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Supplementary methods

Implementation of LASSO and RF

As the incorporation of both local and regional features can quickly expand the dimensionality of the feature space, we use the

Least Absolute Shrinkage and Selection Operator (LASSO) and the Random Forest (RF) model to assess the importance of

regional meteorological features. Both methods are commonly-used approaches with good prediction performance with high

dimensional data inputs, and are thus appropriate for analysis with a large number of regional meteorological features. For

these two methods, we rewrite equation 1 as the following:

yit = βobs
i × t+ gi(Xit,Zt,Wt)+ ϵit (1)

where gi() denotes the functional form fitted by LASSO or RF. Xit again denotes the local meteorological features for grid cell

i on day t. Zt denotes the regional scale meteorology features including those for all grid cells in the US on day t (98 cells in

4×5 degrees; we choose a relatively coarse resolution due to computational cost). Meteorological information in each location

in the US may help explain the pollutant concentrations in grid cell i. In total, we have 10 local features (Xit) and 10×98=980

regional scale features (Zt). Wt denotes the day and month variable to model the daily and monthly variability in pollutant

concentrations that are unrelated to meteorological variability. For LASSO, we use month-of-year×day-of-month fixed effects

(same as all the other methods except for RF), and these fixed effects are not penalized in the LASSO regression. For RF, we

use the month-of-year variable (from 1 to 12), and day-of-month variable (from 1 to 31), due to the inefficient performance of

RF working with a large number of fixed effects. Thus, the difference between RF and the other methods may also come from

the different choices in modeling monthly and daily variability.

The coefficient βobs
i is obtained with the following procedure using the double machine learning approach by Chernozhukov

et al. (2018):

(1) We first partition the time series of {yit, Xit, Zt, Wt} into 4 folds. We use 75% of the data as training data and the

remaining 25% for predictions. We train the following two models on the training data:

yit = f(Xit,Zt,Wt)

t= g(Xit,Zt,Wt)
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(2) We then apply models f(.) and g(.) to the prediction set to get predictions of yit and t for the rest 25% of the data. The

above process is repeated four times to derive predictions for the entire time series (predictions denoted as ŷit and t̂).

(3) We calculate the residuals of each model ỹit = yit − ŷit and t̃= t− t̂. The coefficient of interest βobs
i is then calculated

as:

βobs
i =

∑
t t̃× ỹit∑
t t̃× t

This is equivalent to setting up a linear regression of ỹit ∼ t̃ and obtaining the slope coefficients (as shown by Chernozhukov

et al. (2018)).

The hyper-parameters of RF and LASSO are tuned with 4-fold cross-validation. We also perform two sensitivity analyses: 1)

with a different spatial resolution for the regional scale features (2×2.5 degrees instead of 4×5 degrees), and 2) with different

numbers of folds to estimate the trend coefficients. Our results are similar across these sensitivity analyses (see figure S16).

The double machine learning framework involves a sample partition procedure (steps (1) and (2) above). This procedure,

however, does not fit the purpose of including time fixed effects in the LASSO model (as randomly partitioned training and

test sets could have very a unbalanced number of observations from a given month-day pair). Therefore, steps (1) and (2)

are only implemented for the RF model, and coefficients of the LASSO model are directly derived from step (3) without

sample splitting. This is acceptable for the LASSO model as the risk of “overfitting” has already been eliminated by using

the tuned penalizing factor (i.e. the hyper-parameters) derived from 4-fold cross-validation. It is important to note that we

quantify the performance of RF and other methods using the differences between “meteorology-corrected” trends (βobs) and

the counterfactual trends (βcount), instead of their performance in predicting the pollutant concentration. Therefore, if the RF

model “overfits the data”, it would actually result in a large error, because the overly fit RF model would attribute all variability

of PM2.5 and O3 to the meteorological variables and estimate a close-to-zero trend.
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SI tables and figures

Model Annual PM2.5 in the US Summer O3 in the US

average error
median
relative error

cells with
relative error
>50%

average error
median
relative error

cells with
relative error
>50%

No correction 0.066 28% 27% 0.67 154% 84%

MLR (5 features) 0.092 43% 44% 0.38 84% 71%

MLR (10 features) 0.083 40% 40% 0.33 71% 64%

Quadratic 0.088 40% 42% 0.29 60% 58%

Cubic 0.075 39% 41% 0.28 60% 58%

Spline 0.076 40% 41% 0.28 61% 59%

GAM 0.076 40% 43% 0.29 61% 58%

RF-local 0.067 33% 39% 0.34 78% 70%

LASSO-regional 0.078 31% 33% 0.31 68% 65%

RF-regional 0.047 25% 23% 0.19 46% 47%

Table S1. Estimation errors of trend estimates in the US under different correction methods. The average estimation errors, median relative
error, and fraction of grid cells with relative error greater than 50% are shown in the table. Relative errors are calculated as the ratio of
estimation error to the trend estimate in the counterfactual scenario. MLR (5 features) only use temperature, precipitation, humidity, and
surface wind speed (U,V directions) as the meteorological features.
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Model Annual PM2.5 in China Summer O3 in China

average error
median
relative error

cells with
relative error
>50%

average error
median
relative error

cells with
relative error
>50%

No correction 0.89 224% 77% 0.43 95% 74%

MLR (5 features) 1.07 193% 80% 0.42 90% 68%

MLR (10 features) 0.90 159% 79% 0.41 85% 68%

Quadratic 1.00 142% 82% 0.36 76% 62%

Cubic 1.07 143% 82% 0.34 68% 59%

Spline 1.08 140% 84% 0.33 69% 59%

GAM 1.06 139% 82% 0.35 72% 59%

RF-local 0.99 172% 82% 0.31 64% 58%

LASSO-regional 0.83 184% 75% 0.46 98% 73%

RF-regional 0.64 152% 67% 0.28 61% 58%

Table S2. Estimation errors of trend estimates in China under different correction methods. The average estimation errors, median relative
error, and fraction of grid cells with relative error greater than 50% are shown in the table. Relative errors are calculated as the ratio of
estimation error to the trend estimate in the counterfactual scenario. MLR (5 features) only use temperature, precipitation, humidity, and
surface wind speed (U,V directions) as the meteorological features.
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Figure S1. Comparison between the annual PM2.5 (Panels A and C) and summer O3 (Panels B and D) concentrations measured by the
monitoring network and GEOS-Chem simulations in the US (2011-2017). Panels A and B show the trends in monitored concentrations
(dots) and trends in the observational scenarios in GEOS-Chem simulations (background) without meteorology corrections. Panels C and
D show the Pearson correlation coefficient (R) between the daily measured concentrations and simulated concentrations. Observational air
quality data is derived from U.S. Environmental Protection Agency (2021b).
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Figure S2. Comparison between the annual PM2.5 (Panels A and C) and summer O3 (Panels B and D) concentrations measured by the surface
monitoring network and GEOS-Chem simulations in China (2014-2017). Panels A and B show the trends in monitored concentrations (dots)
and trends in the observational scenarios in GEOS-Chem simulations (background) without meteorology corrections. Panels C and D show
the Pearson correlation coefficient (R) between the daily measured concentrations and simulated concentrations. Observational air quality
data is derived from China’s Ministry of Ecology and Environment (2021).
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Figure S3. National total anthropogenic emissions in the US (2011- 2017). The emissions data is derived from the national total emissions
of criteria air pollutants reported by the US EPA Air Emissions Inventory (U.S. Environmental Protection Agency, 2021a). Changes in
emissions between 2011 and 2017 as percentages of the emissions in 2011 are presented in the figure.
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Figure S4. National total anthropogenic emissions in China (2013- 2017). The emissions data is derived from the Multi-resolution Emission
Inventory (MEIC) (Li et al., 2017). Changes in emissions between 2013 and 2017 as percentages of the emissions in 2013 are presented in
the figure.
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Figure S5. Counterfactual trends in O3 (unit: ppb/yr) and PM2.5 (unit: µg m−3/year) in China with different meteorological years. Each dot
represents one grid cell in China. The x-axis shows the trends in air quality in the counterfactual scenario using the meteorological field in
2013, and the y-axis shows the trends in air quality in the counterfactual scenario using the meteorological field in 2017. Results here are
derived from simulation at 4×5 degrees.
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Figure S6. Trend estimates of daily annual PM2.5 (Panels A and B) and summer O3 (C and D) in the US. Panels A and C show trend
estimates under the counterfactual scenario (βcount). Panels B and D show the estimation errors of trend estimates under different correction
methods compared with the counterfactual scenarios (βobs −βcount). The average of the absolute error for each method is shown in the
figure. Unit of trend estimate is µg m−3/year for PM2.5 or ppb/year for O3.
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Figure S7. Deviations of meteorological features from the 7-year average in the US (South and Midwest). The deviation is quantified in the
units of standard deviation (SD) across the 7-year period. Zero indicates the 7-year average. This plot shows the summer time average of
daily MDA8 meteorological variables for each year aggregated over South and Midwest US.
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Figure S8. Trend estimates of daily annual PM2.5 (Panels A and B) and summer O3 (C and D) in China. Panels A and C show trend estimates
under the counterfactual scenario (βcount). Panels B and D show the estimation errors of trend estimates under different correction methods
compared with the counterfactual scenarios (βobs −βcount). The average of the absolute error for each method is shown in the figure. Unit
of trend estimate is µg m−3/year for PM2.5 or ppb/year for O3.
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Figure S9. Concentrations of component species of PM2.5 in China (average across 2013-2017). The figure shows concentrations of sulfate
(SO4), nitrate (NIT), ammonium (NH4), black carbon (BC), organic carbon (OC), secondary organic aerosol (SOA), and dust.
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Figure S10. Counterfactual trends of component species of PM2.5 in China. The figure shows counterfactual trends of total PM2.5, anthro-
pogenic PM2.5 (total PM2.5 excluding dust and sea salt), sulfate (SO4), nitrate (NIT), ammonium (NH4), black carbon (BC), organic carbon
(OC), secondary organic aerosol (SOA), and dust.
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Figure S11. Differences between counterfactual trends and trends evaluated under MLR (βMLR −βcount) of component species of PM2.5

in China. The figure shows estimation errors of total PM2.5, anthropogenic PM2.5 (total PM2.5 excluding dust and sea salt), sulfate (SO4),
nitrate (NIT), ammonium (NH4), black carbon (BC), organic carbon (OC), secondary organic aerosol (SOA) and dust.

16



Figure S12. Differences between counterfactual trends and trends evaluated under RF-regional (βRF−regional −βcount) of component
species of PM2.5 in China. The figure shows estimation errors of total PM2.5, anthropogenic PM2.5 (total PM2.5 excluding dust and sea salt),
sulfate (SO4), nitrate (NIT), ammonium (NH4), black carbon (BC), organic carbon (OC), secondary organic aerosol (SOA) and dust.
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Figure S13. Histograms of estimation errors of trend estimates in PM2.5 under two implementations of the RF-regional method (applied to
China). The upper panels (Combined) show results of fitting RF models to the total concentrations of PM2.5 to directly estimate trends (the
main results). The lower panels (By species) show results of fitting RF models to individual PM2.5 species and then combine predictions to
estimate trends. The left panels show results for total PM2.5 and right panels show results for anthropogenic PM2.5 (total PM2.5 excluding
dust and sea salt). Average of the estimation errors across all grid cells is shown in the figure.
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Figure S14. Best-performing correction method for each grid cell (US). For each method, the figure shows the grid cells at which the trend
estimate has the smallest estimation error (i.e. closest to the trend in the counterfactual scenario) among the tested methods.
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Figure S15. Best-performing correction method for each grid cell (China). For each method, the figure shows the grid cells at which the
trend estimate has the smallest estimation error (i.e. closest to the trend in the counterfactual scenario) among the tested methods.
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Figure S16. Histograms of estimation errors of trend estimates in O3 under different implementations of the RF-regional method (applied
to the US). From left to right: Main (the main results), More features (including 9 extra meteorological features), 2x2.5 (using regional
features with spatial resolution at 2×2.5◦, instead of 4×5◦), fold=2 (using 2 folds for data-splitting and cross-fitting), fold=8 (using 8 folds
for data-splitting and cross-fitting). Average of the absolute error for each implementation is shown in the figure. Here we only use a random
subset of all the grid cells in the US due to high computational cost.
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