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Abstract. We present a novel approach to derive indirect global information on the hydroxyl radical (OH),
one of the most important atmospheric oxidants, using state-of-the-art satellite trace gas observations (key sinks
and sources of OH) and a steady-state approximation (SSA). This is a timely study as OH observations are
predominantly from spatially sparse field and infrequent aircraft campaigns, so there is a requirement for further
approaches to infer spatial and temporal information on OH and its interactions with important climate (e.g.
methane, CH4) and air quality (e.g. nitrogen dioxide, NO2) trace gases. Due to the short lifetime of OH (∼ 1 s),
SSAs of varying complexities can be used to model its concentration and offer a tool to examine the OH budget
in different regions of the atmosphere. Here, we use the well-evaluated TOMCAT three-dimensional chemistry
transport model to identify atmospheric regions where different complexities of the SSAs are representative of
OH. In the case of a simplified SSA (S-SSA), where we have observations of ozone (O3), carbon monoxide (CO),
CH4 and water vapour (H2O) from the Infrared Atmospheric Sounding Interferometer (IASI) on board ESA’s
MetOp-A satellite, it is most representative of OH between 600 and 700 hPa (though suitable between 400–
800 hPa) within ∼ 20 %–30 % of TOMCAT modelled OH. The same S-SSA is applied to aircraft measurements
from the Atmospheric Tomography Mission (ATom) and compares well with the observed OH concentrations
within ∼ 26 %, yielding a correlation of 0.78. We apply the S-SSA to IASI data spanning 2008–2017 to explore
the global long-term inter-annual variability of OH. Relative to the 10-year mean, we find that global annual
mean OH anomalies ranged from −3.1 % to +4.7 %, with the largest spread in the tropics between −6.9 % and
+7.7 %. Investigation of the individual terms in the S-SSA over this time period suggests that O3 and CO were
the key drivers of variability in the production and loss of OH. For example, large enhancement in the OH sink
during the positive 2015/2016 El Niño–Southern Oscillation (ENSO) event was due to large-scale CO emissions
from drought-induced wildfires in South East Asia. The methodology described here could be further developed
as a constraint on the tropospheric OH distribution as additional satellite data become available in the future.
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1 Introduction

The hydroxyl radical (OH) is a key species in atmospheric
chemistry as it largely determines the oxidation capacity of
the troposphere, and therefore the lifetimes of many differ-
ent species. Key species controlled by OH include impor-
tant greenhouse gases (e.g. methane, CH4), ozone-depleting
substances (e.g. hydrochlorofluorocarbons), and other short-
lived anthropogenic and natural pollutants (e.g. volatile or-
ganic compounds (VOCs), nitrogen oxides (NOx) and carbon
monoxide (CO); Lelieveld et al., 2016). The importance of
OH to tropospheric oxidation capacity was recognised in the
early 1970s (Levy, 1971) and has been subject to many sci-
entific investigations since, especially in relation to the life-
time of CH4 (e.g. McNorton et al., 2016; Rigby et al., 2017;
Turner et al., 2019). A better understanding of the spatial and
temporal distribution of OH, the primary sink of CH4, would
aid the interpretation of recent trends in CH4, such as the
2000–2007 concentration stabilisation period (Turner et al.,
2019).

The primary source of OH in the remote troposphere is
the photolysis of ozone (O3) by ultraviolet (UV) radiation
(< 330 nm wavelength). This forms O(1D), which then reacts
with water vapour (H2O) to form OH (Lelieveld et al., 2016).

O3+ hv(λ < 330nm)→ O
(

1D
)
+O2 (1)

O
(

1D
)
+H2O→ 2OH (2)

The OH radical formed is very reactive due to the unpaired
electron on the oxygen atom. After formation, the OH radi-
cals attack reduced and partly oxidised gases, removing them
from the atmosphere and forming peroxy radicals (e.g. hy-
droperoxyl radical, HO2). The peroxy radicals can go on to
form peroxides and participate in many other atmospheric
chemistry reactions (e.g. ozone formation) and can also go
on to reform OH (Lelieveld et al., 2016).

Direct in situ measurements of OH are scarce as the mea-
surement process is challenging, with few instruments avail-
able (Stone et al., 2012; Lelieveld et al., 2016). Due to its
very short lifetime, ∼ 1 s in the daytime, the abundance of
OH is very low, with the global tropospheric mean OH con-
centration around 1× 106 molec. cm−3. In situ OH measure-
ments are limited to field campaigns at specific locations
(Stone et al., 2012) and aircraft missions, e.g. NASA’s At-
mospheric Tomography mission (ATom; Wofsy et al., 2018;
Brune et al., 2020). There has consequently been a demand
for indirect methods to infer global-scale OH. An established
method is to use the methyl chloroform (CH3CCl3, MCF)
concentrations to derive a global mean OH concentration by
using inverse modelling, which exploits the fact that sources
of MCF are well known and that its main sink is reaction
with OH (Lovelock, 1977; Singh, 1977; Prinn et al., 1992).
This method has been used to study the temporal variability
of OH (Montzka et al., 2011; Prinn et al., 2005). The accu-
racy of this method depends on accurate estimates of MCF

emissions. MCF production is regulated under the legislation
initiated by the 1987 Montreal Protocol, and therefore MCF
has seen a sharp decline in atmospheric abundance since the
mid-1990s, which will reduce the viability of this method,
leading to new methods and tracers being sought (Huang and
Prinn, 2002; Liang et al., 2017; Rigby et al., 2017).

However, the above-mentioned MCF method is unable to
provide spatial information on OH. In the last 2 decades,
there has been an increasing wealth of tropospheric satel-
lite data, providing information on the spatial and temporal
variability of atmospheric species, but not OH (Streets et al.,
2013). These atmospheric composition data are global in ex-
tent and now span more than a decade, so they have the po-
tential to provide information to infer a global OH distribu-
tion and its variation over time. Presently, there are limited
examples of the use of satellite data to infer global OH. In a
recent study, Wolfe et al. (2019) used satellite formaldehyde
observations and budget to calculate remote tropospheric col-
umn OH, developing the method using aircraft data from
ATom to establish formaldehyde production/loss and OH
concentrations.

To exploit satellite data here, we use a simplified steady-
state approximation. This is an appropriate assumption due to
the very short daytime lifetime of OH, and the simplification
is described in Sect. 2 below. Some studies have thus far used
steady-state approximations to calculate OH from in situ sur-
face data at field sites, e.g. Eisele (1996) at Mauna Loa Ob-
servatory; Savage et al. (2001) and Smith et al. (2006) at the
Mace Head Atmospheric Research Centre, Ireland; Creasey
et al. (2003) at Cape Grim in the Southern Ocean; and Slater
et al. (2020) in central Beijing. However, there is also the
potential for these approximations to be applied to satellite
data in a global context. The use of the steady-state approxi-
mations has had varied success. Eisele (1996) found that the
comparison between observed and calculated OH depended
on which air mass was present, with free tropospheric air
masses showing better agreement than air masses from the
boundary layer. Savage et al. (2001) found a good correla-
tion between measured and calculated OH, but a steady-state
overprediction of around 30 %. Models using only simplified
chemistry have been shown to capture the chemistry of un-
polluted regions. Sommariva et al. (2004) used a “detailed”
and “simple” box model to study OH in unpolluted marine air
at Cape Grim in the Southern Hemisphere (SH). The simple
box model, based only on CO, CH4 and inorganic reactions,
agreed within 5 %–10 % of the detailed box model that also
contained non-methane hydrocarbons (NMHCs). The mod-
els over-estimated the measured OH by 10 %–20 %.

OH reactivity (OHR), the inverse of OH lifetime, is also
measured in the field to provide additional information on
the tropospheric oxidation capacity and abundance of the
OH radical. OHR can be measured in situ along with trace
gas concentrations, e.g. during aircraft campaigns such as
NASA’s ATom (Wofsy et al., 2018). Observed OHR is com-
monly compared to calculated OHR by summing individual
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sink terms using measured reactant concentrations multiplied
by their respective reaction rate coefficients with OH (Yang
et al., 2016). However, a large number of field campaigns
have shown that there is often a substantial difference be-
tween observed in situ and calculated OHR, known as the
“missing” reactivity (Ferracci et al., 2018). This missing re-
activity can account for as much as 20 % (usually outside the
OHR uncertainty range) to 80 % of the observed OHR (Yang
et al., 2016). There are many proposed reasons for this miss-
ing reactivity, such as short-lived VOCs that were not mea-
sured (Kovacs et al., 2003) or in the rainforests some mixture
of unidentified biogenic emissions and photo-oxidation prod-
ucts (Edwards et al., 2013; Nölscher et al., 2016).

An improved characterisation of the OH temporal vari-
ation is vital to understanding key aspects of atmospheric
chemistry, such as interannual to decadal variability in
methane (Turner et al., 2019; Zhao et al., 2020). Studies us-
ing MCF observations, in combination with box-model anal-
yses, show similar annual OH anomalies between 1995 and
2010, with a broadly negative anomaly of −6 % to 0 % be-
tween 1995 and 1999, a positive anomaly of 0 % to 6 % be-
tween 1999 and 2007, and a negative anomaly of −5 % to
0 % between 2007 and 2010 (Montzka et al., 2011; Rigby et
al., 2017; Turner et al., 2017; Patra et al., 2021). After 2010,
the results of such studies differ, with some showing con-
sistently negative anomalies of −4 % to 0 % between 2010
and 2018 (Rigby et al., 2017; Turner et al., 2017) and oth-
ers showing some positive anomalies in this period, for ex-
ample in the range of 0 % to 4 % between 2010 and 2015
(Naus et al., 2019; Patra et al., 2021). Studies using chem-
ical transport models are not consistent with those using
MCF observations. He et al. (2020) found negative anoma-
lies of −5 % to 0 % between 1995 and 2005 and then posi-
tive anomalies of 0 % to 4 % between 2005 and 2017. A study
by Zhao et al. (2020) found a multi-model mean increase of
0.7×105 molec. cm−3 between 1980 and 2010, equivalent to
around 0.1 %–0.5 % yr−1, with the greatest rate of increase in
the final decade (2000–2010). The OH increase from 2000–
2010 was predominantly due to that in the primary produc-
tion term (O(1D)+H2O) though also to a decrease in the CO
sink term (OH+CO). Model studies further show OH inter-
annual variability to be influenced by the El Niño–Southern
Oscillation (ENSO), with low OH concentrations being asso-
ciated with El Niño years and high OH concentrations with
La Niña years (Zhao et al., 2020; Anderson et al., 2021).

Here, we use output data from the TOMCAT 3D chem-
ical transport model to explore the validity of OH steady-
state approximations in the troposphere. A simplified steady-
state approximation is then applied to observations of O3,
CO, CH4 and H2O mid-tropospheric concentrations retrieved
from observations by the Infrared Atmospheric Sounding In-
terferometer (IASI) instrument on board the MetOp-A satel-
lite in 2010 and 2017. This calculated satellite OH is then
compared to OH from TOMCAT using full chemistry and
ATom observations. Finally, the simplified approximation

is applied to MetOp-A data over a 10-year period (2008–
2017) to infer the temporal variability in OH. Section 2 de-
scribes how steady-state approximations, TOMCAT model,
aircraft and satellite data are employed in this study. Sec-
tion 3 presents the results and discussion. Section 4 sum-
marises our conclusions.

2 Methods

2.1 OH steady-state approximations

Due to the short lifetime of OH, a steady-state approximation
can be used to model its concentration. The approximation
can be defined as Eq. (3):

[OH]Steady State =
kA+B [A] [B]+ . . .+ jC [C]+ . . .∑

kD[D] + . . .
, (3)

where the numerator of the expression represents a sum of
the source terms. kA+B is the reaction rate constant of A
and B to form OH, and jC is the photolysis coefficient of
C to form OH. The denominator represents a sum of the sink
terms. kD is the reaction rate constant ofD and OH, whereD
represents an individual sink species. The accuracy of the ap-
proximation depends partly on the number of source and sink
terms which can be included. This, in turn, depends on the
availability of observations to provide a constraint for each
of those terms.

Here, we use three steady-state approximations of differ-
ent complexity, summarised in Table S1 in the Supplement.
The most complex is referred to as the full-chemistry steady-
state approximation (FC-SSA) and contains the largest num-
ber of source and sink terms, capturing the most comprehen-
sive tropospheric chemistry, with 26 source terms and 51 sink
terms. The second most complex is based on a steady-state
approximation in Savage et al. (2001; Sav-SSA) and contains
five source and 12 sink terms. Lastly, we propose a simplified
steady-state approximation (S-SSA) containing one source
term (based on Eqs. 1 and 2) and three sink terms (based
on the reaction of OH with CH4, CO and O3). The S-SSA
allows OH to be derived using only the main tropospheric
source and sinks that can be directly observed by satellite.
We adopt the S-SSA as Eq. (4):

[OH]Steady State =

(
2j1k1[O3][H2O]

k2[N2]+k3[O2]+k1[H2O]

)
(k4 [CH4]+ k5 [CO]+ k6 [O3])

, (4)

where j1 is the photolysis coefficient for O3→ O(1D)+O2,
k1 is the reaction rate constant for O(1D)+H2O, k2 and k3
are the collisional relaxation rate constants with respect to N2
and O2, and k4, k5 and k6 are the rate constants for reaction
of OH with CH4, CO and O3, respectively. The expression
implicitly assumes a steady state for the production and loss
of O(1D).
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2.2 OH reactivity

OHR, the denominator of Eq. (3), can be directly observed
or calculated using a model and/or observed species. The
accuracy of an OHR calculation is similarly dependent on
the number of sink terms that can be included and the avail-
ability of requisite observations. In principle, examination of
OHR measurements co-located with those of [OH] could al-
low steady-state approximations for OH sources and sinks to
be evaluated separately. We adopt the denominator of Eq. (4)
as a simplified expression for OHR as Eq. (5):

[OHR] = k4 [CH4]+ k5 [CO]+ k6[O3]. (5)

2.3 Model and observations

2.3.1 TOMCAT 3D model

In this study we use the 3D global chemical transport model
TOMCAT (Chipperfield, 2006) at a 2.8◦× 2.8◦ resolution
with 31 vertical levels between the surface and 10 hPa. The
model is coupled with the Global Model of Aerosol Pro-
cesses (GLOMAP) to calculate aerosol microphysics (Mann
et al., 2010). The model is forced by meteorological reanal-
yses (ERA-Interim) from the European Centre for Medium-
Range Weather Forecasts (ECMWF; Dee et al., 2011). The
tropospheric chemistry scheme is described in Monks et
al. (2017), with the main updates as follows: anthropogenic
and natural surface emissions from the Coupled Model In-
tercomparison Project Phase 6 (CMIP6) for NOx , CO and
VOCs (Feng et al., 2020); fixed annual biogenic emissions
from the Chemistry-Climate Model Initiative (CCMI; Mor-
genstern et al., 2017); biomass burning emissions from the
Global Fire Emissions Database (GFED) version 4 (van der
Werf et al., 2017); CH4 scaled to a best estimate based on
the 2010 globally averaged surface CH4 value from NOAA
(Dlugokencky, 2020), and an update to the cloud fields us-
ing reanalyses from ECMWF (as described in Rowlinson et
al., 2019). The model simulation was run for 2010 and 2017,
with 6 months of spinup in each case. The simulation was
sampled daily at 09:30 local solar time (LST) globally to
match the MetOp-A daytime overpass time.

Monks et al. (2017) and Rowlinson et al. (2019) have
evaluated TOMCAT OH compared to model and observa-
tional datasets for the year 2000. The set-up for the sim-
ulations used in Rowlinson et al. (2019) is most similar
to that in this study, but broadly the simulation in Monks
et al. (2017) produces similar regional zonal OH values.
TOMCAT OH in Rowlinson et al. (2019) had an average
global tropospheric concentration of 1.04×106 molec. cm−3,
which sits within a range from other studies, e.g. 0.94±0.1×
106 molec. cm−3 from inferred OH observations from MCF
by Prinn et al. (2001), 1.08±0.6×106 molec. cm−3 from the
POLARCAT Model Intercomparison Project (POLMIP) and
the multi-model mean of 1.11±0.2×106 molec. cm−3 from
16 Atmospheric Chemistry and Climate Model Intercompar-

ison Project (ACCMIP) models (Naik et al., 2013). In terms
of vertical distribution, Monks et al. (2017) and Rowlinson et
al. (2019) show the maximum TOMCAT OH values to be be-
tween the surface and 750 hPa near the Equator. In compari-
son, Spivakovsky et al. (2000; MCF method) and the multi-
model mean OH from ACCMIP (Naik et al., 2013) have peak
OH values higher up in the troposphere. Overall, in the mid-
troposphere, the primary focus in this study, Rowlinson et
al. (2019) TOMCAT OH shows comparable values across
all the latitude regions in comparison with Spivakovsky et
al. (2000) and ACCMIP (Naik et al., 2013).

2.3.2 Satellite observations

We use satellite observations for 2010 and 2017 from
the MetOp-A satellite launched by EUMETSAT in 2006.
MetOp-A is in a polar sun-synchronous orbit which crosses
the Equator at ∼ 09:30 LST (day overpass) and 21:30 LST
(night overpass), giving global Earth coverage twice a day
(Clerbaux et al., 2009). Here, we use height-resolved distri-
butions of CO, CH4, O3 and H2O retrieved from MetOp-A
observations by schemes developed by the Rutherford Ap-
pleton Laboratory (RAL). The O3, CO and H2O retrievals are
from the extended version of RAL’s Infrared and Microwave
Sounding (IMS-extended) scheme, which co-retrieves tem-
perature profiles, cloud and surface properties, other trace
gases, and aerosols and is documented in the supplement
of Pope et al. (2021). The CH4 data were produced by an
improved version (v2.0) of RAL’s methane retrieval scheme
(Siddans et al., 2020) developed for IASI on MetOp-A. The
original IASI methane scheme (v1.0) was described in Sid-
dans et al. (2017). For the IMS-extended scheme, as well as
the IASI methane scheme, retrieved profiles are output at the
locations of IASI soundings. IASI is a nadir-viewing ther-
mal infrared Fourier transform spectrometer, with a spec-
tral range from 645 to 2760 cm−1 (Clerbaux et al., 2009).
It samples a swath width of 2200 km by scanning a set of
four fields of view across-track. At nadir, these are circu-
lar with 12 km diameter, occupying a square 50 km× 50 km
(3.3◦×3.3◦). For the study of OH temporal variation between
2008 and 2017, MetOp-A data sub-sampled both temporally
(1 in 10 d) and spatially (1 in 4 pixels) were available. Fig-
ures S1 and S2 in the Supplement show good agreement be-
tween the sub-sampled and fully sampled satellite data in a
zonal average when compared in 2010 and 2017, with an av-
erage monthly correlation coefficient in latitudinal structure
of 0.89 and 0.85, respectively.

Profiles of H2O, O3 and CO, along with temperature,
are represented on a set of 101 levels in the IMS extended
scheme. For H2O, information from IASI and the two mi-
crowave sounders (Microwave Humidity Sounder (MHS)
and Advanced Microwave Sounding Unit (AMSU-A)) is suf-
ficient to resolve a number of independent layers between
the surface and 200 hPa, with degrees of freedom of signal
(DOFS) being typically ∼ 10. Profiles of H2O (and temper-
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ature) produced from MetOp-A by the IMS core scheme
have been validated against radiosondes in ESA’s Climate
Change Initiative (European Space Agency, unpublished)
and found to have a systematic bias of ∼ 10 %. For CO, on
the other hand, measurement information (exclusively from
IASI) is sufficient to retrieve only one independent layer,
with the averaging kernels centred on the mid-troposphere
at ∼ 600 hPa with a full width half medium (FWHM) from
∼ 300–900 hPa, as seen in Figs. S3 and S4. Validation of
the IMS-extended CO retrievals, through indirect compar-
isons using the Copernicus Atmospheric Monitoring Service
(CAMS) in which averaging kernels were applied (see the
supplement of Pope et al., 2021), found uncertainty in re-
trieved CO to be approximately 10 %. For O3, averaging ker-
nels peak at a number of levels spanning the troposphere and
stratosphere, with DOFs generally ranging between 3.0 and
4.0. The lowest peak is seen in Figs. S3 and S4 to be around
∼ 600 hPa with FWHM from ∼ 350–900 hPa. When com-
pared with ozonesondes (Sect. S3), O3 retrieved in the mid-
troposphere by the IMS-extended scheme is found to be sys-
tematically larger by up to 20 %. The RAL v2.0 IASI scheme
retrieves CH4 on a set of coarsely spaced levels, taking as in-
put temperature profiles and surface spectral emissivity pre-
retrieved from the same soundings by IMS. Output files also
include layer-average mixing ratios and their corresponding
averaging kernels, as shown in Figs. S3 and S4. The number
of DOFS is greater than 2 in the tropics and drops to below
2 at polar latitudes; the surface–450 hPa layer average is well
resolved from layers above. Examples of averaging kernels
for H2O, CH4, CO and O3 are shown in Sect. S2 (Figs. S3
and S4).

With the exception of H2O, retrieval sensitivity is seen in
Figs. S3 and S4 to decrease in the lowest atmosphere as tem-
perature approaches that of the surface and surface–air tem-
perature contrast on which sensitivity depends diminishes.
However, in all four cases, averaging kernels for layers cen-
tred in the mid-troposphere are well behaved, with peaks
around 600–700 hPa and FWHMs contained within the free
troposphere, as appropriate for the focus of this study. For
straightforward comparison with TOMCAT simulations, use
of retrieved MetOp-A data is further restricted to the 400–
800 and 600–700 hPa layers, where averaging kernels peak,
rather than applying the averaging kernels to model profiles.

Co-located retrievals of H2O, O3 and CO data and CH4
were filtered for a geometric cloud fraction of 20 % or less
(i.e. 0.2 fractional coverage or less). This resulted in satel-
lite soundings which exclude all opaque clouds which fill the
field of view and a fraction of clouds which fill part of the
field of view. In comparison with TOMCAT, which had no
filtering for cloud, this could produce a clear skies bias. How-
ever, the model is driven by ECMWF meteorological fields,
which are also used in the satellite retrieval, so they should
be reasonably consistent. Figure S6 shows the daily average
number of retrievals used per grid box for the calculation of
satellite [OH]. Globally, the daily average number of grid-

box profile retrievals for the input species ranges between 0
and 24, with an average of∼ 6. Therefore, there are sufficient
retrievals of the trace gases in the S-SSA to calculate values
of OH for most grid boxes every day.

Uncertainty on [OH] calculated with the S-SSA using
satellite data is estimated from the systematic errors on the
four retrieved species, as described in Sect. S6, to be∼ 23 %–
24 % (Fig. S7). This assumes that there is no uncertainty in
the rate constants (j1, k1−6), which is a potential source of
error.

2.3.3 ATom observations

The ATom mission observed many atmospheric variables, in-
cluding OH and OHR (Wofsy et al., 2018). NASA’s DC-8
aircraft sampled the atmosphere between 0.2–12 km altitude
during four campaigns between 2016–2018, sampling both
hemispheres over the Pacific and Atlantic oceans. We use
ATom observations of OH, OHR, O3, CO, CH4, H2O and
j1. We use data from all four campaigns between and 08:00–
11:00 LST, to compare with the 09:30 LST MetOp-A over-
pass time and the 600–700 hPa pressure range, where the S-
SSA agrees best with the full chemistry (see Sect. 3.1). The
data are also filtered to remove measurements influenced by
stratospheric air (O3/CO> 1.25) or biomass burning (ace-
tonitrile concentration > 200 ppt), as in Travis et al. (2020).
The OH and OHR observations used in this study were made
by the ATHOS instrument (Faloona et al., 2004; Brune et
al., 2020). Wofsy et al. (2018) merged the observations into
a 2 min sampling interval. The uncertainty on the OH ob-
servations from the ATHOS instrument at the 2σ confidence
level is ±35 % and the limit of detection of the OH observa-
tions is 0.018 pptv. The uncertainty on the OHR observations
from the ATHOS instrument at the 2σ confidence level is
±0.8 s−1. The NOAA Picarro instrument provides CH4 and
CO observations, with uncertainties of ±0.7 and ±8.9 ppbv,
respectively (Karion et al., 2013). The diode laser hygrom-
eter (DLH) provides H2O observations with an uncertainty
of ±5 % (Podolske et al., 2003). The NOAA-NOy O3 in-
strument provides O3 observations with an average uncer-
tainty of ±2.0 ppb (Ryerson et al., 2000). The CCD actinic
flux spectroradiometer (CAFS) instrument provides j1 obser-
vations, with an uncertainty of ±20 % (Shetter and Müller,
1999).

3 Results and discussion

3.1 Application of the simplified steady-state
approximation

3.1.1 Application to model data

We use the TOMCAT output of CO, CH4, O3 and H2O
for 2010 in the S-SSA of OH to determine the validity of
this approximation in different regions of the troposphere.
Mass-weighted zonal mean [OH] calculated with the S-SSA
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Table 1. Comparison of mass-weighted global mean TOMCAT OH
and S-SSA OH for different pressure ranges. Percentage difference
relative to the TOMCAT OH mean given in brackets.

S-SSA OH average – TOMCAT OH average
(×106 molec. cm−3)

Pressure range January June

< 400 hPa −2.48 (−86 %) −2.71 (−85 %)
400–800 hPa −0.86 (−34 %) −1.01 (−31 %)
> 800 hPa −0.08 (−6 %) −0.24 (−2 %)
600–700 hPa −0.86 (−31 %) −0.96 (−26 %)

and modelled TOMCAT [OH] are compared in Fig. 1. Ta-
ble 1 shows the differences to be very large (> 85 %) be-
tween global mean TOMCAT OH and TOMCAT S-SSA OH
at pressures < 400 hPa (i.e. upper troposphere and strato-
sphere). Nearer the surface (> 800 hPa) the S-SSA shows a
good zonal mean agreement (< 6 % difference). However,
there are large differences in the longitude–latitude distri-
bution which do not show in the zonal mean, and we do
not expect a good approximation of the complex OH chem-
istry in the boundary layer using our simplified approxima-
tion. Therefore, we focus our investigation at pressure levels
above the boundary layer.

The mid-tropospheric region (400–800 hPa) shows good
agreement in spatial distribution and abundance, with a S-
SSA global mean underestimate of∼ 30 %–35 %. In the mid-
troposphere, there are peak values of 5.4× 106 molec. cm−3

(January) and 7.3× 106 molec. cm−3 (June) for TOMCAT
S-SSA OH, which are comparable to peak values of 5.6×
106 molec. cm−3 (January) and 8.3×106 molec. cm−3 (June)
for TOMCAT OH. Within this mid-tropospheric region, the
600–700 hPa layer is further investigated, as it shows better
agreement in the zonal mean structure and global mean than
the larger pressure region, as shown in Table 1. TOMCAT
output from 2017 was also applied to the S-SSA with similar
results, shown in Sect. S7 (Fig. S9). We therefore selected
the pressure region 600–700 hPa for investigation because of
the good agreement between TOMCAT OH and TOMCAT
S-SSA OH in this region. OH in this the pressure region con-
tributes to ∼ 15 % of the tropospheric OH burden. Diagnosis
of the model output shows the influence of OH on methane
oxidation in this region is slightly larger, with a contribution
of ∼ 19 % of methane-loss-weighted OH.

Figure 2 shows the spatial differences between the TOM-
CAT and S-SSA OH. In January, the S-SSA shows an under-
estimate of up to ∼ 2× 106 molec. cm−3 across the North-
ern Hemisphere (NH) and over parts of the oceans across
the SH, mostly between the Equator and 30◦ S, e.g. the At-
lantic and edges of the Pacific but not the Indian Ocean. In the
SH, an overestimate is present over some of the continents,
e.g. up to ∼ 2× 106 molec. cm−3 in South America and up
to ∼ 1× 106 molec. cm−3 in the Indian Ocean and the cen-

tre of the Pacific. Broadly, the peak [OH] values across the
SE Indian Ocean and southern African continent show good
agreement. In June, the S-SSA shows good agreement over
the oceans in the NH, mostly between the Equator and 30◦ N,
and the South American and Australian continents in the SH.
An overestimate of up to ∼ 4× 106 is found across the peak
[OH] values found across the northern African continent and
China. A slight underestimate of up to ∼ 1×106 is found on
land masses around the Equator.

In summary, the S-SSA agrees with TOMCAT across the
oceans near the Equator, to an extent which depends on the
season. The peak values of [OH] are found in similar loca-
tions for TOMCAT and S-SSA [OH]; however, the S-SSA
generally produces an underestimate of these peak values.

3.1.2 Study of reactions omitted from the S-SSA

The aim of this study is to derive information about OH from
satellite data. Therefore, some source and sink reactions,
which do not have relevant satellite retrievals, have been
omitted from the S-SSA. We apply TOMCAT model data
to another more complex steady-state approximation, Sav-
SSA, to demonstrate which atmospheric species additional to
H2O, O3, CO and CH4 are key to OH production and removal
in the pressure ranges < 400 and > 800 hPa. The results are
shown as zonal means in Sect. S8. Figures S11 and S12 show
the reaction of nitric oxide (NO) and the hydroperoxyl rad-
ical (HO2) to be an important missing source at pressures
< 400 hPa. The OH and HO2 radicals are closely linked in
chemical cycles which are not, however, represented in the
S-SSA.

Figure 3 shows the regional impact of the NO+HO2
source term on the total production term of the Sav-SSA, av-
eraged across the 600–700 hPa pressure layer. In areas with
very high NO+HO2 percentage contributions, it is likely
that the S-SSA does not sufficiently capture all the impor-
tant chemical pathways. For January, the NO+HO2 source
term shows a very large percentage contribution between 30
and 60◦ N (up to 100 %), although the [OH] is very low there
and therefore relatively unimportant. Below 30◦ N, the spa-
tial distribution of this percentage contribution is similar to
the spatial distribution of the negative differences between
TOMCAT and S-SSA [OH] in Fig. 2, indicating that these
regions would have improved agreement with the addition
of this source term. For example, across the NH oceans and
continents and in the SH Atlantic and Pacific Ocean off the
coast of South America. For June, the NO+HO2 source
term makes a larger percentage contribution across the SH
oceans and continents (where [OH] is low). In the NH, the
NO+HO2 source term makes a greater contribution over
land, and a very low contribution over the oceans, where
Fig. 2 shows that the S-SSA [OH] is in good agreement with
the TOMCAT [OH].

Figures S13 and S14 show a comparison between [OH]
calculated using the S-SSA, as in Eq. (4), but with the ad-
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Figure 1. Comparison of TOMCAT OH and S-SSA OH in 2010: (a) TOMCAT OH January, (b) TOMCAT S-SSA OH January, (c) TOMCAT
OH June and (d) TOMCAT S-SSA OH June. The dashed lines represent the proposed area of best agreement, 600–700 hPa. The numbers
on the right of each plot represent the mass-weighted mean OH in ×106 molec. cm−3 of the region shown by the dotted lines (from top to
bottom): < 400 hPa, between 400–800 hPa, and between 800 hPa and the surface.

dition of one source term (NO+HO2) and two sink terms
(NO+OH+M and NO2+OH+M). The [OH] calculated
using the NOx terms shows an overestimate of between ∼ 0
and 4× 106 molec. cm−3 compared to TOMCAT [OH] for
both January and June 2010 and improves the agreement in
some regions, such as broadly above the Equator in January
and below the Equator in June.

Although the NO+HO2 source term is important in some
regions, there are no NO or HO2 satellite observations avail-
able in the relevant pressure range, so we cannot include
this term in the S-SSA in this study. Introducing co-located
tropospheric NO2 satellite data from another instrument
on MetOp-A, the Global Ozone Monitoring Experiment-2
(GOME-2), alongside IASI (Munro et al., 2016) is an area for
potential future work. This would require additional steady-
state balance expressions for NO :NO2 and for HO2.

Closer to the surface (> 800 hPa), Figs. S15 and S16 show
that there are a number of important sink reactions for OH
which are not included in the S-SSA, but are included in
the Sav-SSA. These sink species include nitrogen dioxide
(NO2), dimethyl sulfide (DMS), hydrogen (H2), hydrogen
peroxide (H2O2), NO, sulfur dioxide (SO2), formaldehyde
(HCHO) and a combination of hydrocarbons (e.g. alkanes
and alkenes).

Figure 4 shows the regional impact of two VOC terms (of
interest) on the total production term of the Sav-SSA, av-
eraged across the 600–700 hPa pressure layer. The regional
contribution of all sink terms can be found in the Supplement.
Figure 4 shows that C5H8 (isoprene), from the sum of the
hydrocarbon term, shows a large contribution across South
America and Indonesia in both January and June. These are
regions of high S-SSA OH compared to TOMCAT OH seen
in Fig. 2, representing the lack of this sink term in the S-SSA,
leading to an overestimation by the S-SSA. In these regions,
the S-SSA expression is shown to not fully capture the OH
chemistry. Formaldehyde (HCHO) represents ∼ 10 % of the
total sink term in both months.

These additional source and sink terms could potentially
help reduce the overestimate of the S-SSA in this region.
Satellite data on tropospheric columns of NO2 and several
other relevant species (HCHO and SO2 at enhanced lev-
els) are available from GOME-2 alongside IASI on MetOp-
A. Other than in tropical regions of lightning NOx produc-
tion and rapid convective uplift, these reside principally in
the lower troposphere. Co-located data from GOME-2 could
therefore allow further investigation in future work. For the
other source and sink species, satellite data are either not
available in the relevant pressure region or not available from
a similar instrument to the species in the S-SSA. This would
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Figure 2. OH concentrations averaged over the 600–700 hPa range for TOMCAT, S-SSA and the difference (TOMCAT S-SSA minus
TOMCAT). Panels (a)–(f) represent comparisons for January and June. All values are in in units of ×106 molec. cm−3.

yield problems, such as in combining observations with dif-
ferent vertical resolutions at different locations and times of
day.

Overall, the spatially varying importance of different
source and sink terms prevents the S-SSA from achieving
a spatially uniform agreement and this must be considered
when applying the approximation.

3.1.3 Application to satellite data

We apply satellite-retrieved trace gas data and model j1 for
2010 to estimate [OH] using the S-SSA in the layer of inter-
est, between 600–700 hPa. The satellite profiles interpolated
to this layer are applied on an individual sounding basis for
the daytime (∼ 09:30 LST) overpass. The [OH] estimates are
then gridded onto the model grid for comparisons. Figure 5
shows the satellite S-SSA [OH] for 2010. The mass-weighted
global mean [OH] ranges from 2.1× 106 molec. cm−3 (Jan-
uary) to 2.9× 106 molec. cm−3 (July). The seasonal vari-
ation is clear, with the higher [OH] values above 5.0×
106 molec. cm−3 for example mostly in the SH during the

summer (December–February), with a grid-box maximum
value of 10.6× 106 molec. cm−3. These larger [OH] con-
centrations in the tropical region, between 30◦ S–30◦ N, ap-
pear from March to May, with a grid-box maximum of
10.9×106 molec. cm−3. For June to August the higher [OH]
values are mostly in the NH, with a grid-box maximum of
28.1× 106 molec. cm−3. The higher [OH] values are present
around the Equator and sub-tropics in September to Novem-
ber, with a grid-box maximum of 11.4×106 molecule cm−3.

Figure 6 shows a comparison of TOMCAT, TOMCAT S-
SSA, TOMCAT FC-SSA and satellite S-SSA [OH] in Jan-
uary and June 2010. In both months the four estimates are
seen to have very similar geographical structures. As ex-
pected, TOMCAT [OH] and TOMCAT FC-SSA [OH] show
spatial patterns and global averages which are particularly
similar (< 6 % difference). This good agreement indicates
that the use of monthly model data in the steady-state ex-
pression matches well with the numerical integration scheme
inside the model. The TOMCAT and satellite S-SSA distribu-
tions also agree well in both months. The agreement is closer
in January than June, with comparable peaks over NW Aus-
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Figure 3. Contribution of NO+HO2 reaction to total production term for Sav-SSA in 2010 averaged for the 600–700 hPa pressure region.
(a) total production term in January, (b) percentage contribution of the NO+HO2 source reaction to the total production term in January,
(c) total production term in June and (d) percentage contribution of the NO+HO2 source reaction to the total production term in June. Total
production is in units of ×105 molec. cm−3 s−1.

tralia and southern Africa, with a TOMCAT [OH] grid-box
maximum of 9.7×106 molec. cm−3 and a satellite [OH] grid-
box maximum of 10.3×106 molec. cm−3. The TOMCAT and
satellite S-SSA January global mean [OH] values are 2.85
and 2.21× 106 molec. cm−3, respectively, so are consistent
to ∼ 22 %. In June 2010, TOMCAT and satellite S-SSA dis-
tributions have peaks over southern Asia and northern Africa.
Over SE Asia, the TOMCAT and satellite peaks are∼ 15 and
12×106 molec. cm−3, respectively, and over northern Africa
they are ∼ 15 and 8× 106 molec. cm−3, respectively. The
TOMCAT distribution also has a peak over North America
which is not captured by the satellite S-SSA. The TOMCAT
and satellite S-SSA June global mean [OH] values are 3.80
and 2.73× 106 molec. cm−3, respectively, so are consistent
to ∼ 28 %. The correlation coefficient between the monthly

average grid boxes of TOMCAT and satellite S-SSA OH is
0.85 for January and 0.83 for June. In summary, the monthly-
mean geographical distributions and global averages derived
using the S-SSA (using TOMCAT/satellite data) agree well
with those from TOMCAT and TOMCAT FC-SSA, indicat-
ing the S-SSA offers a useful approach to investigate [OH]
behaviour globally in the 600–700 hPa layer. The monthly-
mean distributions of satellite-derived S-SSA [OH] agree
well with TOMCAT S-SSA, although values are generally
lower, indicating some inconsistency between TOMCAT and
the satellite in the distributions of H2O, O3, CO and/or CH4.
The same analysis was applied to data from 2017 (Fig. S10)
and similar results were obtained, a global underestimate for
the satellite S-SSA of 21 % in January and 28 % in June.
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Figure 4. Contribution of isoprene (C5H8) and formaldehyde (HCHO) OH sink reactions to the total sink term for Sav-SSA in 2010
averaged for the 600–700 hPa pressure region. (a) Total sink term in January, (b) percentage contribution of the OH+C5H8 to the total sink
term in January, (c) percentage contribution of the OH+HCHO to the total sink term in January, (d) total sink term in June, (e) percentage
contribution of the OH+C5H8 to the total sink term in June and (f) percentage contribution of the OH+HCHO to the total sink term in
June. Percentage value in panel label (i.e. 0 %–40 %) refers to the colour bar range. Total sink is in units of s−1.

3.2 Application to aircraft data

To further assess the robustness of the S-SSA, we apply it
to CH4, CO, O3, H2O and j1 observations from four ATom
campaigns. Figure 7 shows a comparison between [OH] ob-
served by ATom (OHobvs) and as calculated from ATom H2O,
O3, CO and CH4 observations using the S-SSA (OHcalc)
where ATom data were available for all species. Across all
four ATom campaigns, OHcalc is biased by −25.8 % with re-
spect to OHobvs. This bias is similar to the uncertainty on
OHobvs of ∼ 35 % (Brune et al., 2020). For the four individ-
ual campaigns, the percent bias is persistently negative, rang-
ing from −21.1 % to −25.2 % for ATom-1,3,4 and −48.8 %
for ATom-2. One explanation for the large normalised mean
bias for ATom-2 is due to the predominance of smaller values
of [OH] during this campaign, leading to higher percentage
differences, as the absolute bias is more in line with the other
campaigns. Across the four campaigns Pearson’s correlation
coefficient is 0.78, and for the four individual campaigns, the
correlation ranges from 0.51 to 0.86.

Figure 8 shows a comparison between zonally averaged
OHobvs and OHcalc. The left panels show that for OHobvs the
higher values are predominantly found closer to the Equa-
tor, although exceptions exist around 45◦ N in ATom-1. The
right panels show that for the majority of latitudes, OHobvs
is larger than OHcalc across all four campaigns, with a few

exceptions, mostly in ATom-2 and ATom-4. The deviations
range from −9.7× 106 to 4.1× 106 molec. cm−3. Generally,
they are smallest between 30 and 90◦ S, corresponding to
the low OHobvs and OHcalc values in this region. They are
higher in 30◦ S–30◦ N and 30–90◦ N, corresponding to gen-
erally higher OHobvs and OHcalc values near the Equator and
some large values in the NH mid-latitudes.

The normalised mean bias between OHobvs and OHcalc is
∼ 26 %, which is a similar order of magnitude to the large
uncertainty of 35 % for the OH observations. The ATom ob-
servations provide a comparatively large aircraft dataset for
comparison; however, it nonetheless has a limited spatiotem-
poral extent, which must be acknowledged when interpreting
our results. Here, we believe that for the observations used,
the datasets are correlated sufficiently to justify further study
of the S-SSA at this pressure range.

Figure 9 shows OHobvs overlaid onto a satellite-derived
[OH] field averaged across the corresponding days in 2017.
The comparison is challenging due to the sparse nature of
the ATom data points compared to the satellite [OH] field
(highlighted in Fig. 9) and using satellite data only for 2017
(ATom-1 occurred in 2016 and ATom-4 in 2018). There
are examples of good agreement between the satellite and
OHobvs in some peak-[OH] regions, e.g. off the western coast
of Mexico between the Equator and 30◦ N in ATom-1, and
also low [OH] regions, e.g. over the North Atlantic Ocean
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Figure 5. Satellite S-SSA OH (×106 molec. cm−3) averaged for the 600–700 hPa layer in all months of 2010. Global mass-weighted mean
OH values (×106 molec. cm−3) for this region are labelled for each month.

in ATom-2. However, there are also examples of poor agree-
ment, e.g. high values in OHobvs near Alaska and low val-
ues in the satellite OH in ATom-3 and ATom-4. Across the
four campaigns, the correlation coefficient ranges from 0.15
to 0.75, and the bias of satellite with respect to ATom ranges
from −60.1 % to −35.1 %. The poor comparison in some
regions may be attributable to the resolution difference be-
tween the point aircraft observations and the averaged satel-
lite [OH] field, due to spatial inhomogeneity of OH.

Figure 10 shows a comparison between OHobvs and the
nearest value from the averaged satellite [OH] field (OH-
sat). The data are coloured by latitude and, as in Fig. 9, indi-
cate OH-sat to be negatively biased with respect to OHobvs at
northern middle–high latitudes, but to a lesser extent at lower
latitudes. Across the four campaigns, the values at north-
ern middle–high latitudes (30–90◦ N) and the values at lower
latitudes (90◦ S–30◦ N) show similarly high correlation co-
efficients of 0.68, with a small difference of 9.4 % for the
lower latitudes and a much larger difference of 72.8 % for the

higher latitudes. This corresponds to the results in Sect. 3.1.2,
where the OH source reaction HO2+NO represents a larger
contribution to the total production in the NH high latitudes
in winter (ATom-2, ATom-3 and ATom-4). The reduction in
agreement in this region indicates that the S-SSA may not
be able to provide robust information about [OH] here. In
Sect. 3.3 we study a tropical (15◦ S–15◦ N) band, where the
S-SSA shows a more robust agreement.

Aircraft data and omitted source terms

Figure S17 is similar to Fig. 7 but shows a compar-
ison of ATom OHcalc with (OHcalc-NOx) and without
(OHcalc) three NOx reactions (NO+HO2, NO+OH+M,
NO2+OH+M) included in the S-SSA. The addition of the
NOx terms changes the bias in the OHcalc relative to OHobvs
from −20.6 % to +13.2 %. This change in sign is consistent
with the comparison of S-SSA and S-SSA, with NOx reac-
tions using model data as shown in Figs. S13 and S14. Over-
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Figure 6. The 2010 OH comparison in the 600–700 hPa layer:
(a) TOMCAT January, (b) TOMCAT June, (c) TOMCAT FC-SSA
January, (d) TOMCAT FC-SSA June, (e) TOMCAT S-SSA Jan-
uary, (f) TOMCAT S-SSA June, (g) satellite S-SSA January and
(h) satellite S-SSA June. Global mass-weighted mean OH values
(×106 molec. cm−3) for this atmospheric region are given below
each panel.

all, the correlation remains similar with and without NOx
(0.76 and 0.78). This corresponds to the model results in
Sect. 3.1.2, which show that for some regions, the NO+HO2
source term can make a large contribution to the total source
term.

3.3 OH reactivity

As described in Sect. 2.2, OHR observations can potentially
be used to check the denominator of a steady-state approxi-
mation, in this case a simplified expression of OHR (Eq. 5).
Section S10 (Figs. S18 and S19) discusses our comparisons
between ATom OHR observations (OHR-obvs) and ATom
data used in the simplified expression for OHR (OHR-calc).
Although ∼ 80 % of calculated OHR values fell within the
range of measurement uncertainty, the estimated error on
OHR measurements (0.8 s−1) was too large to find any corre-
lation with calculated OHR (r =−0.02). The bias in calcu-
lated OHR varied between −57 % and +20 % over the four
campaigns, and the average bias in calculated OHR (−37 %)
over the four campaigns (Fig. S18) is compatible with the
(−28 %) bias in S-SSA [OH]. Several studies (Thames et al.,
2020; Travis et al., 2020) have quantified “missing OH reac-
tivity” in the boundary layer in detail; however, our analysis
of ATom [OH] and OHR measurements demonstrates the S-
SSA to estimate [OH] with an accuracy within∼ 30 % in the
600–700 hPa layer.

3.4 OH temporal variation

Satellite data in conjunction with the S-SSA presented in pre-
vious sections provide a means to examine the temporal vari-
ation in global [OH]. We use satellite data produced on a
sub-sampled basis from 2008–2017 and the S-SSA, together
with fixed monthly model j1 distributions from the TOM-
CAT model for a fixed year (2010). The use of a fixed year of
j1 distributions removes any influence from variation in this
value between years, e.g. from variation in overhead strato-
spheric ozone, which is an assumption that should be con-
sidered when interpreting these results. Figure 11 shows the
time series of global, NH, SH and tropical (15◦ S–15◦ N) OH
monthly anomalies with respect to the 2008–2017 mean for
each month for the 600–700 hPa layer. We include a tropical
band as this is the most representative region of OH using
the S-SSA. Similar plots in Sect. S11 show percent anoma-
lies for the input species and temperature (Figs. S20–S24).
During this time period the [OH] anomaly varies between
−0.10 and +0.15× 106 molec. cm−3 for the global average,
−0.15 and +0.11× 106 molec. cm−3 for the NH average,
−0.21 and+0.21×106 molec. cm−3 for the SH average, and
−0.37 and +0.54× 106 molec. cm−3 for the tropical aver-
age. Aside from a few exceptions, the global, NH, SH and
tropical averages follow a similar pattern. Notable positive
anomalies (values given for the tropical band, in units of
×106 molec. cm−3) occur in mid-2010 (+0.30), the end of
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Figure 7. Comparison between OHcalc and OHobvs. The left panel shows a combination of ATom-1, ATom-2, ATom-3 and ATom-4. The
right four panels show the data split into the individual campaigns. ATom observations are filtered for 600–700 hPa and 08:00–11:00 LT. All
data are in units of ×106 molec. cm−3. Data points in orange are excluded from the analysis, either as an outlier ( >mean+ 3.0 standard
deviations) or below the limit of detection of the ATHOS instrument (0.018 pptv or 0.31× 106 molec. cm−3) shown by the orange line.
Pearson’s correlation coefficient (r), the mean bias (calculated from OHcalc–OHobvs) and the normalised mean bias (percent with respect to
OHobvs) are displayed in the top left corner of each panel.

Figure 8. OHcalc and OHobvs comparison. Left panels show latitude-averaged OH (ppt) with error bars of 35 %. Right panels show latitude-
averaged OH difference between OHcalc and OHobvs (calc–obvs) with the mean difference (MB) labelled for three different latitude regions
marked by the dashed lines (90–30◦ S, 30◦ S–30◦ N and 30–90◦ N). All data are in units of ×106 molec. cm−3. ATom observations are
filtered for 600–700 hPa and 08:00–11:00 LT.
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Figure 9. Satellite OH for four periods in 2017 corresponding to A1 to A4 (ATom-1 to ATom-4, 2016–2018) with ATom OH observations
(OHobvs) overlaid on top as coloured circles. ATom observations are filtered for 600–700 hPa and 08:00–11:00 LT. Pearson’s correlation
coefficient (r), mean bias (calculated from the nearest satellite grid cell – OHobvs) and the normalised mean bias (percent with respect to
OHobvs) are displayed at the bottom of each panel. All data are in ×106 molec. cm−3.

Figure 10. Comparison between OHobvs and OH-sat (nearest satellite OH value to ATom observation from averaged 2017 satellite OH grid).
The left panel shows a combination of ATom-1, ATom-2, ATom-3 and ATom-4. The right four panels show the data split into the individual
campaigns. ATom observations are filtered for 600–700 hPa and 08:00–11:00 LT. All data are in units of ×106 molec. cm−3. Data points in
orange are not included in analysis, either as an outlier ( >mean+ 3.0 standard deviations) or below the limit of detection of the ATHOS
instrument (0.018 pptv or 0.31×106 molec. cm−3) shown by the orange line. Pearson’s correlation coefficient (r), the mean bias (calculated
from OH-sat – OHobvs) and the normalised mean bias (percent with respect to OHobvs) are displayed in the top left corner of each panel for
three different latitude ranges: all latitudes, 90◦ S–30◦ N and 30–90◦ N. The values are coloured by latitude as shown on the colour bar.
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2012 and beginning of 2013 (+0.54), mid-2015 (+0.15), and
mid-2016 (+0.14). Notable negative anomalies occur in mid-
2009 (−0.27), 2011 to mid-2012 (−0.37), the end of 2015
and beginning of 2016 (−0.21), and the end of 2017 (−0.22).
The global annual mean [OH] anomaly ranges from −3.1 %
to+4.7 %, and the tropics anomaly ranges from around−6.9
to +7.7 %. This behaviour is broadly similar to other studies
of [OH] variability using MCF observations and chemistry
transport models, which find a range of around −6 to +6 %
for global [OH] anomaly during this time period (although
our assessment is limited to a specific pressure range, so this
is not a direct comparison; Voulgarakis et al., 2015; Patra et
al., 2021).

Figure 12 shows contrasting behaviour of the three sink
terms during the time period 2008–2017. It shows that in
the 600–700 hPa layer, CO is the dominant sink term, rang-
ing between 0.20–0.45 s−1, with the CH4 sink having the
next largest contribution between 0.10–0.15 s−1 and the O3
sink having the smallest contribution at around 0.04 s−1. The
comparatively large size of the CO sink indicates that vari-
ation in CO is likely to dominate the variation in the total
sink term. The CO sink is consistently lower in the SH than
NH, with the largest difference (∼ 0.2 s−1) in the first half
of the year. The CH4 and O3 sinks show a negligible differ-
ence between SH and NH; therefore the CO sink will have
a lower percentage contribution in the SH. These findings
are consistent with those from aircraft measurements below
3 km in Travis et al. (2020) and from model data in the free
troposphere in Lelieveld et al. (2016). Satellite CH4 shows
a positive trend of 4.5 ppb yr−1 throughout this time period
(Fig. S21). However, as seen in Fig. 12, when the rate con-
stant is applied, the CH4 sink term shows very little variation,
with no evidence of the positive trend in CH4 concentrations
having a significant impact. The source term (numerator of
Eq. 4) varies between 5–15× 105 molec. cm−3 s−1 for the
global, NH and SH averages, while for the tropical band it
ranges between 15–28× 105 molec. cm−3 s−1.

Figure 13 shows the temporal anomaly, relative to the
2008–2017 mean, of the balance between source and sink
terms in the approximation and the derived OH concentra-
tion. The positive anomalies in mid-2010, the end of 2012
and beginning of 2013, mid-2015, and mid-2016 coincide
with the positive anomalies in the source term, driven by O3
(O3 anomalies are shown in Fig. S23), and they are smaller
than or close to zero anomalies in the sink terms. The neg-
ative anomalies in mid-2009, 2011 to mid-2012, and the
end of 2017 can be explained by a negative anomaly in the
source term, again driven by O3, and a small or close-to-
zero anomaly in the sink term. The negative anomalies at
the end of 2015 and beginning of 2016 can be explained
by a very large positive sink term anomaly, despite the large
positive source term anomaly. This large positive anomaly in
the sink term corresponds to a large positive anomaly of CO
in most latitudes (Fig. S22), with a maximum anomaly of
∼ 12 % globally and ∼ 20 % in the tropics. The 2015–2016

El Niño event is the likely cause of this CO anomaly, due
to a large increase in global fire emissions (Huijnen et al.,
2016). As shown in Fig. 13d, the event started at the end of
2014, peaked at the end of 2015 with a maximum multivari-
ate ENSO index (MEI.v2) value of +2.2 and ended in May
2016 (Liu et al., 2017; NOAA, 2021). Biomass burning was
also found to be the key driver of OH variability in a study
by Voulgarakis et al. (2015).

As the combined source term is a dominant driver of OH
variability, it is useful to distinguish the relative importance
of O3 and water vapour in driving this variability. To do this,
we repeat the source term calculation (numerator in Eq. 4)
but using a fixed value of O3 or water vapour. These fixed val-
ues are derived from the average value for each month across
the full 2008–2017 time series. If the source term anomaly
time series derived using a fixed water vapour value can re-
produce the original anomaly time series (i.e. Fig. 13b), this
would demonstrate that variability of water vapour is not im-
portant in comparison to that of O3 or vice versa (Fig. 14).
Our results show that when water vapour is fixed (varying
O3) in the source term anomaly, 66.4 % of the variability (i.e.
R2
= 0.664) in the original source term can be explained on

the global scale (Fig. 14c). When O3 is fixed to a constant
monthly value (varying water vapour), the R2 value drops
to 0.164 with only 16.4 % of the variability in the original
source term anomaly explained by this time series (Fig. 14b).
This demonstrates that variations in O3 are the primary driver
in the source term and therefore in the OH variability us-
ing the S-SSA in this altitude range and time period. Cross-
correlations between the drivers of the key species OH, O3,
are likely to exist; however a detailed analysis and quantifi-
cation of this is beyond the scope of the study.

4 Conclusions

Due to its short photochemical lifetime, steady-state approxi-
mations are able to represent tropospheric OH concentrations
well, depending on the complexity of the expression used
and the atmospheric pressure range over which they are ap-
plied. The terms in the steady-state approximation also allow
us to quantify components which contribute to the OH bud-
get. A simplified steady-state approximation (S-SSA) can be
constructed which contains terms based on trace gases ob-
served by satellite. Results from the TOMCAT 3D chemical
transport model show that this should be a good approxi-
mation to [OH] in the 600–700 hPa layer in terms of mag-
nitude (∼ 26 %–31 % underestimate in the mass-weighted
global mean [OH] comparison to full chemistry) and spatial
distribution. This atmospheric layer is above the boundary
layer where [OH] is substantially affected by many pollu-
tants which are not measured by satellite and therefore in-
validate the S-SSA. We have tested the S-SSA in the 600–
700 hPa layer using data from four ATom aircraft campaigns
and found that it tracked measured [OH] with a correlation of

https://doi.org/10.5194/acp-22-10467-2022 Atmos. Chem. Phys., 22, 10467–10488, 2022
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Figure 11. Monthly mean satellite OH anomaly (2008–2017): (a) 15◦ latitude bins and (b) 3-month average global, NH, SH and tropics
means. All data are in ×106 molec. cm−3. Anomaly is relative to a 2008–2017 average.

Figure 12. Temporal variability in the components of the S-SSA approximation (2008–2017). Global, NH, SH and tropical average
time series for (a) kO3+OH[O3], (b) kCO+OH[CO], (c) kCH4+OH[CH4] and (d) 2j1k1[O3][H2O]/(kN2+O(1D)[N2] + kO2+O(1D)[O2] +
kH2O+O(1D)[H2O]).

Atmos. Chem. Phys., 22, 10467–10488, 2022 https://doi.org/10.5194/acp-22-10467-2022
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Figure 13. Temporal variability in OH anomaly and anomalies of the numerator (source) and denominator (sink)
lines of the steady-state approximation in Eq. (4) (2008–2017). Global, NH, SH and tropical average time series for
(a) OH anomaly, (b) 2j1[O3][H2O]/(kN2+O(1D)[N2]+kO2+O(1D)[O2]+kH2O+O(1D)[H2O]) (total source term) anomaly,
(c) kCO+OH[CO]+kCH4+OH[CH4]+kO3+OH[O3] (total sink term) anomaly and (d) bimonthly multivariate ENSO index (NOAA,
2021). Anomalies are relative to a 2008–2017 average.

r = 0.78 and a mean bias of ∼ 26 %, similar to the 35 % es-
timated uncertainty on the OH observations. Measurements
of OH reactivity (OHR) allow the denominator of the S-SSA
expression to be considered in addition and found to be con-
sistent with an S-SSA [OH] accuracy of ∼ 30 % in the 600–
700 hPa layer.

The S-SSA approach allows us to demonstrate how a
multi-year record of satellite observations can be used to
examine interannual variability in tropospheric [OH]. Using
H2O, O3, CO and CH4 data retrieved from MetOp-A obser-
vations for 2008–17 we find the global annual mean [OH]
anomaly to range from −3.1 % to +4.7 %. The influence of
important terms in the OH budget was also derived, demon-
strating the balance between the source and sink terms over
time. Variation in the S-SSA OH was found to be determined
primarily by the combined source term, driven by O3, and
by the CO sink term. In the tropics, OH variation reflected

that of O3 (peaks in 2008, 2010 and the largest in 2013)
along with the positive CO anomaly associated with the
strong El Niño event in 2015/16. Overall, we have demon-
strated a novel and robust methodology, using satellite obser-
vations and a simple steady-state approach, to estimate mid-
troposphere [OH], which can complement existing methods
to measure [OH] (i.e. the limited network of surface sites,
infrequent flight campaigns and the MCF-type approach to
estimate global mean [OH]). Most importantly though, the
approach here will provide the scientific community with
a global observational constraint on mid-tropospheric [OH]
and help future studies assess the [OH] impacts on important
air quality (e.g. O3 and NO2) and climate (e.g. CH4) trace
gases.
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10484 M. A. Pimlott et al.: Investigating the global OH radical distribution

Figure 14. Global, NH, SH and tropical average time series (2008–2017) for (a) OH S-SSA source anomaly, (b) OH S-SSA source anomaly
calculated with fixed monthly O3 concentrations (source fixed-O3) and (c) OH S-SSA source anomaly calculated with fixed monthly water
vapour concentrations (source fixed-wv). Fixed O3 and water vapour calculated as monthly average across the time period. Anomalies are
relative to a 2008–2017 average. Values in the top right of panel (b) represent the R2 value between the OH S-SSA source anomaly and the
source fixed-O3 anomaly, and values in the top right of panel (c) represent the R2 values between the OH S-SSA source anomaly and the
source fixed-wv anomaly. All data are in units of ×105 molec. cm−3 s−1.
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A. C., Lavrič, J. V., Kesselmeier, J., and Williams, J.: Un-
expected seasonality in quantity and composition of Ama-
zon rainforest air reactivity, Nat. Commun., 7, 10383–10395,
https://doi.org/10.1038/ncomms10383, 2016.

Patra, P. K., Krol, M. C., Prinn, R. G., Takigawa, M., Mühle,
J., Montzka, S. A., Lal, S., Yamashita, Y., Naus, S., Chan-
dra, N., Weiss, R. F., Krummel, P. B., Fraser, P. J.,
O’Doherty, S., and Elkins, J. W.: Methyl Chloroform Con-
tinues to Constrain the Hydroxyl (OH) Variability in the
Troposphere, J. Geophys. Res.-Atmos., 126, e2020JD033862,
https://doi.org/10.1029/2020JD033862, 2021.

Pimlott, M. A., Pope, R. J., Kerridge, B. J., Latter, B. G.,
Knappett, D. S., Heard, D. E., Ventress, L. J., Siddans,
R., Feng, W., and Chipperfield, M. P.: TOMCAT model
data & IASI satellite data of O3, CO, H2O, CH4 and
OH/derived OH for 2010 and 2017, Zenodo [data set],
https://doi.org/10.5281/zenodo.6903521, 2022.

Podolske, J. R., Sachse, G. W., and Diskin, G. S.: Calibration and
data retrieval algorithms for the NASA Langley/Ames Diode
Laser Hygrometer for the NASA Transport and Chemical Evo-
lution over the Pacific (TRACE-P) mission, J. Geophys. Res.-
Atmos., 108, 1–9, https://doi.org/10.1029/2002jd003156, 2003.

Pope, R. J., Kerridge, B. J., Siddans, R., Latter, B. G., Chipper-
field, M. P., Arnold, S. R., Ventress, L. J., Pimlott, M. A., Gra-
ham, A. M., Knappett, D. S., and Rigby, R.: Large enhancements
in southern hemisphere satellite-observed trace gases due to the
2019/2020 Australian wildfires, J. Geophys. Res.-Atmos., 126,
1–13, https://doi.org/10.1029/2021jd034892, 2021.

Prinn, R., Cunnold, D., Simmonds, P., Alyea, F., Boldi, R., Craw-
ford, A., Fraser, P., Gutzler, D., Hartley, D., Rosen, R., and
Rasmussen, R.: Global average concentration and trend for
hydroxyl radicals deduced from ALE/GAGE trichloroethane
(methyl chloroform) data for 1978–1990, J. Geophys. Res., 97,
2445, https://doi.org/10.1029/91jd02755, 1992.

Prinn, R. G., Huang, J., Weiss, R. F., Cunnold, D. M., Fraser,
P. J., Simmonds, P. G., McCulloch, A., Harth, C., Salameh,
P., O’Doherty, S., Wang, R. H. J., Porter, L., and Miller, B.
R.: Evidence for substantial variations of atmospheric hydroxyl
radicals in the past two decades, Science, 292, 1882–1888,
https://doi.org/10.1126/science.1058673, 2001.

Prinn, R. G., Huang, J., Weiss, R. F., Cunnold, D. M., Fraser, P.
J., Simmonds, P. G., McCulloch, A., Harth, C., Reimann, S.,
Salameh, P., O’Doherty, S., Wang, R. H. J., Porter, L. W., Miller,
B. R., and Krummel, P. B.: Evidence for variability of atmo-
spheric hydroxyl radicals over the past quarter century, Geophys.

Atmos. Chem. Phys., 22, 10467–10488, 2022 https://doi.org/10.5194/acp-22-10467-2022

https://doi.org/10.1002/2017JD026926
https://doi.org/10.1126/science.aam5690
https://doi.org/10.1038/267032a0
https://doi.org/10.5194/gmd-3-519-2010
https://doi.org/10.5194/acp-16-7943-2016
https://doi.org/10.5194/acp-16-7943-2016
https://doi.org/10.5194/gmd-10-3025-2017
https://doi.org/10.5194/gmd-10-639-2017
https://doi.org/10.5194/amt-9-1279-2016
https://doi.org/10.5194/amt-9-1279-2016
https://doi.org/10.5194/acp-13-5277-2013
https://doi.org/10.5194/acp-13-5277-2013
https://doi.org/10.5194/acp-19-407-2019
https://psl.noaa.gov/enso/mei/
https://doi.org/10.1038/ncomms10383
https://doi.org/10.1029/2020JD033862
https://doi.org/10.5281/zenodo.6903521
https://doi.org/10.1029/2002jd003156
https://doi.org/10.1029/2021jd034892
https://doi.org/10.1029/91jd02755
https://doi.org/10.1126/science.1058673


M. A. Pimlott et al.: Investigating the global OH radical distribution 10487

Res. Lett., 32, 1–4, https://doi.org/10.1029/2004GL022228,
2005.

Rigby, M., Montzka, S. A., Prinn, R. G., White, J. W. C., Young,
D., O’Doherty, S., Lunt, M. F., Ganesan, A. L., Manning, A.
J., Simmonds, P. G., Salameh, P. K., Harth, C. M., Mühle, J.,
Weiss, R. F., Fraser, P. J., Steele, L. P., Krummel, P. B., McCul-
loch, A., and Park, S.: Role of atmospheric oxidation in recent
methane growth, Proc. Natl. Acad. Sci. USA, 114, 5373–5377,
https://doi.org/10.1073/pnas.1616426114, 2017.

Rowlinson, M. J., Rap, A., Arnold, S. R., Pope, R. J., Chipper-
field, M. P., McNorton, J., Forster, P., Gordon, H., Pringle, K.
J., Feng, W., Kerridge, B. J., Latter, B. L., and Siddans, R.: Im-
pact of El Niño–Southern Oscillation on the interannual variabil-
ity of methane and tropospheric ozone, Atmos. Chem. Phys., 19,
8669–8686, https://doi.org/10.5194/acp-19-8669-2019, 2019.

Ryerson, T. B., Williams, E. J., and Fehsenfeld, F. C.:
An efficient photolysis system for fast-response NO2 mea-
surements, J. Geophys. Res.-Atmos., 105, 26447–26461,
https://doi.org/10.1029/2000JD900389, 2000.

Savage, N. H., Harrison, R. M., Monks, P. S., and Salisbury,
G.: Steady-state modelling of hydroxyl radical concentrations
at Mace Head during the EASE ′97 campaign, May 1997,
Atmos. Environ., 35, 515–524, https://doi.org/10.1016/S1352-
2310(00)00315-0, 2001.

Shetter, R. E. and Müller, M.: Photolysis frequency mea-
surements using actinic flux spectroradiometry during the
PEM-Tropics mission: Instrumentation description and
some results, J. Geophys. Res.-Atmos., 104, 5647–5661,
https://doi.org/10.1029/98JD01381, 1999.

Siddans, R., Knappett, D., Kerridge, B., Waterfall, A., Hurley, J.,
Latter, B., Boesch, H., and Parker, R.: Global height-resolved
methane retrievals from the Infrared Atmospheric Sounding In-
terferometer (IASI) on MetOp, Atmos. Meas. Tech., 10, 4135–
4164, https://doi.org/10.5194/amt-10-4135-2017, 2017.

Siddans, R., Knappett, D., Kerridge, B., Latter, B., and Wa-
terfall, A.: STFC RAL methane retrievals from IASI on
board MetOp-A, version 2.0, CEDA Archive [data set],
https://doi.org/10.5285/f717a8ea622f495397f4e76f777349d1,
2020.

Singh, H. B.: Preliminary estimation of average tropo-
spheric HO concentrations in the northern and south-
ern hemispheres, Geophys. Res. Lett., 4, 453–456,
https://doi.org/10.1029/GL004i010p00453, 1977.

Slater, E. J., Whalley, L. K., Woodward-Massey, R., Ye, C., Lee,
J. D., Squires, F., Hopkins, J. R., Dunmore, R. E., Shaw, M.,
Hamilton, J. F., Lewis, A. C., Crilley, L. R., Kramer, L., Bloss,
W., Vu, T., Sun, Y., Xu, W., Yue, S., Ren, L., Acton, W. J.
F., Hewitt, C. N., Wang, X., Fu, P., and Heard, D. E.: El-
evated levels of OH observed in haze events during winter-
time in central Beijing, Atmos. Chem. Phys., 20, 14847–14871,
https://doi.org/10.5194/acp-20-14847-2020, 2020.

Smith, S. C., Lee, J. D., Bloss, W. J., Johnson, G. P., Ingham, T.,
and Heard, D. E.: Concentrations of OH and HO2 radicals dur-
ing NAMBLEX: measurements and steady state analysis, Atmos.
Chem. Phys., 6, 1435–1453, https://doi.org/10.5194/acp-6-1435-
2006, 2006.

Sommariva, R., Haggerstone, A.-L., Carpenter, L. J., Carslaw, N.,
Creasey, D. J., Heard, D. E., Lee, J. D., Lewis, A. C., Pilling,
M. J., and Zádor, J.: OH and HO2 chemistry in clean ma-

rine air during SOAPEX-2, Atmos. Chem. Phys., 4, 839–856,
https://doi.org/10.5194/acp-4-839-2004, 2004.

Spivakovsky, C. M., Logan, J. A., Montzka, S. A., Balkanski,
Y. J., Foreman-Fowler, M., Jones, D. B. A., Horowitz, L.
W., Fusco, A. C., Brenninkmeijer, C. A. M., Prather, M.
J., Wofsy, S. C., and McElroy, M. B.: Three-dimensional
climatological distribution of tropospheric OH: Update
and evaluation, J. Geophys. Res.-Atmos., 105, 8931–8980,
https://doi.org/10.1029/1999JD901006, 2000.

Stone, D., Whalley, L. K., and Heard, D. E.: Tropo-
spheric OH and HO2 radicals: Field measurements and
model comparisons, Chem. Soc. Rev., 41, 6348–6404,
https://doi.org/10.1039/c2cs35140d, 2012.

Streets, D. G., Canty, T., Carmichael, G. R., De Foy, B., Dickerson,
R. R., Duncan, B. N., Edwards, D. P., Haynes, J. A., Henze, D.
K., Houyoux, M. R., Jacob, D. J., Krotkov, N. A., Lamsal, L. N.,
Liu, Y., Lu, Z., Martin, R. V., Pfister, G. G., Pinder, R. W., Salaw-
itch, R. J., and Wecht, K. J.: Emissions estimation from satel-
lite retrievals: A review of current capability, Atmos. Environ.,
77, 1011–1042, https://doi.org/10.1016/j.atmosenv.2013.05.051,
2013.

Thames, A. B., Brune, W. H., Miller, D. O., Allen, H. M., Apel,
E. C., Blake, D. R., Bui, T. P., Commane, R., Crounse, J. D.,
Daube, B. C., Diskin, G. S., DiGangi, J. P., Elkins, J. W., Hall, S.
R., Hanisco, T. F., Hannun, R. A., Hintsa, E., Hornbrook, R. S.,
Kim, M. J., McKain, K., Moore, F. L., Nicely, J. M., Peischl, J.,
Ryerson, T. B., St. Clair, J. M., Sweeney, C., Teng, A., Thomp-
son, C. R., Ullmann, K., Wennberg, P. O., and Wolfe, G. M.:
Missing OH reactivity in the global marine boundary layer, At-
mos. Chem. Phys., 20, 4013–4029, https://doi.org/10.5194/acp-
20-4013-2020, 2020.

Travis, K. R., Heald, C. L., Allen, H. M., Apel, E. C., Arnold, S. R.,
Blake, D. R., Brune, W. H., Chen, X., Commane, R., Crounse, J.
D., Daube, B. C., Diskin, G. S., Elkins, J. W., Evans, M. J., Hall,
S. R., Hintsa, E. J., Hornbrook, R. S., Kasibhatla, P. S., Kim,
M. J., Luo, G., McKain, K., Millet, D. B., Moore, F. L., Peis-
chl, J., Ryerson, T. B., Sherwen, T., Thames, A. B., Ullmann,
K., Wang, X., Wennberg, P. O., Wolfe, G. M., and Yu, F.: Con-
straining remote oxidation capacity with ATom observations, At-
mos. Chem. Phys., 20, 7753–7781, https://doi.org/10.5194/acp-
20-7753-2020, 2020.

Turner, A. J., Frankenberg, C., Wennberg, P. O., and Jacob, D.
J.: Ambiguity in the causes for decadal trends in atmospheric
methane and hydroxyl, Proc. Natl. Acad. Sci. USA, 114, 5367–
5372, https://doi.org/10.1073/pnas.1616020114, 2017.

Turner, A. J., Frankenberg, C., and Kort, E. A.: Inter-
preting contemporary trends in atmospheric methane,
Proc. Natl. Acad. Sci. USA, 116, 2805–2813,
https://doi.org/10.1073/pnas.1814297116, 2019.

van der Werf, G. R., Randerson, J. T., Giglio, L., van Leeuwen, T.
T., Chen, Y., Rogers, B. M., Mu, M., van Marle, M. J. E., Morton,
D. C., Collatz, G. J., Yokelson, R. J., and Kasibhatla, P. S.: Global
fire emissions estimates during 1997–2016, Earth Syst. Sci. Data,
9, 697–720, https://doi.org/10.5194/essd-9-697-2017, 2017.

Voulgarakis, A., Marlier, M. E., Faluvegi, G., Shindell, D. T.,
Tsigaridis, K., and Mangeon, S.: Interannual variability of
tropospheric trace gases and aerosols: The role of biomass
burning emissions, J. Geophys. Res.-Atmos., 120, 7157–7173,
doi10.1002/2014JD022926, 2015.

https://doi.org/10.5194/acp-22-10467-2022 Atmos. Chem. Phys., 22, 10467–10488, 2022

https://doi.org/10.1029/2004GL022228
https://doi.org/10.1073/pnas.1616426114
https://doi.org/10.5194/acp-19-8669-2019
https://doi.org/10.1029/2000JD900389
https://doi.org/10.1016/S1352-2310(00)00315-0
https://doi.org/10.1016/S1352-2310(00)00315-0
https://doi.org/10.1029/98JD01381
https://doi.org/10.5194/amt-10-4135-2017
https://doi.org/10.5285/f717a8ea622f495397f4e76f777349d1
https://doi.org/10.1029/GL004i010p00453
https://doi.org/10.5194/acp-20-14847-2020
https://doi.org/10.5194/acp-6-1435-2006
https://doi.org/10.5194/acp-6-1435-2006
https://doi.org/10.5194/acp-4-839-2004
https://doi.org/10.1029/1999JD901006
https://doi.org/10.1039/c2cs35140d
https://doi.org/10.1016/j.atmosenv.2013.05.051
https://doi.org/10.5194/acp-20-4013-2020
https://doi.org/10.5194/acp-20-4013-2020
https://doi.org/10.5194/acp-20-7753-2020
https://doi.org/10.5194/acp-20-7753-2020
https://doi.org/10.1073/pnas.1616020114
https://doi.org/10.1073/pnas.1814297116
https://doi.org/10.5194/essd-9-697-2017


10488 M. A. Pimlott et al.: Investigating the global OH radical distribution

Wofsy, S. C., Afshar, S., Allen, H. M., Apel, E., Asher, E. C., Bar
letta, B., Bent, J., Bian, H., Biggs, B. C., Blake, D. R., Blake, N.,
Bourgeois, I., Brock, C. A., Brune, W. H., Budney, J. W., Bui,
T. P., Butler, A., Campuzano-Jost, P., Chang, C. S., Chin, M.,
Commane, R., Correa, G., Crounse, J. D., Cullis, P. D., Daube,
B. C., Day, D. A., Dean-Day, J. M., Dibb, J. E., Di Gangi, J. P.,
Diskin, G. S., Dollner, M., Elkins, J. W., Erdesz, F., Fiore, A.
M., Flynn, C. M., Froyd, K., Gesler, D. W., Hall, S. R., Hanisco,
T. F., Hannun, R. A., Hills, A. J., Hintsa, E. J., Hoffman, A.,
Hornbrook, R. S., Huey, L. G., Hughes, S., Jimenez, J. L., John-
son, B. J., Katich, J. M., Keeling, R. F., Kim, M. J., Kupc, A.,
Lait, L. R., Lamarque, J.-F., Liu, J., McKain, K., Mclaughlin,
R. J., Meinardi, S., Miller, D. O., Montzka, S. A., Moore, F. L.,
Morgan, E. J., Murphy, D. M., Murray, L. T., Nault, B. A., Neu-
man, J. A., Newman, P. A., Nicely, J. M., Pan, X., Paplawsky,
W., Peischl, J., Prather, M. J., Price, D. J., Ray, E., Reeves, J.
M., Richardson, M., Rollins, A. W., Rosenlof, K. H., Ryerson,
T. B., Scheuer, E., Schill, G. P., Schroder, J. C., Schwarz, J. P.,
St. Clair, J. M., Steenrod, S. D., Stephens, B. B., Strode, S. A.,
Sweeney, C., Tanner, D., Teng, A. P., Thames, A. B., Thomp-
son, C. R., Ullmann, K., Veres, P. R., Vieznor, N., Wagner, N.
L., Watt, A., Weber, R., Weinzierl, B., et al.: ATom: Merged At-
mospheric Chemistry, Trace Gases, and Aerosols, ORNL DAAC
[data set], https://doi.org/10.3334/ORNLDAAC/1581, 2018.

Wolfe, G. M., Nicely, J. M., Clair, J. M. S., Hanisco, T. F., Liao,
J., Oman, L. D., Brune, W. B., Miller, D., Thames, A., Abad, G.
G., Ryerson, T. B., Thompson, C. R., Peischl, J., McKain, K.,
Sweeney, C., Wennberg, P. O., Kim, M., Crounse, J. D., Hall, S.
R., Ullmann, K., Diskin, G., Bui, P., Chang, C., and, Dean-Day,
J.: Mapping hydroxyl variability throughout the global remote
troposphere via synthesis of airborne and satellite formaldehyde
observations, Proc. Natl. Acad. Sci. USA, 116, 11171–11180,
https://doi.org/10.1073/pnas.1908931116, 2019.

Yang, Y., Shao, M., Wang, X., Nölscher, A. C., Kessel, S., Guen-
ther, A., and Williams, J.: Towards a quantitative understanding
of total OH reactivity: A review, Atmos. Environ., 134, 147–161,
https://doi.org/10.1016/j.atmosenv.2016.03.010, 2016.

Zhao, Y., Saunois, M., Bousquet, P., Lin, X., Berchet, A., Hegglin,
M. I., Canadell, J. G., Jackson, R. B., Deushi, M., Jöckel, P., Kin-
nison, D., Kirner, O., Strode, S., Tilmes, S., Dlugokencky, E. J.,
and Zheng, B.: On the role of trend and variability in the hy-
droxyl radical (OH) in the global methane budget, Atmos. Chem.
Phys., 20, 13011–13022, https://doi.org/10.5194/acp-20-13011-
2020, 2020.

Atmos. Chem. Phys., 22, 10467–10488, 2022 https://doi.org/10.5194/acp-22-10467-2022

https://doi.org/10.3334/ORNLDAAC/1581
https://doi.org/10.1073/pnas.1908931116
https://doi.org/10.1016/j.atmosenv.2016.03.010
https://doi.org/10.5194/acp-20-13011-2020
https://doi.org/10.5194/acp-20-13011-2020

	Abstract
	Introduction
	Methods
	OH steady-state approximations
	OH reactivity
	Model and observations
	TOMCAT 3D model
	Satellite observations
	ATom observations


	Results and discussion
	Application of the simplified steady-state approximation
	Application to model data
	Study of reactions omitted from the S-SSA
	Application to satellite data

	Application to aircraft data
	OH reactivity
	OH temporal variation

	Conclusions
	Data availability
	Supplement
	Author contributions
	Competing interests
	Disclaimer
	Acknowledgements
	Financial support
	Review statement
	References

