

Supplement of

Disparities in particulate matter (PM_{10}) origins and oxidative potential at a city scale (Grenoble, France) – Part 2: Sources of PM_{10} oxidative potential using multiple linear regression analysis and the predictive applicability of multilayer perceptron neural network analysis

Lucille Joanna S. Borlaza et al.

Correspondence to: Lucille Joanna S. Borlaza (lucille-joanna.borlaza@univ-grenoble-alpes.fr) and Gaëlle Uzu (gaelle.uzu@ird.fr)

The copyright of individual parts of the supplement might differ from the article licence.

Table of Contents:

S1. PM characterization	1
S2. Positive Matrix Factorization (PMF)	2
S3. Various ANN architectures tested for the MLP analysis	3
S4. Daily distribution of PM ₁₀ sources and observed OP activity	4
S5. Comparison between OP assays	4
S6. Comparison of the observed and MLR-modelled OP activity	5
S7. Site-specific mean daily contribution of each source to PM ₁₀ mass and OP activity	6
S8. The non-linearity of OP contributions of PM ₁₀ sources based on MLP analysis	8
S9. Summary of references reporting OP assays and their correlations to chemical species	8

S1. PM characterization

Table S1. Annual average of PM₁₀ mass concentrations and chemical compositions (in µg m⁻³) at all sites, and individual urban sites in Grenoble, France.

	Unit	Mean [Q1, Q3]				
Species		All sites	CB (urban hyper- center)	LF (urban background)	Vif (peri-urban)	
PM10recons		14.4 [8.0, 17.8]	16.0 [8.8, 20.3]	14.2 [8.1, 17.2]	13.1 [7.3, 16.5]	
OC*		3.95 [2.28, 5.0]	4.14 [2.43, 5.28]	3.95 [2.28, 4.73]	3.75 [2.12, 4.49]	
EC		1.01 [0.46, 1.32]	1.18 [0.57, 1.5]	1.12 [0.53, 1.35]	0.73 [0.34, 0.85]	
Cl-		0.12 [0.01, 0.1]	0.16 [0.02, 0.15]	0.08 [0.01, 0.08]	0.1 [0.0, 0.08]	
NO ₃ -		2.02 [0.48, 2.11]	2.55 [0.67, 3.16]	1.78 [0.51, 1.7]	1.72 [0.36, 1.7]	
SO4 ²⁻		1.48 [0.81, 1.89]	1.58 [0.89, 2.0]	1.53 [0.87, 1.97]	1.33 [0.69, 1.74]	
Na ⁺		0.17 [0.07, 0.2]	0.2 [0.08, 0.24]	0.15 [0.06, 0.19]	0.15 [0.06, 0.18]	
$\mathrm{NH_{4^+}}$		0.85 [0.3, 0.89]	0.99 [0.31, 1.11]	0.81 [0.32, 0.81]	0.75 [0.27, 0.79]	
K ⁺	µg/m ³	0.15 [0.07, 0.18]	0.16 [0.08, 0.19]	0.15 [0.07, 0.17]	0.13 [0.06, 0.17]	
Mg^{2+}		0.02 [0.01, 0.02]	0.02 [0.01, 0.03]	0.02 [0.01, 0.02]	0.02 [0.01, 0.02]	
Ca ²⁺		0.32 [0.13, 0.44]	0.36 [0.13, 0.52]	0.31 [0.12, 0.38]	0.3 [0.13, 0.42]	
MSA		0.02 [0.01, 0.03]	0.03 [0.01, 0.03]	0.02 [0.01, 0.03]	0.02 [0.01, 0.03]	
Levoglucosan		0.3 [0.02, 0.42]	0.25 [0.02, 0.35]	0.28 [0.02, 0.42]	0.36 [0.02, 0.47]	
Mannosan		0.03 [0.0, 0.04]	0.03 [0.0, 0.04]	0.03 [0.0, 0.05]	0.04 [0.0, 0.05]	
Polyols		0.04 [0.01, 0.06]	0.04 [0.01, 0.06]	0.04 [0.01, 0.06]	0.05 [0.01, 0.07]	
Cellulose		0.08 [0.02, 0.12]	0.13 [0.07, 0.17]	0.05 [0.02, 0.08]	0.06 [0.01, 0.09]	
3-MBTCA		9.13 [1.75, 12.92]	9.8 [1.83, 13.18]	8.5 [1.72, 11.89]	9.09 [1.69, 13.18]	
Phthalic acid		3.54 [1.8, 4.02]	3.5 [1.82, 4.13]	3.88 [1.88, 4.68]	3.24 [1.78, 3.82]	
Pinic acid		6.61 [2.3, 7.83]	5.36 [1.65, 7.21]	5.25 [2.48, 6.66]	9.22 [2.94, 11.28]	
Al		62.67 [19.6, 68.7]	62.26 [22.41, 73.59]	65.58 [21.95, 68.43]	60.19 [16.82, 63.54]	
As		0.33 [0.14, 0.39]	0.41 [0.16, 0.47]	0.37 [0.17, 0.48]	0.23 [0.11, 0.27]	
Cd		0.07 [0.02, 0.09]	0.08 [0.02, 0.1]	0.07 [0.02, 0.09]	0.05 [0.01, 0.06]	
Cr	n a/m3	1.65 [0.61, 1.73]	2.27 [0.79, 2.23]	1.61 [0.7, 1.79]	1.05 [0.61, 1.01]	
Cu	ng/m ³	8.5 [3.82, 9.8]	11.59 [5.17, 13.27]	8.79 [4.08, 10.24]	5.09 [2.72, 6.18]	
Fe		215.26 [91.41, 270.23]	241.66 [104.95, 290.45]	248.53 [112.83, 299.27]	155.64 [68.3, 184.7]	
Mn		9.0 [2.73, 9.36]	11.73 [3.38, 11.77]	7.19 [2.63, 8.31]	8.03 [2.21, 7.09]	
Mo		0.59 [0.19, 0.65]	0.8 [0.25, 0.92]	0.63 [0.21, 0.67]	0.35 [0.13, 0.41]	
Ni		0.91 [0.37, 1.07]	1.18 [0.5, 1.4]	0.92 [0.39, 1.12]	0.63 [0.3, 0.75]	
Pb		4.42 [1.52, 5.01]	5.73 [2.0, 7.23]	4.84 [1.72, 5.75]	2.69 [1.15, 3.06]	
Rb		0.45 [0.21, 0.58]	0.48 [0.25, 0.6]	0.44 [0.21, 0.57]	0.41 [0.18, 0.58]	

Sb	1.31 [0.33, 0.93]	1.71 [0.46, 1.33]	1.53 [0.4, 1.26]	0.69 [0.22, 0.51]
Se	0.39 [0.23, 0.5]	0.43 [0.27, 0.54]	0.41 [0.26, 0.53]	0.32 [0.18, 0.43]
Sn	2.26 [1.41, 2.63]	2.6 [1.55, 3.13]	2.45 [1.49, 2.96]	1.73 [1.28, 2.03]
Ti	3.81 [1.6, 4.95]	4.11 [1.8, 5.57]	3.83 [1.68, 5.08]	3.49 [1.38, 4.32]
V	0.48 [0.16, 0.62]	0.51 [0.19, 0.62]	0.52 [0.16, 0.65]	0.42 [0.13, 0.52]
Zn	20.27 [6.09, 21.82]	26.11 [8.18, 28.63]	23.58 [8.69, 24.41]	11.11 [3.64, 12.07]

S2. Positive Matrix Factorization (PMF)

Table S2. Summary of tracers used to identify the PM₁₀ sources in the PMF analysis.

Identified factors	Specific tracers
Biomass burning	OC*, levoglucosan, mannosan, K ⁺ , Rb, Cl ⁻
Primary traffic	EC, Ca ²⁺ , Cu, Fe, Sb, Sn
Nitrate-rich	NO_3 , NH_4 ⁺
Sulfate-rich	SO ₄ ²⁻ , NH ₄ ⁺ , Se
Mineral dust	Ca ²⁺ , Al, Ti, V
Sea/road salt	Na ⁺ , Cl ⁻
Aged sea salt	Na^+ , Mg^{2+}
Industrial	As, Cd, Cr, Mn, Mo, Ni, Pb, Zn
Primary biogenic	Polyols, cellulose
MSA-rich	MSA
Secondary biogenic oxidation	3-MBTCA, pinic acid

S3. Various artificial neural network (ANN) architectures tested for the multilayer perceptron (MLP) analysis

G* 4 -	Madal	Activation	Optimization	Learning	OP_v^{DTT}		OP_{v}^{AA}		OP_{v}^{DCFH}	
Site Model		function	Âlgorithm	rate	RMSE	r	RMSE	r	RMSE	r
	MLP1	TanH	Scaled conjugate	N/A	0.35	0.94	0.37	0.96	0.25	0.97
	MLP2	Sigmoid	Scaled conjugate	N/A	0.36	0.93	0.35	0.97	0.21	0.98
	MLP3	TanH	Gradient descent	0.2	0.40	0.92	0.39	0.96	0.31	0.95
Urban	MLP4	TanH	Gradient descent	0.4	0.36	0.93	0.32	0.97	0.19	0.98
(UB)	MLP5	TanH	Gradient descent	0.6	0.39	0.92	0.41	0.96	0.29	0.96
	MLP6	Sigmoid	Gradient descent	0.2	0.38	0.93	0.33	0.97	0.21	0.98
	MLP7	Sigmoid	Gradient descent	0.4	0.38	0.93	0.36	0.97	0.22	0.98
	MLP8	Sigmoid	Gradient descent	0.6	0.39	0.92	0.42	0.96	0.26	0.96
	MLP1	TanH	Scaled conjugate	N/A	0.61	0.84	0.57	0.92	0.36	0.92
	MLP2	Sigmoid	Scaled conjugate	N/A	0.61	0.83	0.54	0.93	0.32	0.94
	MLP3	TanH	Gradient descent	0.2	0.58	0.85	0.58	0.92	0.35	0.92
Urban	MLP4	TanH	Gradient descent	0.4	0.58	0.85	0.57	0.92	0.35	0.93
(UH)	MLP5	TanH	Gradient descent	0.6	0.54	0.88	0.50	0.94	0.30	0.95
	MLP6	Sigmoid	Gradient descent	0.2	0.56	0.86	0.52	0.93	0.32	0.94
	MLP7	Sigmoid	Gradient descent	0.4	0.60	0.85	0.53	0.93	0.34	0.93
	MLP8	Sigmoid	Gradient descent	0.6	0.62	0.83	0.72	0.87	0.42	0.89
	MLP1	TanH	Scaled conjugate	N/A	0.74	0.72	0.74	0.94	0.53	0.95
	MLP2	Sigmoid	Scaled conjugate	N/A	0.62	0.75	0.42	0.97	0.31	0.96
	MLP3	TanH	Gradient descent	0.2	0.61	0.65	0.61	0.89	0.36	0.90
Peri-urban	MLP4	TanH	Gradient descent	0.4	0.58	0.71	0.44	0.96	0.33	0.96
(PU)	MLP5	TanH	Gradient descent	0.6	0.66	0.73	0.82	0.95	0.51	0.95
	MLP6	Sigmoid	Gradient descent	0.2	0.61	0.73	0.52	0.96	0.32	0.96
	MLP7	Sigmoid	Gradient descent	0.4	0.60	0.71	0.58	0.96	0.39	0.96
	MLP8	Sigmoid	Gradient descent	0.6	0.59	0.72	0.50	0.96	0.34	0.96

 Table S3. Various tested ANN architectures and their model performance based on root mean square error (RMSE) and

 Pearson correlation (r). Note: Optimal models per site (with the lowest RMSE and highest r) are highlighted in bold.

S4. Daily distribution of PM10 sources and observed OP activity

Figure S1: Daily temporal distribution of the reconstructed PM₁₀ mass concentration, PMF-resolved sources, and observed OP activity (OP_v^{DTT}, OP_v^{AA} , and OP_v^{DCFH}) in the three urban sites.

S5. Comparison between OP assays

Figure S2: Pair-wise correlation between of the OP assays (left: DTT-AA, center AA-DCFH and right DCFH-DTT). The colors refer to the sampled sites (blue: UH, orange: UB, and green: PU). Pearson r coefficient is given for all the sites combined and for individual sites. All correlations are significant at $p \le 0.01$.

Figure S3: Pair-wise correlation of mass- and volume-normalized OP activity (OP_m and OP_v , respectively) for the three assays (left: DTT, center: AA, and right DCFH). The colors refer to the sampled sites (blue: UH, orange: UB and green: PU). Pearson *r* coefficient is given for all the sites combined and for individual sites. All correlations are significant at $p \le 0.01$.

Site

UB

UH

PU

S6. Comparison of the observed and MLR-modelled OP activity

Figure S4: Pair-wise correlation the observed and modelled volume-normalized OP activity for the three assays (left: DTT, center: AA, and right DCFH) using MLR analysis. The colors refer to the sampled sites (blue: UH, orange: UB and green: PU). Pearson r coefficient is given for all the sites combined and for individual sites. All correlations are significant at $p \le 0.01$.

Figure S5: Pair-wise correlation the observed and modelled volume-normalized OP activity for the three assays (left: DTT, center: AA, and right DCFH) using MLP analysis. The colors refer to the sampled sites (blue: UH, orange: UB and green: PU). Pearson r coefficient is given for all the sites combined and for individual sites. All correlations are significant at $p \le 0.01$.

S7. Site-specific mean daily contribution of each source to PM₁₀ mass and OP activity

Figure S6: Overall daily mean OP_v contribution of the sources to PM₁₀, OP_v^{DTT} , OP_v^{AA} , and OP_v^{DCFH} using MLR analysis in the UB site in the form of mean and 95% confident interval of the mean (error bar) (n=125 samples).

Figure S7: Overall daily mean OP_v contribution of the sources to PM_{10} , OP_v^{DTT} , OP_v^{AA} , and OP_v^{DCFH} using MLR analysis in the UH site in the form of mean and 95% confident interval of the mean (error bar) (n=126 samples).

Figure S8: Overall daily mean OP_{ν} contribution of the sources to PM₁₀, OP_{ν}^{DTT} , OP_{ν}^{AA} , and OP_{ν}^{DCFH} using MLR analysis in the PU site in the form of mean and 95% confident interval of the mean (error bar) (n=126 samples).

Figure S9: The comparison of the original modelled OP_v (*MLP*) and the sum of source-specific modelled OP_v activity (*MLP*_{sum}). Note: Dashed grey line corresponds to the 1:1 line. Data points below the 1:1 shows an over-all synergistic effect between PM₁₀ sources on OP activity, above the 1:1 line is otherwise.

S9. Summary of references reporting OP assays and their correlations to chemical species

OP assay	Species driving responses in OP assay	Source	
DTT	soluble nonspecific metals	(Shinyashiki et al., 2009)	
	soluble copper	(Charrier and Anastasio, 2012, 2015; Charrier et al., 2016; Borlaza et al., 2018; Park et al., 2018; Joo et al., 2018)	
	soluble manganese	(Charrier and Anastasio, 2012, 2015; Charrier et al., 2016; Borlaza et al., 2018; Park et al., 2018; Joo et al., 2018)	
	OC (including WSOC and WIOC)	(Cho et al., 2005; Fang et al., 2016; Verma et al., 2012, 2015b; Jeng, 2010; Hu et al., 2008; Verma et al., 2011, 2009; Velali et al., 2016;	

Table S4. Summary of publications relating OP assays to chemical species.

		Vreeland et al., 2017; Liu et al., 2014; Borlaza		
		et al., 2018; Park et al., 2018; Joo et al., 2018)		
	PAHs and quinones	(Cho et al., 2005; McWhinney et al., 2013;		
		Chung et al., 2006; Totlandsdal et al., 2015)		
	HILLIS	(Verma et al., 2012, 2015b, a; Dou et al., 2015;		
		Ma et al., 2018)		
	soluble coppor	(DiStefano et al., 2009; Fang et al., 2016;		
		Visentin et al., 2016)		
	total copper	(Janssen et al., 2014; Pant et al., 2015)		
	total iron	(Janssen et al., 2014; Godri et al., 2010, 2011)		
AA	soluble iron	(Koehler et al., 2014)		
	total lead	(Godri et al., 2010)		
	total zinc	(Godri et al., 2011)		
	soluble manganese	(Visentin et al., 2016)		
	OC	(Calas et al., 2018)		
	soluble nonspecific metals	(DiStefano et al., 2009)		
DCFH	soluble copper	(Charrier et al., 2014; Wang et al., 2010)		
	soluble iron	(Wang et al., 2010)		
	soluble zinc	(Wang et al., 2010)		
	Quinones	(Xiong et al., 2017)		

References

Borlaza, L. J. S., Cosep, E. M. R., Kim, S., Lee, K., Joo, H., Park, M., Bate, D., Cayetano, M. G., and Park, K.: Oxidative potential of fine ambient particles in various environments, Environmental Pollution, 243, 1679–1688, https://doi.org/10.1016/j.envpol.2018.09.074, 2018.

Calas, A., Uzu, G., Kelly, F. J., Houdier, S., Martins, J. M. F., Thomas, F., Molton, F., Charron, A., Dunster, C., Oliete, A., Jacob, V., Besombes, J.-L., Chevrier, F., and Jaffrezo, J.-L.: Comparison between five acellular oxidative potential measurement assays performed with detailed chemistry on PM<sub>10</sub> samples from the city of Chamonix (France), Atmos. Chem. Phys., 18, 7863–7875, https://doi.org/10.5194/acp-18-7863-2018, 2018.

Charrier, J. G. and Anastasio, C.: On dithiothreitol (DTT) as a measure of oxidative potential for ambient particles: evidence for the importance of soluble transition metals, Atmos. Chem. Phys., 12, 9321–9333, https://doi.org/10.5194/acp-12-9321-2012, 2012.

Charrier, J. G. and Anastasio, C.: Rates of Hydroxyl Radical Production from Transition Metals and Quinones in a Surrogate Lung Fluid, Environ Sci Technol, 49, 9317–9325, https://doi.org/10.1021/acs.est.5b01606, 2015.

Charrier, J. G., McFall, A. S., Richards-Henderson, N. K., and Anastasio, C.: Hydrogen Peroxide Formation in a Surrogate Lung Fluid by Transition Metals and Quinones Present in Particulate Matter, Environ. Sci. Technol., 48, 7010–7017, https://doi.org/10.1021/es501011w, 2014.

Charrier, J. G., McFall, A. S., Vu, K. K.-T., Baroi, J., Olea, C., Hasson, A., and Anastasio, C.: A bias in the "mass-normalized" DTT response – An effect of non-linear concentration-response curves for copper and manganese, Atmospheric Environment, 144, 325–334, https://doi.org/10.1016/j.atmosenv.2016.08.071, 2016.

Cho, A. K., Sioutas, C., Miguel, A. H., Kumagai, Y., Schmitz, D. A., Singh, M., Eiguren-Fernandez, A., and Froines, J. R.: Redox activity of airborne particulate matter at different sites in the Los Angeles Basin, Environmental Research, 99, 40–47, https://doi.org/10.1016/j.envres.2005.01.003, 2005.

Chung, M. Y., Lazaro, R. A., Lim, D., Jackson, J., Lyon, J., Rendulic, D., and Hasson, A. S.: Aerosol-borne quinones and reactive oxygen species generation by particulate matter extracts, Environ Sci Technol, 40, 4880–4886, https://doi.org/10.1021/es0515957, 2006.

Daellenbach, K. R., Uzu, G., Jiang, J., Cassagnes, L.-E., Leni, Z., Vlachou, A., Stefenelli, G., Canonaco, F., Weber, S., Segers, A., Kuenen, J. J. P., Schaap, M., Favez, O., Albinet, A., Aksoyoglu, S., Dommen, J., Baltensperger, U., Geiser, M., El Haddad, I., Jaffrezo, J.-L., and Prévôt, A. S. H.: Sources of particulate-matter air pollution and its oxidative potential in Europe, Nature, 587, 414–419, https://doi.org/10.1038/s41586-020-2902-8, 2020.

DiStefano, E., Eiguren-Fernandez, A., Delfino, R. J., Sioutas, C., Froines, J. R., and Cho, A. K.: Determination of metal-based hydroxyl radical generating capacity of ambient and diesel exhaust particles, Inhal Toxicol, 21, 731–738, https://doi.org/10.1080/08958370802491433, 2009.

Dou, J., Lin, P., Kuang, B.-Y., and Yu, J. Z.: Reactive Oxygen Species Production Mediated by Humic-like Substances in Atmospheric Aerosols: Enhancement Effects by Pyridine, Imidazole, and Their Derivatives, Environ. Sci. Technol., 49, 6457–6465, https://doi.org/10.1021/es5059378, 2015.

Fang, T., Verma, V., Bates, J. T., Abrams, J., Klein, M., Strickland, M. J., Sarnat, S. E., Chang, H. H., Mulholland, J. A., Tolbert, P. E., Russell, A. G., and Weber, R. J.: Oxidative potential of ambient water-soluble PM _{2.5} in the southeastern United States: contrasts in sources and health associations between ascorbic acid (AA) and dithiothreitol (DTT) assays, Atmos. Chem. Phys., 16, 3865–3879, https://doi.org/10.5194/acp-16-3865-2016, 2016.

Godri, K. J., Duggan, S. T., Fuller, G. W., Baker, T., Green, D., Kelly, F. J., and Mudway, I. S.: Particulate matter oxidative potential from waste transfer station activity, Environ Health Perspect, 118, 493–498, https://doi.org/10.1289/ehp.0901303, 2010.

Godri, K. J., Harrison, R. M., Evans, T., Baker, T., Dunster, C., Mudway, I. S., and Kelly, F. J.: Increased oxidative burden associated with traffic component of ambient particulate matter at roadside and urban background schools sites in London, PLoS One, 6, e21961, https://doi.org/10.1371/journal.pone.0021961, 2011.

Hu, S., Polidori, A., Arhami, M., Shafer, M. M., Schauer, J. J., Cho, A., and Sioutas, C.: Redox activity and chemical speciation of size fractioned PM in the communities of the Los Angeles – Long Beach Harbor, https://doi.org/10.5194/acpd-8-11643-2008, 2008.

Janssen, N. A. H., Yang, A., Strak, M., Steenhof, M., Hellack, B., Gerlofs-Nijland, M. E., Kuhlbusch, T., Kelly, F., Harrison, R., Brunekreef, B., Hoek, G., and Cassee, F.: Oxidative potential of particulate matter collected at sites with different source characteristics, Science of The Total Environment, 472, 572–581, https://doi.org/10.1016/j.scitotenv.2013.11.099, 2014.

Jeng, H. A.: Chemical composition of ambient particulate matter and redox activity, Environ Monit Assess, 169, 597–606, https://doi.org/10.1007/s10661-009-1199-8, 2010.

Joo, H. S., Batmunkh, T., Borlaza, L. J. S., Park, M., Lee, K. Y., Lee, J. Y., Chang, Y. W., and Park, K.: Physicochemical properties and oxidative potential of fine particles produced from

coal combustion, Aerosol Science and Technology, 52, 1134–1144, https://doi.org/10.1080/02786826.2018.1501152, 2018.

Koehler, K., Shapiro, J., Sameenoi, Y., Henry, C., and Volckens, J.: LABORATORY EVALUATION OF A MICROFLUIDIC ELECTROCHEMICAL SENSOR FOR AEROSOL OXIDATIVE LOAD, Aerosol Sci Technol, 48, 489–497, https://doi.org/10.1080/02786826.2014.891722, 2014.

Leni, Z., Cassagnes, L. E., Daellenbach, K. R., El Haddad, I., Vlachou, A., Uzu, G., Prévôt, A. S. H., Jaffrezo, J.-L., Baumlin, N., Salathe, M., Baltensperger, U., Dommen, J., and Geiser, M.: Oxidative stress-induced inflammation in susceptible airways by anthropogenic aerosol, PLoS ONE, 15, e0233425, https://doi.org/10.1371/journal.pone.0233425, 2020.

Liu, Q., Zhang, Y., Liu, Y., and Zhang, M.: Characterization of springtime airborne particulate matter-bound reactive oxygen species in Beijing, Environ Sci Pollut Res, 21, 9325–9333, https://doi.org/10.1007/s11356-014-2843-6, 2014.

Ma, Y., Cheng, Y., Qiu, X., Cao, G., Fang, Y., Wang, J., Zhu, T., Yu, J., and Hu, D.: Sources and oxidative potential of water-soluble humic-like substances (HULIS<sub>WS</sub>) in fine particulate matter (PM<sub>2.5</sub>) in Beijing, Atmos. Chem. Phys., 18, 5607-5617, https://doi.org/10.5194/acp-18-5607-2018, 2018.

McWhinney, R. D., Badali, K., Liggio, J., Li, S.-M., and Abbatt, J. P. D.: Filterable redox cycling activity: a comparison between diesel exhaust particles and secondary organic aerosol constituents, Environ Sci Technol, 47, 3362–3369, https://doi.org/10.1021/es304676x, 2013.

Pant, P., Baker, S. J., Shukla, A., Maikawa, C., Godri Pollitt, K. J., and Harrison, R. M.: The PM 10 fraction of road dust in the UK and India: Characterization, source profiles and oxidative potential, Science of The Total Environment, 530–531, 445–452, https://doi.org/10.1016/j.scitotenv.2015.05.084, 2015.

Park, M., Joo, H. S., Lee, K., Jang, M., Kim, S. D., Kim, I., Borlaza, L. J. S., Lim, H., Shin, H., Chung, K. H., Choi, Y.-H., Park, S. G., Bae, M.-S., Lee, J., Song, H., and Park, K.: Differential toxicities of fine particulate matters from various sources, Sci Rep, 8, 17007, https://doi.org/10.1038/s41598-018-35398-0, 2018.

Samake, A., Uzu, G., Martins, J. M. F., Calas, A., Vince, E., Parat, S., and Jaffrezo, J. L.: The unexpected role of bioaerosols in the Oxidative Potential of PM, 7, 10978, https://doi.org/10.1038/s41598-017-11178-0, 2017.

Shinyashiki, M., Eiguren-Fernandez, A., Schmitz, D. A., Di Stefano, E., Li, N., Linak, W. P., Cho, S.-H., Froines, J. R., and Cho, A. K.: Electrophilic and redox properties of diesel exhaust particles, Environ Res, 109, 239–244, https://doi.org/10.1016/j.envres.2008.12.008, 2009.

Totlandsdal, A. I., Låg, M., Lilleaas, E., Cassee, F., and Schwarze, P.: Differential proinflammatory responses induced by diesel exhaust particles with contrasting PAH and metal content, Environ Toxicol, 30, 188–196, https://doi.org/10.1002/tox.21884, 2015.

Velali, E., Papachristou, E., Pantazaki, A., Choli-Papadopoulou, T., Planou, S., Kouras, A., Manoli, E., Besis, A., Voutsa, D., and Samara, C.: Redox activity and in vitro bioactivity of the water-soluble fraction of urban particulate matter in relation to particle size and chemical composition, Environmental Pollution, 208, 774–786, https://doi.org/10.1016/j.envpol.2015.10.058, 2016.

Verma, V., Ning, Z., Cho, A. K., Schauer, J. J., Shafer, M. M., and Sioutas, C.: Redox activity of urban quasi-ultrafine particles from primary and secondary sources, Atmospheric Environment, 43, 6360–6368, https://doi.org/10.1016/j.atmosenv.2009.09.019, 2009.

Verma, V., Pakbin, P., Cheung, K. L., Cho, A. K., Schauer, J. J., Shafer, M. M., Kleinman, M. T., and Sioutas, C.: Physicochemical and oxidative characteristics of semi-volatile components of quasi-ultrafine particles in an urban atmosphere, Atmospheric Environment, 45, 1025–1033, https://doi.org/10.1016/j.atmosenv.2010.10.044, 2011.

Verma, V., Rico-Martinez, R., Kotra, N., King, L., Liu, J., Snell, T. W., and Weber, R. J.: Contribution of Water-Soluble and Insoluble Components and Their Hydrophobic/Hydrophilic Subfractions to the Reactive Oxygen Species-Generating Potential of Fine Ambient Aerosols, Environ. Sci. Technol., 46, 11384–11392, https://doi.org/10.1021/es302484r, 2012.

Verma, V., Wang, Y., El-Afifi, R., Fang, T., Rowland, J., Russell, A. G., and Weber, R. J.: Fractionating ambient humic-like substances (HULIS) for their reactive oxygen species activity – Assessing the importance of quinones and atmospheric aging, Atmospheric Environment, 120, 351–359, https://doi.org/10.1016/j.atmosenv.2015.09.010, 2015a.

Verma, V., Fang, T., Xu, L., Peltier, R. E., Russell, A. G., Ng, N. L., and Weber, R. J.: Organic Aerosols Associated with the Generation of Reactive Oxygen Species (ROS) by Water-Soluble PM _{2.5}, Environ. Sci. Technol., 49, 4646–4656, https://doi.org/10.1021/es505577w, 2015b.

Visentin, M., Pagnoni, A., Sarti, E., and Pietrogrande, M. C.: Urban PM2.5 oxidative potential: Importance of chemical species and comparison of two spectrophotometric cell-free assays, Environmental Pollution, 219, 72–79, https://doi.org/10.1016/j.envpol.2016.09.047, 2016.

Vreeland, H., Weber, R., Bergin, M., Greenwald, R., Golan, R., Russell, A. G., Verma, V., and Sarnat, J. A.: Oxidative potential of PM 2.5 during Atlanta rush hour: Measurements of invehicle dithiothreitol (DTT) activity, Atmospheric Environment, 165, 169–178, https://doi.org/10.1016/j.atmosenv.2017.06.044, 2017.

Wang, Y., Arellanes, C., Curtis, D. B., and Paulson, S. E.: Probing the source of hydrogen peroxide associated with coarse mode aerosol particles in southern California, Environ Sci Technol, 44, 4070–4075, https://doi.org/10.1021/es100593k, 2010.

Xiong, Q., Yu, H., Wang, R., Wei, J., and Verma, V.: Rethinking Dithiothreitol-Based Particulate Matter Oxidative Potential: Measuring Dithiothreitol Consumption versus Reactive Oxygen Species Generation, Environ. Sci. Technol., 51, 6507–6514, https://doi.org/10.1021/acs.est.7b01272, 2017.

Yu, H., Wei, J., Cheng, Y., Subedi, K., and Verma, V.: Synergistic and Antagonistic Interactions among the Particulate Matter Components in Generating Reactive Oxygen Species Based on the Dithiothreitol Assay, Environ. Sci. Technol., 52, 2261–2270, https://doi.org/10.1021/acs.est.7b04261, 2018.