely on the trends in
measured air pollutants to assess the effects of policies. At-
tributing trends in observed concentrations to anthropogenic-
emission changes requires correcting for the influence of
changing meteorology, which has become increasingly im-
portant but challenging in a changing climate (Saari et al.,
2019). Numerous papers attempt to use statistical methods to
separate impacts of meteorology from emission changes in
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evaluating trends in air quality, but the performance of these
commonly used statistical approaches remains unassessed.
Further, the impacts of meteorological variability may not
even be distinguishable from air quality trends driven by
anthropogenic-emission changes, due to their interactions;
the magnitude of this interaction also remains unquantified.
In this paper, we devise a model-based experiment for eval-
uating the performance of different statistical methods used
for meteorological corrections. We focus on a case of iden-
tifying emission-driven linear trends in measured concentra-
tions of PM2.5 and ozone (O3), when information on the an-
thropogenic emission is not available.

Measured pollutant concentrations are often used as the
primary basis for evaluating air quality actions. For exam-
ple, in 2013, China’s central government established targets
that aimed to reduce annual average PM2.5 concentrations of
three urban clusters by 15 % to 25 % between 2012 and 2017
(State Council of the People’s Republic of China, 2013). This
later translated into a stringent and binding target of a maxi-
mum annual mean PM2.5 concentration of 60 µgm−3 in 2017
for Beijing, which was ultimately reached (the 2017 con-
centration was 58.5 µgm−3) (Beijing Municipal Ecology and
Environment Bureau, 2013). However, several studies esti-
mated that the concentration would have exceeded this tar-
get in Beijing were it not for meteorological conditions in
the winter 2017 that favored pollution reductions (Vu et al.,
2019; Chen et al., 2019; Cheng et al., 2019). The European
Union and US Environmental Protection Agency (EPA) use a
3-year average of the PM2.5 concentration to determine com-
pliance with air quality standards (European Union, 2020;
US Environmental Protection Agency, 2019). The US EPA
has also proposed to use statistical approaches that aim to
correct for the impacts of weather variability on O3 concen-
trations in the designation processes (Wells et al., 2021).

Many studies use multiple linear regression (MLR) mod-
els with basic meteorological variables to correct for meteo-
rological variability in order to estimate the impacts of emis-
sion changes on measured air quality (Otero et al., 2018;
Zhai et al., 2019; Li et al., 2018, 2020; Han et al., 2020;
Chen et al., 2020). Zhai et al. (2019) and Li et al. (2020)
use MLR models to estimate the degree to which trends in
PM2.5 and O3 from 2013 to 2019 in China were driven by
anthropogenic-emission changes. They first use MLR to pre-
dict the PM2.5 and O3 concentrations with meteorological
variables and then interpret the residuals of the MLR model
as signals resulting from emission changes. A related ap-
proach is to combine MLR with techniques that can decom-
pose time series of observed concentrations into long-term,
seasonal, and short-term components (e.g., Kolmogorov–
Zurbenko (KZ) filters, Zurbenko, 1994). Ma et al. (2016) and
Chen et al. (2019) use KZ filters to calculate the long-term
component of observed PM2.5 and then apply MLR to sepa-
rate the impacts of long-term meteorological changes on the
concentrations. Henneman et al. (2015) apply MLR to the
short-term component (identified by KZ filters) of air pollu-

tant concentrations near Atlanta during 2000 to 2012 to sep-
arate the impact of short-term meteorological variability and
then estimate the long-term trend in air quality.

Other statistical methods including non-linear regression
or machine learning models have also been used to correct
for meteorological variability (Holland et al., 1998; Carslaw
et al., 2007; Hayn et al., 2009; Vu et al., 2019). One pop-
ular method is to use a generalized additive model (GAM)
to estimate non-linear smooth functions of each meteoro-
logical variable within a given smoothing-function family
with penalization on non-smoothness. The US EPA uses a
GAM model of temperature, wind direction and speed, hu-
midity, pressure, stability, transport trajectories, and synoptic
weather to perform weather corrections in assessing long-
term trends in O3 (Camalier et al., 2007). An increasing
number of studies use machine learning models (Grange et
al., 2018; Vu et al., 2019; Zhang et al., 2020; Shi et al.,
2021; Qu et al., 2020). Vu et al. (2019) use a random for-
est model to predict pollutant concentrations in Beijing with
time index and meteorological variables and then calculate
the “weather-normalized” concentration for each day with
1000 sets of meteorological fields drawn from the historical
meteorological data. They found that the decrease in PM2.5
during 2013 to 2017 was largely driven by emission reduc-
tions, although the magnitude of reduction is smaller when
correcting for meteorological variability.

Despite a large number of papers that apply various me-
teorology correction methods, very little is known about
whether these methods can effectively correct for meteoro-
logical variability and thus realistically estimate the coun-
terfactual air quality and reveal the underlying impacts of
anthropogenic-emission changes. Most studies cite the pre-
diction performance of their statistical models (such as R2

and/or mean squared errors) to justify their method choice
and analysis. However, good prediction performance does
not guarantee the correct estimation of counterfactuals and
causal effects (Runge et al., 2019). The performance of these
meteorology-corrected methods is unable to be assessed us-
ing observational data alone, as the underlying emission-
driven trends without influence from meteorological variabil-
ity cannot be derived from data. Further, statistical analyses
often assume that the influence of meteorological variabil-
ity on pollutant concentration can be cleanly separated from
the influence of anthropogenic-emission changes. This is not
completely possible, as the impacts of meteorological vari-
ability on pollutant concentration will also vary depending
on the emissions. The degree to which this interaction affects
the ability to calculate emission-related trends under chang-
ing meteorology also remains unknown.

Here, we conduct a model experiment to evaluate the
performance of widely used statistical models in correct-
ing for meteorological variability and estimating emission-
driven trends in air quality (see Fig. 1). We focus on the im-
pacts of anthropogenic-emission changes on annual PM2.5
and summer O3 in the US (2011–2017) and China (2013–
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Figure 1. Overview of research methodology. Terms and coefficients are linked to the associated terms in Eq. (1) and Table 1.

2017), two periods well-studied in previous literature. Using
a three-dimensional atmospheric chemical transport model,
GEOS-Chem, we simulate two sets of scenarios – “obser-
vational scenarios” with assimilated meteorological inputs
(with interannual variability) and “counterfactual scenarios”
with constant meteorological inputs. Using simulated daily
concentrations in the observational scenarios, we estimate
meteorology-corrected trends for each grid cell from regres-
sion models using different statistical correction methods.
We then compare the derived trends with the emission-driven
trends in the counterfactual scenarios (which are free of me-
teorological variability by design), calculating the resulting
“error” in trend estimation. We further design a correction
method based on GEOS-Chem constant-emission simula-
tions and use it to quantify the degree to which attribution
to meteorology and emissions separately is possible. Finally,
we apply the different statistical correction methods to ob-
servational data from surface monitoring networks in the US
and China, discussing the variability across different meth-
ods. We conclude by providing recommendations for tech-
niques to evaluate air pollution policies under changing me-
teorological conditions.

2 Method

2.1 GEOS-Chem

GEOS-Chem is a global three-dimensional chemical trans-
port model driven by assimilated meteorological data from
the Goddard Earth Observation System (GEOS-5) of the
NASA Global Modeling and Assimilation Office (GMAO)
(Bey et al., 2001; http://www.geos-chem.org/, last access:
March 2022). The simulation of PM2.5 in GEOS-Chem rep-
resents an external mixture of secondary inorganic aerosols,
carbonaceous aerosols, sea salt, and dust aerosols. GEOS-
Chem includes detailed O3–NOx–volatile organic carbon

(VOC)–aerosol–halogen tropospheric chemistry (Travis et
al., 2016; Sherwen et al., 2016). The GEOS-Chem model has
been previously used to study the changes in PM2.5 and O3
during our studied periods, and model simulations have been
shown to be consistent with the observed concentrations (see,
e.g., C. Li et al., 2017; Xie et al., 2019, for the US, and Li et
al., 2018; Lu et al., 2019; Zhai et al., 2021, for China). Stud-
ies in both regions show that the GEOS-Chem model is able
to reproduce the spatial, seasonal, and interannual variabil-
ity and the long-term trends in observed pollutant concen-
trations, despite biases in absolute concentrations in certain
species and regions (Heald et al., 2012; Travis et al., 2016;
Tian et al., 2021).

We use GEOS-Chem version 12.3.0 with a horizontal res-
olution of 0.5◦×0.625◦ in North America and Asia (Wang et
al., 2004). For each scenario, we first conduct a global run at
a horizontal resolution of 4◦× 5◦, with a 12-month spin-up.
These global runs are then used as the boundary conditions
for nested simulations in the US and China with finer resolu-
tion of 0.5◦× 0.625◦.

2.2 GEOS-Chem scenarios

Table 1 shows the simulations included in our model ex-
periments. We simulate two sets of scenarios – observa-
tional scenarios with interannual variability in meteorology
and counterfactual scenarios with constant meteorological
inputs. Both scenarios use the same emission inventory as
input (see Sect. 2.3). For each grid cell, we estimate the lin-
ear trends in pollutant concentrations from simulated daily
PM2.5 and O3 concentrations. We focus on the daily 24 h
average PM2.5 over all seasons and the maximum daily av-
erage 8 h (MDA8) O3 in summer (June, July, August). Our
focus on the 3 summer months is consistent with many pre-
vious studies (e.g., Shen et al., 2015), although this may not
capture the peak ozone season for certain regions of the US
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Table 1. Overview of GEOS-Chem scenarios and meteorological correction methods. RF: random forest. LASSO: least absolute shrinkage
and selection operator.

GEOS-Chem Emissions Meteorological Trend Meteorological correction
scenarios inventory fields estimates

Counterfactual Changing Constant βcount

scenarios 2011–2017 (US) 2011 (US)
2013–2017 (China) 2013 (China)

Observational Changing Changing βuncorrected No correction
scenarios 2011–2017 (US) 2011–2017 (US) βMLR MLR using local features

2013–2017 (China) 2013–2017 (China) βGAM GAM using local features
βRF RF using local features
βLASSO-regional LASSO using local and regional features
βRF-regional RF using local and regional features
βgc Simulations from constant-emission scenarios

Constant- Constant Changing
emission 2011 (US) 2011–2017 (US)
scenarios 2013 (China) 2013–2017 (China)

and China. Our GEOS-Chem simulations use meteorological
fields from the Modern-Era Retrospective analysis for Re-
search and Applications, Version 2 (MERRA-2) (Gelaro et
al., 2017). We aggregate the hourly meteorological data for
consistency with the pollutant concentrations: a 24 h average
for PM2.5 analysis and the corresponding 8 h average for O3.
Meteorological features that are used in the statistical models
can be found in Sect. 2.4.

2.2.1 Observational scenarios

Observational scenarios simulate PM2.5 and O3 under chang-
ing emissions and changing meteorological fields. Trends
estimated under the observational scenarios (βobs) are sub-
ject to the influences of interannual meteorological variabil-
ity. Our model experiments were not specifically designed
to reproduce observed air quality in these two regions but
rather to provide a realistic test case to evaluate the per-
formances of statistical methods. Nevertheless, as shown in
Figs. S1 and S2 in the Supplement, the simulated concentra-
tions in PM2.5 and O3 largely reproduce the daily variabil-
ity in observed pollutant concentrations. The linear trends
in simulated PM2.5 and O3 concentrations in the obser-
vational scenario are largely consistent with trends of the
measured concentrations. For example, the average trend
(±1 standard deviation) in the US is −0.27± 0.30 µg−3 yr−1

(observation) and −0.39± 0.24 ppbyr−1 (GEOS-Chem)
for PM2.5 and −0.91± 0.98 ppbyr−1 (observation) and
−1.02± 0.83 ppbyr−1 (GEOS-Chem) for O3. The only ex-
ception is that our model cannot reproduce the increasing
PM2.5 trends in the Northwest US because we do not con-
sider interannual variability in biomass-burning emissions.

2.2.2 Counterfactual scenarios

Counterfactual scenarios simulate PM2.5 and O3 under
changing emissions but constant meteorology. All simulation
years in the counterfactual scenario use the meteorological
fields of the start year (2011 for the US, 2013 for China).
Trends estimated under the counterfactual scenario (βcount)
are not subject to interannual meteorological variability; we
use this as a proxy for the trends in pollutant concentrations
driven by emission changes alone. In a sensitivity analysis,
we also simulate the counterfactual scenario for China using
the meteorological fields for the end year, 2017 (at 4◦× 5◦

resolution, due to computational constraints). We find that
the linear trend in PM2.5 and O3 for each grid cell is highly
consistent in the counterfactual scenarios across the choice
of the meteorological years (see Fig. S5).

2.2.3 Assumptions for GEOS-Chem experiments

It is important to note that we do not assume our GEOS-
Chem simulations perfectly represent the underlying pollu-
tant concentration in the real world (although the model com-
pares relatively well with the observational data). Rather, our
main focus is to evaluate how different statistical methods
can explain the differences between the observational and
counterfactual scenarios. The assumption here is that the dif-
ferences between observational and counterfactual scenarios
are useful approximations of the impacts of meteorological
variability on pollutant concentrations. The implications of
uncertainty in GEOS-Chem for our results can be found in
the “Discussion” section.
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2.3 Emission inventory

For the US, we use the National Emissions Inventory 2011
(NEI 2011) as a baseline emission inventory and scale
the emissions in 2012 to 2017 to match the annual total
emissions each year (US Environmental Protection Agency,
2021b). For China, we use the monthly Multi-resolution
Emission Inventory for China (MEIC) during 2013 to 2017
(M. Li et al., 2017; Zheng et al., 2018). During the studied
time periods, the US and China experienced dramatic de-
creases in anthropogenic emissions, particularly in SO2 and
NOx . In the US, total anthropogenic emissions of SO2 de-
creased by 57 % and NOx emissions decreased by 26 % dur-
ing 2011 to 2017 (see Fig. S3). In China, anthropogenic SO2
emissions decreased by 59 %, and NOx emissions decreased
by 21 % during the 2013–2017 period (see Fig. S4).

Natural emissions of multiple chemical species are calcu-
lated online in the simulations (rather than prescribed) in the
GEOS-Chem model and thus can be influenced by meteoro-
logical variability (see Keller et al., 2014, for more details).
Impacts of meteorology on PM2.5 and O3 concentrations
through changes in the natural emissions are considered here
as part of the meteorology–concentration relationship. These
emissions include NOx emissions from lightning and soil
processes, sea salt emissions, dust emissions, and biogenic
volatile organic carbon (VOC) emissions. However, biomass-
burning emissions are prescribed in the GEOS-Chem model,
and we hold them constant at the level of the start year.
We make this simplification because the GEOS-Chem model
uses biomass-burning emissions from external inventories
such as the Global Fire Emissions Database (van der Werf
et al., 2017), and it is impossible to distinguish natural fire
emissions (part of the meteorological variability) from an-
thropogenic fire emissions (e.g., from farm residual burning).
The role of natural emission changes in the meteorology–air
quality relationship is further expanded on in the “Discus-
sion” section.

2.4 Statistical and machine learning models

2.4.1 Model with local meteorological variables

We assess the performance of statistical and machine learn-
ing models to correct for the meteorological variability in the
observational scenarios. We evaluate these methods with a
commonly used framework (e.g., used in Li et al., 2018, and
Zhai et al., 2019) which models the air pollutant concentra-
tions of each individual grid cell using an additive form of a
trend component, a meteorology component, and time fixed
effects (to capture daily and monthly variability not related
to meteorology). More specifically, we estimate the follow-
ing regression equation for each grid cell i:

yit = β
obs
i × t + fi(Xit )+ ηit + εit , (1)

where yit denotes the PM2.5 or O3 concentration at grid cell i
on day t . t is the time index (e.g., in the US, t = 1 for 1

January 2011 and t = 2 for 2 January 2011). Xit denotes
the local meteorology features (i.e., meteorological variables
in grid cell i on day t). ηit is the month-of-year× day-of-
month fixed effect to capture daily and monthly variabil-
ity in pollutant concentrations that are not related to the
meteorological variability (e.g., seasonal cycle in O3 and
PM2.5). εit is the normally distributed error term. βobs

i rep-
resents the meteorology-corrected trend in PM2.5 or O3 con-
centration for grid cell i estimated with the standard ordi-
nary least-squares method. We use the absolute differences
|βobs
i −β

count
i | to evaluate the performance of different meth-

ods to correct for meteorological variability for any given
grid cell i.

Here, fi(Xit ) represents the specifications of local mete-
orological features for grid cell i under different methods.
In addition to the commonly used multiple linear regres-
sion (MLR) model, we also evaluate the following mod-
els with higher flexibility: polynomial regression models
(quadratic, cubic), cubic spline models, generalized addi-
tive models (GAM, implemented with R package “mgcv” by
Wood, 2011), and random forest (RF) models. We refer to
the trend estimates estimated without fi(Xit ) as uncorrected.
We focus on the methods in Table 1 in the main text, and the
performance of the other methods can be found in Tables S1
and S2 in the Supplement. Note that the time fixed effects
are modeled differently in RF models due to the estimation
procedure. More details on the implementation of RF can be
found in the Supplement.

We use the following 10 variables from MERRA-2 as
our selected meteorological features for the statistical anal-
ysis: surface temperature, precipitation, humidity, planetary
boundary layer height, cloud fraction, surface air pressure,
and wind speed (U and V direction, at surface and 850 hPa
levels). These variables are the most commonly used features
in previous studies. We also perform sensitivity analyses
that include nine more meteorological features: direct photo-
synthetically active radiation, diffuse photosynthetically ac-
tive radiation, tropopause pressure, friction velocity, topsoil
moisture, root soil moisture, snow depth, surface albedo, and
surface air density. These features are selected because they
are used as primary or intermediate inputs for calculating
PM2.5 or O3 concentrations in the GEOS-Chem model and
may be relevant for the variability in pollutant concentra-
tions.

2.4.2 Model with local and regional meteorological
variables

We also evaluate models that use both local and regional me-
teorological features. Regional meteorological features are
important for explaining variability in local pollutant con-
centrations due to (1) pollution transport from neighboring
locations and (2) influences from meteorological systems at
the synoptic scale (i.e., large-scale weather systems that span
over 1000 km such as circulation patterns) (Tai et al., 2012;
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Shen et al., 2015; Zhang et al., 2018; Leung et al., 2018; Han
et al., 2020). As the incorporation of both local and regional
features can quickly expand the dimensionality of the feature
space, here we use the least absolute shrinkage and selection
operator (LASSO) and the random forest (RF) model, two
statistical models that show good prediction performances
with high-dimensional data inputs. We estimate the follow-
ing equations:

yit = β
obs
i × t + gi(Xit ,Zt )+ ηit + εit , (2)

where gi() denotes the functional form fitted by LASSO or
RF.Xit again denotes the local meteorology features for grid
cell i on day t . Zt denotes the regional-scale meteorology
features including the meteorological features for every grid
cell in the US on day t (98 cells in 4◦× 5◦; we choose a
relatively coarse resolution due to computational cost). Me-
teorological information in each location in the US may help
explain the pollutant concentrations in grid cell i. In total,
we have 10 local features (Xit ) and 10× 98= 980 regional-
scale features (Zt ). The coefficient βobs

i is obtained with the
double machine learning approach by Chernozhukov et al.
(2018). In particular, the hyperparameters and coefficients of
LASSO and RF are selected and fitted using 4-fold cross-
validation to avoid the “overfitting risk”. More details on the
implementation of LASSO and RF can be found in the Sup-
plement.

2.5 Correction approach using the GEOS-Chem
constant-emission scenario

We further design and evaluate an approach to correct for
meteorology variability with GEOS-Chem simulations (re-
ferred to as the “constant-emis” approach). The constant-
emis approach uses GEOS-Chem simulations with constant
anthropogenic emissions and changing meteorological fields
(“constant-emission scenarios” in Table 1). All years in the
constant-emission scenario use anthropogenic emissions of
the start year (2011 for the US, 2013 for China). Note that the
constant-emis approach also aims to estimate meteorology-
corrected trends from the simulated concentrations in the ob-
servational scenario. We estimate the following equations:

yit = β
gc
i × t +SIMit + ηit + εit , (3)

where yit denotes the simulated concentrations in the ob-
servational scenario, SIMit denotes the simulated concentra-
tions on day t in grid cell i in the constant-emission sce-
narios. SIMit serves a similar purpose as the term “fi(Xit )”
in Eq. (1) but comes from the GEOS-Chem simulation.
Some previous studies have also used model simulations with
constant-emission input as a way to characterize meteorolog-
ical variability (Zhong et al., 2018; Zhao et al., 2020). βgc

i is
the estimated meteorology-corrected trend for PM2.5 or O3
concentration using this model-based correction method.

Compared to previous statistical and machine learning
approaches, the constant-emis approach better captures the

meteorological variability as simulated in GEOS-Chem (as
SIMit is directly taken from GEOS-Chem). Therefore, the
difference between the trend estimates (βgc) and counterfac-
tual trends (βcount) provides a conceptual minimum for esti-
mation errors using the framework of Eq. (1) to perform me-
teorological corrections. The commonly used framework of
Eq. (1) assumes that the impacts of meteorology variability
can be separated from the impacts of anthropogenic emis-
sions. In our experiments, this assumption indicates that the
differences between the counterfactual scenario and the ob-
servational scenario can be solely explained by the meteoro-
logical variables. However, the difference in pollutant con-
centrations between these scenarios is also in part driven by
emissions in their interaction with meteorology (despite the
fact that our different scenarios use the same emission inven-
tory). We use |βgc

i −β
count
i | to quantify the estimation error

associated with ignoring such interactions in this framework.

2.6 Air quality observation data

We use the surface air quality measurements from the Air
Quality System administered by the US EPA (US Environ-
mental Protection Agency, 2021a). We use the daily 24 h av-
erage of PM2.5 concentrations for all months and the daily
maximum 8 h average (MDA8) O3 concentrations for June,
July, and August. Figure S1 shows the locations, trends in
measured concentrations, and correlations between GEOS-
Chem simulations and measured concentrations.

The surface air quality measurements in China are de-
rived from the monitoring network administered by China’s
Ministry of Ecology and Environment (2021). The monitor-
ing network was launched in 2013 and has expanded to all
prefecture-level cities in mainland China. We use the daily
24 h average of PM2.5 concentrations and the MDA8 O3
concentrations for summer. Figure S2 shows the locations,
trends in measured concentrations, and correlations between
GEOS-Chem simulations and measured concentrations.

We use the meteorological variables from MERRA-2
when performing meteorology corrections at these mon-
itoring stations because the meteorology information is
not available for all these variables at the station level.
This is consistent with previous analyses estimating the
meteorology-corrected trends using observational air quality
data (e.g., Li et al., 2018).

3 Results

3.1 Performance of different correction methods: US
(2011–2017)

Figure 2a and c show the trends in PM2.5 and O3 concentra-
tions in the counterfactual scenarios in the US. When hold-
ing meteorological fields constant across years, decreasing
trends in the simulated PM2.5 concentrations across the US
result from decreasing anthropogenic emissions. The coun-
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terfactual scenario also shows negative linear trends in O3
concentrations in all but three grid cells in the western US.
Increases in summer O3 in these locations result from the
non-linear relationship between O3 concentrations and NOx
emissions.

Figure 2b and d show the degree to which different meteo-
rological correction methods can recover the emission-driven
trends in the counterfactual scenarios. When no correction
for meteorology is performed (“uncorrected” in Fig. 2b), we
observe large estimation errors in trend estimates over the
northeastern and southern US by up to 0.25 µgm−3 yr−1,
an error that is 50 % of the counterfactual trends. We find
that the widely used MLR method does not help reduce
these errors in PM2.5 trend attributions. MLR has a mod-
est impact on reducing the errors in the northeastern US,
but it does not decrease the errors over the southern US
and leads to even higher errors over the midwestern US.
Nationwide, the average magnitude of errors (relative to
the counterfactual scenario) increases with the MLR correc-
tion (0.083 µgm−3 yr−1) compared to the uncorrected case
(0.066 µgm−3 yr−1). Among the five methods, we find that
the RF model using both local- and regional-scale features
(“RF-regional” in Fig. 2) offers the best performance in
recovering the trends in the counterfactual scenarios and
is the only method that yields smaller errors than the un-
corrected case (the nationwide average error decreased by
0.019 µgm−3 yr−1; 28 % less). The RF-regional model also
outperforms the RF-local and LASSO-regional models, sug-
gesting the importance of considering non-linearity, interac-
tions between different meteorological features, and regional
meteorology information in correctly adjusting for the im-
pacts of meteorology.

Meteorological variability also has a substantial influence
on the summertime O3 trends in the US during this period (as
shown in Fig. 2d). Relative to the counterfactual scenario,
the uncorrected O3 trends are biased by over 1–2 ppbyr−1

in large areas of California, the Midwest and South US (as
much as 320 % of the counterfactual trends). This is largely
driven by the fact that the 2011 and 2012 summers were par-
ticularly hot in these regions and led to higher concentra-
tions of O3 at the beginning of this 7-year period (see Fig. S7
for the South and Midwest US). Therefore, failure to cor-
rect for meteorological variability results in much more neg-
ative trend estimates in the O3 concentrations in these areas
compared to the counterfactual scenario (see Fig. S6). Me-
teorology corrections with MLR or GAM help reduce these
estimation errors substantially (nationwide average error is
reduced by 51 % using MLR or 57 % using GAM compared
to uncorrected trends), while large errors still persist in the
Midwest and South US. Similar to the case of PM2.5, the RF-
regional model offers the best performance in correcting for
meteorological variability (the national average error is fur-
ther reduced by 42 %, compared to MLR), and it is especially
helpful in reducing the errors over the Midwest and South US

(regional average error is reduced by 64 % and 44 %, respec-
tively, compared to MLR).

3.2 Performance of different correction methods: China
(2013–2017)

Figure 3a and c show the trends in PM2.5 and O3 concen-
trations in the counterfactual scenarios in China. We find a
substantial decline in simulated PM2.5 concentration during
2013 to 2017, particularly in eastern and central China. In
contrast, there is little change in the simulated PM2.5 con-
centrations in western China in the counterfactual scenario,
where PM2.5 is dominated by dust species largely driven by
natural processes (see Fig. S9). For summer O3, there are de-
creasing trends in the counterfactual scenario in most parts of
China, except for northern China and some urban areas. This
is largely consistent with previous studies that attempt to at-
tribute emission-related changes in O3 concentrations during
this period based on modeling or observational data (Li et al.,
2018, 2020; Lu et al., 2020).

Figure 3b shows the magnitude of estimation errors in
the trend estimates of annual PM2.5 in China under differ-
ent correction methods. We find the underlying meteorolog-
ical variability has a substantial impact on PM2.5 trends in
China during this period. We observe large differences be-
tween the uncorrected and counterfactual trends in simulated
PM2.5 concentrations, particularly in Northwest and North-
east China. Similar to the model experiments in the US, we
find that MLR and GAM methods fail to correct for this
underlying meteorological variability and lead to further in-
creases in estimation errors in many locations. Relative to
the counterfactual scenario, the nationwide average error in-
creases to 0.90 µgm−3 yr−1 with MLR and 1.06 µgm−3 yr−1

with GAM (compared to 0.89 µgm−3 yr−1 with no correc-
tion). We find that the RF-regional model recovers the coun-
terfactual trends better than other methods (nationwide av-
erage error: 0.64 µgm−3 yr−1; an improvement of 30 % rel-
ative to MLR), but it is still not able to correct for the per-
sistent estimation errors over Northwest China. We further
analyze the performance of correction methods for the dif-
ferent component species of PM2.5. As shown in Figs. S10
and S11, the MLR model is particularly unable to correct for
the impacts of meteorological variability on nitrate and dust
species. Compared with MLR, the RF-regional model better
corrects for the impacts of meteorology on secondary organic
aerosol species in southern and central China and ammonium
in Northeast China but only yields modest improvement in
correcting for the errors in dust concentrations over North-
west China (see Fig. S12). In a sensitivity analysis, we use
an approach that first fits RF-regional models of each indi-
vidual PM2.5 species and then combines predictions for each
species to derive trend estimates. The results are largely sim-
ilar to the main approach that directly fits the total PM2.5
concentration (see Fig. S13).
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Figure 2. Trend estimates of daily annual PM2.5 (a, b) and summer O3 (c, d) in the US. Panels (a) and (c) show trend estimates under
the counterfactual scenario (βcount). Panels (b) and (d) show the absolute magnitude of errors in trend estimates under different correction
methods compared with the counterfactual scenarios (|βobs

−βcount
|). The average of the absolute errors for each method is shown in the

figure (unit of trend estimate: µgm−3 yr−1 for PM2.5 and ppbyr−1 for O3).

Figure 3d shows the magnitude of errors in the trend esti-
mates for summer O3 under different correction methods in
China. We find that the MLR model only modestly reduces
the estimation errors compared to the uncorrected cases, and
the RF-regional model offers the best overall performance.
The nationwide average error is reduced to 0.28 ppbyr−1 us-
ing the RF-regional model (relative to 0.43 ppbyr−1 uncor-
rected and 0.41 ppbyr−1 with MLR). Similar to the eval-
uation of summer time O3 in the US, we find the non-
linear models (GAM, RF-local) perform better than MLR
but are not as good as the RF-regional model. Surprisingly,
the LASSO-regional model performs the worst in recover-
ing the counterfactual trends. Compared to the US case, we
find that the impacts of meteorological variability on O3 and
the method performances are much more spatially heteroge-
neous (see Figs. S6 and S8), which may be partially due to
the more heterogeneous O3 regimes in China during this pe-
riod.

3.3 Limitations in separating meteorological and
emission influence: quantified with
constant-emission scenarios

In our model experiments in both the US and China, we find
large differences remain between the trends evaluated with
statistical models (even the best-performing RF-regional
model) and counterfactual trends. The remaining differences
could result from two different factors: (1) the statistical
model cannot capture the complex relationship between me-
teorology and pollutant concentrations, and/or (2) the differ-
ences between the observational scenarios and counterfactual
scenarios depend on not only the meteorological variability
but also the anthropogenic emissions in their interaction with
meteorology (i.e., impacts of meteorology on air quality also
depend on the level of emissions).

We quantify the potential magnitude of this second fac-
tor using our constant-emis approach. As the constant-emis
approach captures the exact relationship between meteorol-
ogy and pollutant concentrations in GEOS-Chem, the error in
the constant-emis approach is only associated with the sec-
ond factor above and thus provides a conceptual minimum of
the estimation errors that can be achievable by any statistical
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Figure 3. Trend estimates of daily annual PM2.5 (a, b) and summer O3 (c, d) in China. Panels (a) and (c) show trend estimates under
the counterfactual scenario (βcount). Panels (b) and (d) show the absolute magnitude of errors in trend estimates under different correction
methods compared with the counterfactual scenarios (|βobs

−βcount
|). The average of the absolute errors for each method is shown in the

figure (unit of trend estimate: µgm−3 yr−1 for PM2.5 and ppbyr−1 for O3).

approach. Figure 4 shows the estimation errors in trend es-
timates using the constant-emission scenarios simulated by
GEOS-Chem. We focus on the trends in summer O3 in the
US and annual PM2.5 in China, for which we see the largest
impacts of meteorological variability on the pollutant trends
and the largest improvements in reducing estimation errors
from the correction methods. Compared to the statistical
models (e.g., MLR and RF-regional in Fig. 4a and c), trends
evaluated using the constant-emis approach are very similar
to the trends in the counterfactual scenarios. The national av-
erage error in trend estimates is only 0.04 ppbyr−1 for the
O3 trends in the US (relative to 0.33 ppbyr−1 under MLR or
0.19 ppbyr−1 under RF-regional) and only 0.08 µgm−3 yr−1

for the PM2.5 trends in China (relative to 0.91 µgm−3 yr−1

under MLR or 0.64 µgm−3 yr−1 under RF-regional).
However, the estimation errors calculated above are still

non-negligible and can be large in certain regions. As shown
in Fig. 4b and d, the constant-emis approach generally yields
trend estimates biased by 10 % relative to the counterfactual
trends, but the errors can be up to 40 % in certain areas. This

error term is the result of ignoring how emissions could po-
tentially influence the impacts of meteorology on the pollu-
tant concentrations – that is, the impacts of the same mete-
orological variability on concentrations may be different in
the start year (with high emissions) compared to the end year
(with low emissions).

3.4 Application to observational data

Figure 5 shows the regional trends in O3 in the US and trends
in PM2.5 in China estimated from the observational data from
surface monitoring networks and the GEOS-Chem simula-
tions (only grid cells that overlap with monitor locations are
shown here). Here, to correct for the meteorology variability
in observational data, we implement the same set of statisti-
cal methods as shown in Table 1 but with different numeri-
cal coefficients directly derived from the observational data.
When applying different meteorological correction methods
to the observational data, our analysis reveals that the choice
of methods for meteorological correction can yield very dif-

https://doi.org/10.5194/acp-22-10551-2022 Atmos. Chem. Phys., 22, 10551–10566, 2022



10560 M. Qiu et al.: Statistical and machine learning methods for evaluating trends in air quality

Figure 4. Panels (a) and (c) show the histogram of estimation errors in trend estimates assessed using MLR, RF-regional and constant-emis.
Panels (b) and (d) show the errors assessed with the constant-emis method as a percentage of the trends in the counterfactual scenario (|βgc

−

βcount
|/|βcount

|). Panels (b) and (d) only show grid cells with a trend in the counterfactual scenarios > 0.2 ppbyr−1 or > 0.2 µgm−3 yr−1;
remaining grid cells are shown in gray. Panels (a) and (b) illustrate the summer O3 trends in the US. Panels (c) and (d) illustrate the annual
PM2.5 trends in China.

Figure 5. Trends in O3 in the US (a) and PM2.5 in China (b) estimated from the observational data (red) and GEOS-Chem simulations
(blue) under different correction methods. Trends in pollutant concentrations are estimated at the monitor level (for the observational data) or
at the grid cell level (for GEOS-Chem simulations). The point indicates the average value of the assessed trends of all monitors (or grid cells)
within a region. The error bars show the 10th and 90th percentile of the assessed trends of all monitors/grid cells within a region. Panel (a)
illustrates the summer O3 trends in the US (unit: ppbyr−1). Panel (b) illustrates the annual PM2.5 trends in China (unit: µgm−3 yr−1). We
classify the US states into four regions according to the US Census Bureau and classify China’s provinces into six regions based on the
structure of China’s subnational electric grid. Observational data are derived from US Environmental Protection Agency (2021a) and China’s
Ministry of Ecology and Environment (2021).
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ferent results for certain regions. For example, the regional
average uncorrected O3 trend is −1.49 and −1.15 ppbyr−1

in the Midwest and South US, respectively, which over-
estimates the reductions in concentrations attributable to
anthropogenic-emission changes (Fig. 5a). Correcting for the
meteorological variability with the MLR model yields a re-
gional average trend of−0.54 ppbyr−1 in the Midwest (a de-
crease by 53 % in magnitude relative to uncorrected trends)
and −0.71 ppbyr−1 in the South US (a decrease by 52 %).
RF-regional model further reduces the absolute magnitude
of the declines in O3 attributable to emission reductions to
−0.02 ppbyr−1 for the Midwest and −0.40 ppbyr−1 for the
South US. Importantly, these patterns are consistent with the
results from our model experiments in these regions: the RF-
regional model also estimates a much less negative emission-
driven trend in the South US compared to the uncorrected
case and MLR estimates in the GEOS-Chem simulations.
For the GEOS-Chem simulations, RF-regional estimates are
39 % smaller than MLR estimates, and this is comparable
to the magnitude changes for the observational data (RF-
regional estimates are 44 % smaller than MLR). As the RF-
regional model outperforms the other correction methods in
recovering counterfactual trends in the GEOS-Chem simu-
lations, this potentially also suggests a better performance
of RF-regional in recovering the underlying emission-driven
trends when applying to the observational data.

We find similar consistency in the method performances
between observational data and GEOS-Chem simulations
in China as well (Fig. 5b). When applying to the observa-
tional data from the surface monitoring network, a much
smaller reduction in PM2.5 concentrations is attributed to
anthropogenic-emission changes in North, Northeast and
East China using the RF-regional model, relative to the MLR
estimates. For example, the average emission-driven trend
estimated from the observational data is −4.9 µgm−3 yr−1

in Beijing under the RF-regional model, compared with
−9.6 µgm−3 yr−1 under the MLR model. These patterns are
consistent with the patterns of the trend estimates estimated
from our GEOS-Chem simulations with different statistical
methods.

4 Discussion

We designed a model experiment that enables us to directly
quantify the performance of different statistical models to
evaluate the trends in pollutant concentrations driven by
anthropogenic-emission changes. Based on our evaluations
of either PM2.5 or O3 trends across the US and China during
periods of recent emission declines, our analysis shows that
widely used MLR and GAM methods do not perform well
in correcting for the meteorological variability and recover-
ing simulated emission-driven trends. We propose a random
forest model that uses both local and regional meteorologi-
cal features, which offers the best overall performance in re-

covering the emission-driven trends across both species and
countries. Applying this model to observational data suggests
that estimates based on MLR or similar methods may over-
estimate the impacts of anthropogenic-emission changes on
the decline in pollutant concentrations in certain regions in
the US and China. However, the RF-regional method does
not outperform all the other approaches in every location de-
spite its better overall performance (see Figs. S14 and S15).
This suggests that using multiple statistical approaches may
be necessary to derive robust conclusions for attributing pol-
lutant trends to emission changes.

With our model experiments, we also quantify the estima-
tion errors in assuming emission impacts can be perfectly
separated from meteorological variability. These errors likely
bound the estimation errors that can be achieved by any sta-
tistical methods with this assumption. In the future, more
complex statistical and machine learning methods could be
applied to distinguish emission-driven and meteorologically
driven changes, but attribution solely based on observed con-
centrations and meteorology will be limited by physical in-
teractions between emissions and meteorology. We find that
the estimation errors resulting from these interactions are
overall much smaller compared to the estimation errors in
the existing statistical methods but can still be important for
certain regions at certain times. However, the intertwined re-
lationships between anthropogenic emissions and meteorol-
ogy are often much more complex in reality compared to
our model experiments. For example, meteorology can also
directly influence anthropogenic emissions (e.g., increased
electricity consumption during extreme weather conditions,
US Energy Information Agency, 2019; He et al., 2020).
Therefore, the estimation errors that can be achieved by more
flexible statistical models can potentially be even larger than
the errors quantified with our constant-emis approach.

While the GEOS-Chem model provides us with a frame-
work to test statistical methods, its use in our model exper-
iments introduces some uncertainty and limitations. Specifi-
cally, our experiments assess the performance of statistical
methods in correcting for the meteorology–pollution rela-
tionships encoded in GEOS-Chem, which may differ from
the complex relationships in the observational data. Sev-
eral studies have shown that GEOS-Chem and similar mod-
els do not capture certain meteorology–pollution relation-
ships in the observational data (e.g., temperature–O3 rela-
tionship, Porter and Heald, 2019, and influence of regional
meteorological patterns, Fiore et al., 2009). The relation-
ships encoded in GEOS-Chem may be different from the
underlying meteorology–pollution relationships in the fol-
lowing three ways: (1) parameters in GEOS-Chem that de-
scribe these relationships are uncertain; (2) the relationships
in GEOS-Chem are incorrect or incomplete; and (3) the rela-
tionships in GEOS-Chem are deterministic compared to the
potential stochastic underlying processes. Therefore, the per-
formance of any individual statistical method is likely to be
worse in the real world compared to its ability to reproduce a
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deterministic meteorology–pollution relationship encoded in
GEOS-Chem. Further model-based experiments could apply
our methods to different atmospheric models in order to test
if these conclusions differ by different models.

Changes in natural emissions due to meteorological vari-
ability play an important role in the air quality–meteorology
relationship. Our model experiment considers natural emis-
sion changes that can be simulated online with assimilated
meteorological fields in GEOS-Chem, including soil NOx
emissions, biogenic VOC emissions, and dust emissions.
We find that the statistical models perform notably worse
in correcting for the variability in dust-related PM2.5 (see
Fig. S12 for results using RF-regional), likely because dust
PM2.5 is extremely variable, with zero concentration on most
non-dust days but extremely high concentration during the
occasional dust storms. Our findings can potentially shed
light on another important source of natural emissions, wild-
fire emissions, which are also quite variable but have be-
come an increasingly important contributor to PM2.5 and O3
in certain regions (e.g., western US) (Burke et al., 2021).
While emissions from biomass burning are held constant in
our model experiments, as the wildfire emissions are pre-
scribed in GEOS-Chem, wildfire emissions are significantly
influenced by climatic variability (Abatzoglou and Williams,
2016; Xie et al., 2022) and will likely be a substantial chal-
lenge for any meteorological correction method in the future
that attempts to separate changes in anthropogenic emissions
from the variability in climate and associated natural emis-
sions.

Our research reveals multiple directions for future re-
search to enhance our understanding of the usage of statisti-
cal models to evaluate trends in pollutant concentrations un-
der changing meteorological conditions. One key but chal-
lenging question is to better understand the estimation er-
rors in these existing approaches; e.g., why the MLR model
is able to correct for the meteorological variability in some
locations but not others. In this paper, we only test a se-
lection of methods based on their popularity in the existing
literature and propose a simple-to-use model (RF-regional).
More complex models (such as convolutional neural net-
works) may offer better performance, but the estimation error
will likely be bounded by the errors in the constant-emis ap-
proach. Our work only evaluates the statistical and machine
learning models in Eqs. (1) and (2), which only represent one
(popular) set of evaluations that performs location-specific
trend estimation with adjustments for meteorology and sec-
ular trends. However, other statistical model specifications
specifically targeted to questions of meteorological interac-
tion or that permit borrowing information across locations
may generate different results. Constrained by computational
resources and the availability of emission inventories, our
simulation only covers a relatively short time period which
could result in additional uncertainty in the linear trend es-
timates. When possible, future studies could evaluate per-
formances of the statistical models with longer simulations

and alternative trend estimates (such as the Theil–Sen esti-
mator). A deeper investigation of the estimation error due to
assuming perfect separation between meteorology and emis-
sion is also essential for understanding how we should inter-
pret studies that use these statistical methods. For example,
further work could explore how these errors will vary by the
magnitude of emission reductions and the chemistry regimes.

5 Recommendations for attributing trends to
emission changes

Using statistical methods to causally infer relationships be-
tween simulated air pollutant concentrations and anthro-
pogenic emissions is challenging, and doing so in contexts
of observational data is even more challenging. Understand-
ing the uncertainty in statistical models in characterizing the
meteorology–pollution relationship is essential to evaluating
the effectiveness of policy interventions with observational
data. Here, we make several recommendations to researchers
and policymakers based on our analysis.

For those who aim to infer causal effects of emission
changes on air quality based on observational data on con-
centrations and meteorology, we recommend using multi-
ple statistical methods to correct for meteorological vari-
ability when evaluating the impacts of policies or interven-
tions on air quality. From our two case studies, we find a
relatively large variation between the trend parameters esti-
mated by different statistical methods (especially at the grid
cell or monitor level). Some methods perform better in cer-
tain locations but not in others (though RF-regional is the
best-performing method overall). Using multiple approaches
(linear/non-linear and at the local/regional scale) may help
to quantify uncertainty related to meteorological corrections.
These findings also suggest that empirical analyses may ben-
efit from considering the impacts of meteorological variabil-
ity on air quality separately for each region or even for each
monitor location (if data permit), instead of attempting to de-
termine a general relationship between meteorological vari-
ability and air pollution over a large spatial domain. Finally,
analysts should be particularly cautious when using statis-
tical methods to estimate impacts of anthropogenic emis-
sions on air quality in regions where pollution variability
is dominated by meteorologically influenced environmental
processes such as dust emissions, as we consistently show
that typical statistical methods (in combination with the stan-
dard set of meteorological variables) do not work well in
those regions.

Due to the non-negligible estimation errors in recovering
the counterfactual trends even with the best-performing sta-
tistical approach we test, we believe these statistical anal-
yses are most useful in understanding the patterns of an-
thropogenic emissions on air quality when aggregated across
larger spatial areas, rather than providing specific trends for
individual monitor locations. There is a higher degree of con-
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sistency among the trend estimates across different methods
when aggregated at regional level, but assessment at the local
level is more sensitive to method choice. The absolute mag-
nitude of monitor-level trends needs to be interpreted with
caution, considering both the uncertainty from the statistical
methods and also the limit of meteorological correction due
to ignoring the interactions between meteorology and emis-
sions.

Because measured pollutant concentrations are subject to
the influence of underlying meteorological variability, many
efforts have attempted to correct for the impacts of meteoro-
logical variability and use “meteorology-corrected” concen-
trations and trends to assist in evaluating the effectiveness
of air quality policies. Our study evaluates existing meth-
ods that aim to correct for the meteorological variability and
finds many of these methods do not perform well. This raises
potential concerns about the use of meteorology-corrected
concentrations as targets for policy evaluation. Meteorology-
corrected concentrations and trends remain useful metrics to
quantify the influence of emissions. However, a more com-
prehensive evaluation of the effectiveness of policy requires
interpreting measurements with all available tools, ideally in-
cluding both statistical analyses and physical models.

Code and data availability. The GEOS-Chem simulation of dif-
ferent scenarios and the R scripts to implement the statistical meth-
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