

Supplement of

Measurement report: The influence of traffic and new particle formation on the size distribution of 1–800 nm particles in Helsinki – a street canyon and an urban background station comparison

Magdalena Okuljar et al.

Correspondence to: Magdalena Okuljar (magdalena.okuljar@helsinki.fi)

The copyright of individual parts of the supplement might differ from the article licence.

1 Supplement

2 Correction of UCPC data at the background station

3 During 29.05-06.04.2018 the nighttime ratio between PSM and UCPC concentrations as well as between UCPC and CPC 4 concentrations drifted in opposite directions. At the same time, the ratio between PSM and CPC stayed constant, which 5 indicated that concentrations measured by UCPC drifted. This drift could be caused by a change in measuring parameter, 6 for example, an increase in the aerosol flow. To correct this error, we divided the average nighttime ratio between UCPC 7 and CPC from period 3.05-28.05.2018 by the nighttime ratio between these instruments for period 29.05-4.06.2018. We 8 obtained following correlation parameters: 0.97 (29.05-30.05), 0.89 (31.05-01.06), 0.87 (02.06 and 04.06), and 0.92 9 (03.06). The distribution of the correction is presented at Fig S1 (a). It is much smaller than the standard deviation of UCPC data for corrected period (σ = 11 515 cm⁻³). Figure S1 (b,c) present the difference in concentration measured by 10 UCPC and CPC (N_{3-7}) as well as PSM and UCPC (N_{1-3}) during this campaign. UCPC correction is smaller than these 11 12 concentrations, but it strongly influences the sub-3 nm concentrations measured for this period. This correction was 13 applied only to a fraction of data at the background station, and it does not influence any analysis done for overlapping 14 data between stations.

Figure S1. The distribution of the correction applied to data measured by UCPC during period 29.05-06.04.2018 (a), and the difference between concentrations measured by UCPC and CPC (b) as well as PSM and UCPC (c) during this campaign. Box plots present 25th, 50th (median), and 75th percentile values. The whiskers extend to the most extreme data points not considered outliers, and the outliers are plotted individually using the '+' symbol

Figure S3. Median size distribution (a,c) at the street canyon and (b,d) at the background station. The colors indicate different periods of the day: night (1:00-4:00 LT, black), morning (6:00-9:00 LT, blue), noon (10:00-13:00 LT, green), and afternoon (15:00-18:00, red). The top row presents sixe distribution measured during weekends (a,b) and the bottom one during workdays (c,d). Median size distribution was determined by DMPS (particles with sizes between 6-800 nm) marked with solid lines in the figure, UCPC, and CPC (3-7 nm), and PSM and UCPC (1-3 nm) marked with dots. Each station has different limits of a y-scale.

Figure S4. The diurnal variation of NOx concentration during weekends (red) and workdays (blue) (a) at the street canyon and (b) at the background station, and (c) the difference between median NOx concentration at the street canyon site and at the background station. The median diurnal variation is shown as a solid line with markers; the 25th and 75th percentile range are presented as a shaded area.

Figure S5. Diurnal variations of nucleation (3-25 nm), Aitken (25-100 nm), and accumulation (100-800 nm) modes
particle concentration during weekends (red) and workdays (blue) measured at the street canyon (top) and at the
background station (bottom). The median diurnal variation is shown as a solid line with markers; the 25th and 75th

37 percentile range are presented as a shaded area. Each subplot has different limits of a y-scale.

38 Figure S6. Correlation between the SA measured at the street canyon and at the background station colored by the time

39 of the day. The black line shows the 1:1 line.

40 Figure S7. Time series of meteorological parameters (global radiation: (a) and (b), air temperature and relative humidity:

- 41 (c) and (d), wind direction and wind speed: (e) and (f)) measured at background station for periods 5 May 2018-7 May
- 42 2018 LT (left) and 8 May 2018 09:00-9 May 2018 15:00 LT (right).

43 Figure S8. Time series of (a, b) SO₂ and CO₂ concentrations, (c, d) NO_x and O₃ concentrations, (e, f) black carbon

44 concentration (BC) and condensation sink (CS) measured at the street canyon (left) and at the background station (right)

45 for period 5 May 2018-6 May 2018 LT.

Figure S9. Time series of (a, b) SO₂ and CO₂ concentrations, (c, d) NO_x and O₃ concentrations, (e, f) black carbon
concentration (BC) and CS measured at the street canyon (left) and at the background station (right) for period 8 May
2018 09:00-9 May 2018 15:00 LT.

49

Figure S10. Correlation between the sub-3 nm particles and SA measured at the background station (a,c) and at the street
canyon (b,d) for period 5 May 2018-6 May 2018 LT (a,b) and 8 May 2018 09:00-9 May 2018 15:00 LT (c,d) colored by

Figure S11. Correlation between the sub-3 nm particles measured at the street canyon site and at the background stationcolored by the time of the day for the time of both case studies. The black line shows the 1:1 line.

56 Figure S12. Time series of sub-3 nm particles (black) and SA (red) concentrations at the street canyon (a, c) and at the

background station (b, d) during 5 May 2018-7 May 2018 LT (a, b) and 8 May 2018 09:00-9 May 2018 15:00 LT (c, d).
Vertical blue lines indicate midnights.

61	values of other	variables during	weekends and	workdays at t	he street canvon	and the background	d station
01	values of other	variables during	weekenus and	workdays at t	ne succi canyon	and the background	a station.

Domomotor			Street ca	nyon site		Background station			
Parameter		N ₁₋₃	N ₃₋₇	N ₇₋₂₅	N ₂₅₋₁₀₀	N ₁₋₃	N ₃₋₇	N ₇₋₂₅	N ₂₅₋₁₀₀
SA [#/om ³]	Workdays	552	2060	2488	2488	2366	2450	3455	3455
SA [#/cm]	Weekends	696	1428	3915	3915	1467	1329	1584	1584
$BC [ng/m^3]$	Workdays	552	2060	2488	2488	2366	2402	3402	3402
bC [lig/iii]	Weekends	418	857	856	856	1467	1327	1582	1582
CS [s ⁻¹]	Workdays	552	2060	2488	2488	2366	2450	3455	3455
	Weekends	418	857	856	856	1467	1329	1584	1584
NO [nnh]	Workdays	552	2060	2488	2488	1813	1802	2552	2552
	Weekends	696	1428	3915	3915	892	758	913	913
NO [ash]	Workdays	552	2060	2488	2488	2218	2299	3455	3455
NO _x [pp0]	Weekends	696	1428	3915	3915	1439	1301	1584	1584
O ₂ [nnh]	Workdays	552	2060	2488	2488	2366	2450	3455	3455
O ₃ [pp0]	Weekends	696	1428	3915	3915	1467	1329	1584	1584
CO ₂ [ppm]	Workdays	552	2060	2488	2488	689	715	763	763
CO ₂ [ppin]	Weekends	696	1428	3915	3915	603	603	720	720
SO2 ** [ppb]	Workdays	-	2060	2242	2242	2051	2182	3149	3149
$\mathbf{SO}_2 \sim [\mathbf{ppo}]$	Weekends	-	1428	256	256	1266	1126	1372	1372
RH*** [%]	Workdays	552	2060	2488	2488	2366	2450	3455	3455
	Weekends	696	1428	3915	3915	1467	1329	1584	1584
T*** [°C]	Workdays	552	2060	2488	2488	2366	2450	3455	3455
I [C]	Weekends	696	1428	3915	3915	1467	1329	1584	1584
cos(WD) &	Workdays	552	2060	2488	2488	2366	2450	3455	3455
sin(WD)**	Weekends	696	1428	3915	3915	1467	1329	1584	1584

Figure S13. Correlation between the logarithm of SA and the logarithm of the total concentration of particles (N_{tot}) colored by the logarithm of NO_x (a) at the street canyon and (b) the background station, as well as the correlation between the logarithm of NO_x and the logarithm of N_{tot} particles colored by the logarithm of SA (c) at the street canyon and (d) at the background station. Lines represent bivariate fit done to data. The parameters of the fit are presented as an equation on the plot.

Figure S14. Correlation between the logarithm of NOx and the logarithm of sub-3 nm particles colored by the CS at the background station for data with the logarithm of SA in the range: (a) less than 5.50, (b) 5.50-5.75, (c) 5.75-6.00, (d) 6.00-6.50, (e) 6.50-6.75, and (f) more than 6.75. Lines represent bivariate fit done to data. The parameters of the fit are presented as an equation on the plot.

Figure S15. Correlation between the logarithm of NOx and the logarithm of sub-3 nm particles colored by the CS at the street canyon station for data with the logarithm of SA in the range: (a) less than 5.50, (b) 5.50-5.75, (c) 5.75-6.00, (d) 6.00-6.50, (e) 6.50-6.75, and (f) more than 6.75. Lines represent bivariate fit done to data. The parameters of the fit are presented as an equation on the plot.

Figure S16. Correlation between the sub-3 nm particles concentration and concentration of ions with a diameter between
1 and 3 nm measured at the background station colored by the time of the day. The black line shows the 1:1 line.

81 Figure S17. The time series (LT) of sub-3 nm particles concentration measured during the campaign (black) and estimated

based on NOx concentration (orange) and NO_x and SA concentrations (red) (a) at the background and (b) at the street
canyon station.

Background station					Street canyon site					
		Co	orrelation be	tween log	$g_{10}(N_{1-3})$ and $\log_{10}(N_{1-3})$	O _x)				
log ₁₀ (SA) bin	N	Slope	Р	R	log ₁₀ (SA) bin	N	Slope	Р	R	
<= 5.50	507	0.64	< 0.001	0.45	<= 5.50	100	1.40	< 0.001	0.59	
5.50-5.75	577	0.63	< 0.001	0.48	5.50-5.75	179	1.29	< 0.001	0.66	
5.75-6.00	483	0.65	< 0.001	0.48	5.75-6.00	226	1.44	< 0.001	0.64	
6.00-6.50	996	0.62	< 0.001	0.41	6.00-6.50	512	1.73	< 0.001	0.59	
6.50-6.75	495	1.09	0.005	0.13	6.50-6.75	134	2.99	0.04	0.18	
>6.75	470	1.07	0.002	-0.14	> 6.75	90	2.28	0.4	0.09	
	Correlation between $log_{10}(N_{1-3})$ and $log_{10}(SA)$									
log ₁₀ (NO _x) bin	N	Slope	Р	R	log ₁₀ (NO _x) bin	N	Slope	Р	R	
<=3.00	521	0.89	< 0.001	0.55	<=4.00	148	1.25	< 0.001	0.39	
3.00-3.50	940	0.94	< 0.001	0.70	4.00-4.25	251	1.19	< 0.001	0.54	
3.50-3.75	687	0.94	< 0.001	0.81	4.25-4.50	373	1.25	< 0.001	0.59	
3.75-4.00	637	0.92	< 0.001	0.73	4.50-4.75	307	1.09	< 0.001	0.51	
4.00-4.25	469	0.96	< 0.001	0.63	>4.75	162	1.32	< 0.001	0.34	
>4.25	274	0.65	< 0.001	0.53	-	-	-	-	-	

Table S2. The number of measured points (N), slope value, P-value, and Pearson correlation coefficient (R) of bivariate
 analysis result for common logarithms of N₁₋₃, SA, and NO_x concentrations.

Figure S18. Relations between SA and NO_x concentrations (a,c) and sub-3 nm particles and NO_x concentrations (b,d) at
the street canyon site (a,b) and the background station (c,d) calculated for the daytime (6-20) data with ten minutes
resolution. The data points are colored with radiation level observed at the background station.

99Table S3. Coefficient of determination (\mathbb{R}^2) between SA and NOx concentrations during daytime (10 minutes averaged100data between 6 and 20 hours) at the study sites in different ranges of global radiation. The sample size is given in101parenthesis and the correlations not significant at p<0.05 level are shown in italics.</th>

	Low radiation $(<20 \text{ W/m}^2)$	Medium radiation $(20-300 \text{ W/m}^2)$	High radiation $(>300 \text{ W/m}^2)$	
Street canyon	0.018 (525)	0.067 (409)	0 (371)	
Background	0.035 (21)	0.014 (740)	0.117 (1536)	