

Supplement of

Modeled and observed properties related to the direct aerosol radiative effect of biomass burning aerosol over the southeastern Atlantic

Sarah J. Doherty et al.

Correspondence to: Sarah J. Doherty (sarahd@atmos.washington.edu)

The copyright of individual parts of the supplement might differ from the article licence.

35	Table S1. Coordinates of the four transects of gridboxes used in this comparison. Gridboxes are numbered 1-8 (Diagonal,
	Meridional) or 1-11 (Zonal) from west to east and/or north to south.

Transect Name	Year(s)	Latitude	Longitude
		7-11S	2W-2E
		9-13S	0-4E
		11-15S	2-6E
Discourt	2016	13-17S 4-8E	4-8E
Diagonal	2016	15-19S	6-10E
		17-218	8-12E
		19-238	10-14E
		21-258	12-16E
		7-9S	
		9-11S	
		11-13S	
Manidiana 11	2016	13-15S	0 11 755
Meridionali	2016	15-178	9-11./5E
		17-19S	
		19-218	
		21-238	
			15-13W
			13-11W
			11-9W
			9-7W
	2016, 2017		7-5W
Zonal		6-10S	5-3W
			3-1W
			1W-1E
			1-3E
			3-5E
			5-7E
		0.5N-1.5S	
	2017, 2018	1.5-3.58	
		3.5-5.58	
Maridiana 12		5.5-7.58	4 (E
Wieridional2		7.5-9.58	4-0E
		9.5-11.5S	
		11.5-13.58	
		13.5-15.58	

[†]For the Diagonal transect, coordinates given are for the latitudes of the north and south corners and the longitudes of the east and west corners of the gridbox.

Table S.2: The difference between the average of CF_{warm} at 10:30 and 13:30 and CF_{warm} for all times when SZA<75° (i.e. the expected ratio of MODIS daily avg CF_{warm} vs SEVIRI daily avg CF_{warm}) during the three field campaign periods

			45
	a) Zonal Transect		
Gridbox			
(W->E)	2016	2017	2018
1	-0.025	-0.009	-0.010
2	-0.030	0.002	-0.010 50
3	-0.034	0.007	-0.006
4	-0.024	-0.021	-0.008
5	-0.013	-0.027	-0.008
6	-0.023	-0.016	-0.003
7	-0.024	-0.018	0.004 5
8	-0.023	-0.018	0.001
9	-0.030	-0.013	-0.015
10	-0.038	-0.020	-0.014
11	-0.042	-0.032	-0.001
mean	-0.053	-0.081	0.000 60
std dev	-0.063	-0.081	0.009

b) Diagonal Transect		
Gridbox		
(NW->SE)	2016	
1	-0.007	
2	-0.004	
3	-0.007	
4	-0.030	
5	-0.024	
6	0.002	
7	-0.007	
8	-0.010	
mean	-0.011	
std dev	0.011	

c) Meridional1 Transect		
Gridbox		
(N->S)	2016	
1	-0.094	
2	-0.143	
3	-0.135	
4	-0.090	
5	-0.030	
6	0.053	
7	0.051	
8	0.094	
mean	-0.037	
std dev	0.092	

d) Meridional2				
	Transect			
Gridbox				
(N->S)	2017	2018		
1	-0.080	0.105 65		
2	-0.068	0.102		
3	-0.040	0.040		
4	-0.058	-0.053		
5	-0.008	-0.079		
6	0.012	-0.096		
7	-0.012	-0.081		
8	-0.034	-0.115		
mean	-0.036	-0.022		
std dev	0.032	0.090		

Table S.3: As in Table S.2, but showing the difference in median COT_{warm} at 10:30 and 13:30 versus the median for the full daytime, based on an empirical fit to COT_{warm} versus CF_{warm} from the MODIS-ACAERO retrievals.

a) Zonal Transect			
Gridbox (W->E)	2016	2017	2018 70
1	-0.37	-0.16	-0.27
2	-0.41	-0.06	-0.66
3	-0.50	0.00	-0.85
4	-0.38	-0.30	-0.73
5	-0.23	-0.42	-0.85
6	-0.39	-0.27	-0.58
7	-0.41	-0.29	-0.46
8	-0.41	-0.30	-0.37
9	-0.51	-0.24	-0.54
10	-0.63	-0.36	-0.34
11	-0.66	-0.51	-0.34 75
mean	-0.78	-1.05	-0.06
std dev	-0.88	-0.97	-0.38

b) Diagonal		
Transect		
Gridbox		
(NW->SE)	2016	
1	-0.14	
2	-0.08	
3	-0.14	
4	-0.50	
5	-0.37	
6	0.01	
7	-0.12	
8	-0.11	
mean	-0.18	
std dev	0.17	

c) Meridional1 Transect		
Gridbox		
(N->S)	2016	
1	-1.03	
2	-1.12	
3	-0.79	
4	-0.58	
5	-0.43	
6	-0.38	
7	-0.01	
8	0.22	
mean	-0.52	
std dev	0.47	

d) Meridional2				
	Transect			
Gridbox				
(N->S)	2017	2018 00		
1	-0.96	-0.02		
2	-0.82	-0.06		
3	-0.49	-0.21		
4	-0.67	-0.39		
5	-0.20	-0.45		
6	0.19	-0.29		
7	-0.23	-0.51 85		
8	-0.61	-0.32		
mean	-0.48	-0.28		
std dev	0.38	0.18		

Figure S.1 A histogram of COT_{warm} from the MODIS-ACAERO retrievals for the 2018 Meridional2 and Zonal transects, colored by transect gridbox number (Figure 1). COT_{warm} for the transects in 2016 and 2018 have similarly shaped distributions.

Figure S.2 CF_{warm} from the SEVIRI-LaRC retrievals, for all times when SZA<75°, showing the diurnal cycle in CF across the comparison gridboxes during the dates of the ORACLES field campaigns in 2016, 2017 and 2018.

Figure S.3 COT_{warm} versus CF_{warm} for a) pixel-level MODIS-ACAERO retrievals, with an empirical fit using averages (blue dots) in CF_{warm} bins of 0.05, and b) for both MODIS-ACAERO pixel-level retrievals gridbox averages from the four models included in this comparison.

Figure S.4 As in Figure 3: Plots showing the representativeness of the in -situ (a and b) and HSRL-2 (c and d) sampled values of σ_{ep} for the 2017 Zonal transect from WRF-CAM5 (a and c) and GEOS (b and d) simulations.

Figure S.5 As in Figure 4, but for profiles of carbon monoxide (CO) mixing ratio.

Figure S.6 As in Figure 4, but for black carbon (BC) mass concentration.

Figure S.7 As in Figure 4, but for organic aerosol (OA) mass concentration.

Figure S.8 Ratio of WRF-CAM5 modeled to observed BC (a, c) and OA (b, d) for the 2016 Diagonal (a, b) and 2016 Meridional1 (c, d) comparison transects. Averages for individual gridboxes are shown as well as the average across all gridboxes.

Figure S.9 As in Figure S.8, but for the 2017 Meridional2 (a, b) and 2018 Meridional2 (c, d) comparison transects.

Figure S.10 Ratio of GEOS modeled to observed BC (a, c) and OA (b, d) for the 2016 Diagonal (a, b) and 2016 Meridional1 (c, d) comparison transects. Averages for individual gridboxes are shown as well as the average across all gridboxes.

Figure S.11 As in Figure S.10, but for the 2017 Meridional2 (a, b) and 2018 Meridional2 (c, d) comparison transects.

Figure S.12 Ratio of UM-UKCA modeled to observed BC (a, c) and OA (b, d) for the 2016 Diagonal (a, b) and 2016 Meridional1 (c, d) comparison transects. Averages for individual gridboxes are shown as well as the average across all gridboxes.

Figure S.13 As in Figure S.10, but for the 2017 Meridional2 comparison transect.

175 180

Figure S.14 Light scattering (σ_{sp}) humidification factor, f(RH), estimated for adjusting from the measured in-situ at low RH to ambient RH. This estimate uses the gamma fit to low and high (approx. 80%) RH light scattering measured in-situ in the P-3 aircraft, averaged for all data 2-5km altitude where $\sigma_{sp}>25$ Mm⁻¹. The campaign-wide averages from 2016 (γ =0.62) and 2018 (γ =0.62; used for both 2017 and 2018) are used with observed ambient RH (Figure 6) to calculate the f(RH) values shown here. Solid dots are f(RH) for the gridbox-mean ambient RH and the dashed horizontal bars for +/-1 sigma in ambient RH, with f(RH) truncated at 1.0 in the lower limit. Colors indicate the gridbox number, as shown in Figure 1.

Figure S.15 Ratio of modeled ambient-RH, mid-visible σ_{ep} to in-situ dry (a, c) and HSRL-2 ambient-RH (b, d) mid-visible σ_{ep} for the WRF-CAM5 model along the 2016 Diagonal (a, b) and Meridional1 (c, d) transects. Averages for individual gridboxes are shown as well as the average across all gridboxes.

Figure S.16 As in Figure S.16, but for the 2017 (a, b) and 2018 (c, d) Meridional2 transect comparisons.

Figure S.17 As in Figure S.15 but for comparison to the GEOS modelled values of σ_{ep} .

Figure S.19 As in Figure S.15 but for comparison to the UM-UKCA modelled values of σ_{ep} . Here, comparisons are made to both dry and ambient-RH σ_{ep} from the model.

Figure S.20 As in Figure S.19 but for the 2017 Meridional2 transect comparisons.

Figure S.21 As in Figure S.15 but for comparison to the ALADIN modelled values of σ_{ep} for the a) 2016 Diagonal1 b) 2016 Meridional1 and c) 2017 Meridional2 comparison transects.

Figure S.22 Comparison of parameterized DARE from Equation [3] versus DARE from full radiative transfer calculations, as described in the text.