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Abstract. Observations of winds in the planetary bound-
ary layer remain sparse making it challenging to simulate
and predict atmospheric conditions that are most important
for describing and predicting urban air quality. Short-lived
chemicals are observed as plumes whose location is affected
by boundary layer winds and whose lifetime is affected by
boundary layer height and mixing. Here we investigate the
application of data assimilation of NO2 columns as will be
observed from geostationary orbit to improve predictions and
retrospective analysis of wind fields in the boundary layer.

1 Introduction

Data assimilation methods are a fundamental tool for nu-
merical weather prediction (NWP) with observations of tem-
perature, pressure, winds, humidity, etc. used as constraints
on initial conditions and time evolution of atmospheric en-
ergy and winds (e.g., Bauer et al., 2015). With the exception
of water vapor and ozone, observations of atmospheric con-
stituents are generally not used in current NWP, although the
field is shifting focus to include these data (Xian et al., 2019).
Importantly, the tools of data assimilation are increasingly
the focus of a variety of off-line chemical transport mod-
els (CTMs) that aim to improve regional air quality forecasts
and to enhance the understanding of emissions of gases and

aerosol into the atmosphere (e.g. Lahoz et al., 2007; Zhang et
al., 2012; Bocquet et al., 2015; Miyazaki et al., 2014, 2017,
2020), and there is growing interest in on-line assimilation
of other chemicals and aerosol (e.g., Gelaro et al., 2017; In-
ness et al., 2013; Baklanov et al., 2014; Dee et al., 2014;
Flemming et al., 2015; Inness et al., 2015, 2019). Meteo-
rology and chemical constituents are not independent. Cou-
pled chemistry–meteorology models such as WRF-Chem in-
clude explicit feedback between chemical constituents and
meteorological parameters (Grell and Baklanov, 2011). This
development in numerical modeling offers the opportunity
to study the interaction and feedback between atmospheric
physics, dynamics and composition such as the impact of
air constituents on incoming radiation, the modification of
weather (cloud formation and precipitation) by natural and
anthropogenic aerosol, and the impact of climate change on
the frequency and strength of events with poor air quality
(e.g., Grell et al., 2011; Fiore et al., 2012). In parallel with
this advance in modeling capability, observations of gases
and aerosols from space-based instruments are providing an
unprecedented view of constituents from the surface to the
mesosphere. Space observations of column NO2 have been
applied in the verification of point-source emissions (e.g.,
Beirle et al., 2011; Russell et al., 2012), quantification of un-
certain sources (such as biogenic and soil emissions) (e.g.,
Lin, 2012), and detection and characterization of episodic
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events, such as wildfire and lighting (e.g., Mebust et al.,
2011; Miyazaki et al., 2014; Zhu et al., 2019).

The combination of these two advances sets the stage for
the joint assimilation of both meteorology and chemistry in
which chemical observations can improve the representation
of dynamical motions in the atmosphere. In concept, it is easy
to see the potential benefit of assimilating composition obser-
vations. For example, modeled winds might be transporting
material to the southwest while an observed plume is moving
to the west. In this example, the chemical observations would
cause the assimilated model to alter the wind direction, thus
aligning the predicted meteorology with the observed flow of
chemicals. This is just one example. Chemical observations
are also sensitive to wind speed (Valin et al., 2013; Laughner
et al., 2016) and planetary boundary layer (PBL) dynamics.
Examples of the beneficial information flow across the two
subsystems include the improvement in cloud distributions
after assimilating aerosols (Saide et al., 2012) and the poten-
tial for improvement in temperature, wind and cyclone de-
velopment during dust storms via assimilation of aerosol op-
tical depth (AOD) (Reale et al., 2011, 2014). Improvement in
stratospheric winds by assimilating chemical tracers has also
been demonstrated (Peuch et al., 2000; Semane et al., 2009;
Milewski and Bourqui, 2011; Allen et al., 2013; Chu et al.,
2013). Examples of joint chemistry–meteorology assimila-
tion in simpler models include studies by Allen et al. (2014,
2015), Haussaire and Bocquet (2016), Emili et al. (2016),
Ménard et al. (2019), and Tondeur et al. (2020). Among
the challenges that must be addressed as we begin to under-
stand the potential benefits of joint assimilation of physical
state variables and composition are the aspects of two linked
subsystems (meteorology and chemistry) that can be most
efficiently improved by linking them to observed chemical
fields.

Aerosols, CO and CO2 have been the focus of most prior
chemical assimilation (Liu et al., 2012; Saide et al., 2014;
Mizzi et al., 2016). In our first analysis of NO2 assimilation
(Liu et al., 2017) we examined the potential for assimila-
tion of high-spatial-resolution (∼ 3 km) and high-temporal-
resolution (hourly) NO2 columns as will be provided by
future geostationary observations to improve the represen-
tation of NOx emissions. NOx has a lifetime of approxi-
mately 5 h within the boundary layer and thus exhibits vari-
ation in concentrations at the spatial scales on the order of
50–75 km downwind of emissions. Those fine temporal and
spatial scales make NOx variations more strongly coupled to
short-timescale meteorological parameters than other more
long-lived chemical tracers such as aerosol or CO. In our ini-
tial research (Liu et al., 2017), we focused on the retrieval of
the NOx emissions. We found that using the column NO2 to
constrain emissions accurately required simultaneous mete-
orology and chemical assimilation. The strongest constraints
were found in regions with high emissions and using hourly
assimilation of meteorological observations.

Our assimilation anticipates the launch of a geostation-
ary satellite for column NO2 observations, Tropospheric
Emissions: Monitoring of Pollution (TEMPO), scheduled
for launch in 2022. Related instruments include the Korean
GEMS instrument launched in early 2020 and the ESA Sen-
tinel 4 instrument to be launched in in the near future. The
TEMPO observations will have two features that will make
them a significant advance compared to current instruments
in low earth orbit. First, the instrument will make measure-
ments with hourly repeats during the sunlit portion of the
day. Second the instrument will have approximately 3× 3 km
pixels, a substantial increase in spatial resolution compared
to the ozone monitoring instrument (OMI) and an improve-
ment over the TROPOMI instrument (Zoogman et al., 2017).
That spatial resolution is also sufficient to quantify gradients
in NO2 that result from the combined effects of emissions,
chemistry and transport.

Here we focus on winds. We expect the influence of NO2
column assimilation on wind fields to be at the spatial scale
of 75 km set by the NO2 chemical lifetime and the average
wind speed (e.g., Laughner and Cohen, 2019). We begin by
describing the data assimilation tools and a simulator for
future geostationary satellite observations of NO2 columns
(Sect. 2). In Sect. 3, we describe assimilation experiments
that provide insight into the constraints that the column NO2
observations will have on winds. In Sect. 4, we discuss the
improvements to the accuracy of the modeled winds and as-
sess the potential benefits of this approach to data assimila-
tion. We conclude in Sect. 5.

2 Methodology

The data assimilation system is comprised of the fore-
cast model WRF-Chem and the Data Assimilation Research
Testbed (DART) as described in Mizzi et al. (2016) and Liu
et al. (2017). The WRF-Chem/DART setup, TEMPO simu-
lator and meteorological observations are described in more
detail in Liu et al. (2017). Here we briefly describe the up-
dated data assimilation system that allows NO2 observations
to influence winds.

2.1 WRF-Chem model

We use WRF-Chem version 3.7 with a one-way nested do-
main (Fig. 1). The outer domain of 12 km resolution covers
the western United States, and the inner domain of 3 km res-
olution covers Denver and the mountain region to its west.
On the outer domain the initial and boundary conditions
are driven by weather reanalysis data (the North American
Mesoscale Forecast System, NAM, or the North American
Regional Reanalysis, NARR) for meteorology and by the
Model for OZone And Related chemical Tracers (MOZART)
for chemistry (Emmons et al., 2010). After a 1-month simu-
lation on the outer domain, the inner domain is initialized
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Figure 1. Model domain is 12 km outer domain and 3 km inner do-
main. Data assimilation is performed on the inner domain.

with the initial and boundary conditions taken from the outer
domain simulations.

The anthropogenic emissions are taken from the National
Emission Inventory (NEI) 2011, which describes the hourly
emissions for a typical summertime weekday. Biogenic emis-
sions are parameterized using Model of Emissions of Gases
and Aerosols from Nature (MEGAN) (Guenther et al., 2006).
Gas-phase reactions are simulated using the regional acid de-
position model version 2 (RADM2).

2.2 DART assimilation system

WRF-Chem-DART is a regional multivariate data assimi-
lation system developed by the National Center for Atmo-
spheric Research (NCAR) to analyze meteorological and
chemical states simultaneously (Anderson and Collins 2007;
Anderson et al., 2009). In this study we use the DART toolkit
configured as the ensemble adjustment Kalman filter (EAKF)
(Anderson, 2001). We apply adaptive spatially and tempo-
rally varying inflation to the prior state to maintain the en-
semble spread (Anderson et al., 2009). We use horizontal lo-
calization to reduce the influence from spurious correlations
(Anderson, 2012). A Gaspari and Cohn (1999) weighting
function is applied with weights diminishing to zero 20 km
away from the observation location. As in Liu et al. (2017),
sensitivity tests show that NO2 data assimilation with an hour
assimilation window performs the best using the weighting
function with a width of 20 km. The analyzed chemical states
are NO2 concentrations. The analyzed meteorological states
include winds (U , V , W ), temperature (T ), cloud and cloud
water properties (QVAPOR, QCLOUD, QRAIN, QICE, QS-
NOW), and other variables as described in Table 2 of Romine
et al. (2013). The analysis is updated using DART from con-
tinuously cycled 1 h 30 member ensemble WRF-Chem fore-
casts. The DART configuration details are provided in Liu et
al. (2017).

Previous studies that assimilate chemistry and meteorol-
ogy simultaneously apply the variable localization approach
(Arellano et al., 2007; Kang et al., 2011; Liu et al., 2017)
which zeroes out the covariance between chemistry and some
of the meteorology variables without taking advantage of the
information related to meteorology carried by the chemical
tracers. In this study, we partially turn off the variable lo-
calization and allow the assimilated NO2 observations to in-
fluence horizontal wind (U and V ). With this setup, the ad-
vection scheme in the WRF-Chem model predicts downwind
NO2 evolution based on the wind fields. The EAKF com-
putes the covariances between the predicted NO2 distribution
and wind variables. These sensitivities are utilized to refine
the model state toward one that best fits the NO2 observa-
tions considering the confidence in both the observations and
model prediction.

2.3 Initial and boundary condition ensembles

We add random perturbations to the temperature field of a
single initial state to produce an ensemble of perturbed me-
teorological initial conditions. The perturbations were gener-
ated by sampling the Global Forecast System (GFS) back-
ground error covariance using the WRF data assimilation
system (WRFDA) (Barker et al., 2012). (For those trying to
repeat exactly, we used cv_option= 3.) The statistics are esti-
mated with the differences of 24 and 48 h GFS forecasts with
T170 (∼ 75 km) resolution, valid at the same time for 357
cases, distributed over a period of 1 year. The ensemble mem-
ber lateral boundary condition perturbations are generated
based on random variations within the initial ensemble (us-
ing the DART pert_wrf_bc program). Updating the bound-
ary conditions so that the analysis time matches the analysis
states from DART requires care in labeling (the DART up-
date_wrf_bc program is used).

2.4 Synthetic observations

To generate synthetic TEMPO NO2 retrievals, we use the
TEMPO NO2 simulator developed in Liu et al. (2017) as
the observation operator to compute the observed column
from a model prediction. It includes a layer-dependent box
air mass factor (BAMF) for each observation pixel. BAMF
is atmospheric scattering weights that depend on parameters
including viewing geometry, surface (terrain or cloud) pres-
sure and surface reflectivity. The parameters used to com-
pute BAMFs are sampled from a model run with hourly fre-
quency and clear sky conditions. Details for the TEMPO sim-
ulator and observation error generation are described in Liu
et al. (2017). Note that we developed this simulator prior to
the TEMPO science team creating its own product.
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3 Assimilation experiments

We perform observing system simulation experiments
(OSSEs) to analyze the wind constraints from synthetic
NO2 observations. We initialized the WRF-Chem nature
run (NR) on a 12 km resolution domain (d01) on 1 June
2014 at 00:00 UTC. The meteorological initial and bound-
ary conditions are taken from the NAM, and the chemistry
simulation is constrained by MOZART output (see https:
//www.acom.ucar.edu/wrf-chem/mozart.shtml to download
MOZART data, last access: 1 July 2020). After a 1-month
simulation on d01, the NR on the 3 km domain (d02) is ini-
tialized from the d01 model simulation on 2 July 2014 at
15:00 UTC. Its meteorological and chemical boundary con-
ditions are provided by NAM reanalysis data and the d01
simulation, respectively. We have a parallel model simulation
labeled control run (CR) which is performed in the same way
as the NR except its meteorological simulation is initialized
and constrained by a different forecast model, the NARR.
Constrained by different reanalysis data, the NR- and CR-
simulated winds in the boundary layer differ and thus show
the discrepancy in the NO2 transport processes. We perform
data assimilation on d02 from 3 July 2014, 13:00 UTC, to
6 July 2014, 00:00 UTC, with an hourly assimilation win-
dow. This timing allows for analyses of three complete day-
time cycles. In our OSSE, the NR simulations are considered
as the “true atmosphere” from which synthetic NO2 observa-
tions are generated using the TEMPO simulator. After a 1 h
forecast the prior ensemble is combined with synthetic NO2
observations to produce the posterior ensemble. The differ-
ence in wind and NO2 simulations between the NR and the
ensemble mean results from the utilization of two different
sets of reanalysis data as meteorological constraints and from
the assimilation, while we apply the same forecast model,
emission input, and model physics and chemistry scheme.
The posterior ensemble will be used as the initial conditions
to forecast the next hour. We evaluate the data assimilation
performance by comparing the mean of the posterior esti-
mate with the NR simulations.

We designed a series of six experiments to evaluate the po-
tential of geostationary observations of column NO2 to im-
prove wind fields. First, we conduct a free model run (FREE)
with 30 ensemble members derived from the CR without data
assimilation. This will set the baseline performance and will
be compared with cases that assimilate observations to eval-
uate the benefit of data assimilation to improve the winds.
In the second experiment (CHEM), we assimilate synthetic
TEMPO NO2 observations over the 12 h daytime to constrain
the winds in the ensemble. By comparing with FREE, we
can evaluate the improvement in wind simulations as a result
of assimilating NO2 observations. In experiment (T , RH),
we assimilate hourly observations of temperature and humid-
ity which can indirectly update winds via the covariances of
temperature and humidity against wind states. In experiment
(T , RH, CHEM), we assimilate synthetic TEMPO NO2 ob-

servations together with temperature and humidity observa-
tions. In this case, wind analyses are constrained by the mul-
tiple indirect observations via covariances with temperature,
humidity and NO2. In the experiment (MET), we assimilate
all meteorological observations including wind, temperature
and humidity. This is representative of the current weather
observing systems’ representation of boundary layer winds.
Finally, we assimilate synthetic TEMPO NO2 observations
in addition to the meteorological observations in the experi-
ment (MET, CHEM) to assess the influence of NO2 observa-
tions on winds under the circumstances of a full meteorology
assimilation.

4 Results and discussion

We compare the assimilation results with the NR states to
evaluate the assimilation performance. The RMSE of the ob-

served quantities are calculated as
√∑n

i (y
m
i − y

t
i)

2/n− 1,

where ym
i and yt

i are the model and true values for the ith
observation, respectively, and n is the total number of obser-
vations located within a submodel space in Fig. 2. The RMSE

of the model states are calculated as
√∑l

i(x
m
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t
i)

2/l− 1,
where xm

i and xt
i are the model and true values at the ith

model grid point, respectively, and l is the total number of
grid points of interest. For the analyzed wind variables, the
grid points of interest are all the points located within a
model subdomain as shown in Fig. 2, containing the lowest
five model levels vertically (∼ 250 m). We find that the hori-
zontal transport of urban NO2 is most sensitive to the winds
in the lowest five model levels, and the top of the shallow
boundary layer in the morning is as low as the fifth model
level. The likely scenario that power plant stacks result in
emissions outside this vertical window was not explored in
this study. We also analyze the uncertainty (spread) of the
prior and posterior estimates. The uncertainty is calculated
as the 1σ standard deviation of the ensemble.

4.1 NO2 assimilation

The performance of ensemble-based assimilation is deter-
mined by the representation of the ensemble uncertainty. In
OSSEs we test how well the ensemble system represents
the uncertainty by comparing the ensemble spread with the
RMSE computed with respect to the true observations. Fig-
ure 3 shows the temporal evolution of the RMSE and the
spread for synthetic TEMPO NO2 column observations in
FREE and the three experiments with synthetic TEMPO ob-
servations assimilated. We find that in all experiments the
variation in the prior ensemble spread follows the fluctua-
tions of the prior RMSE with a similar magnitude after the
first day of assimilation. This indicates that the ensemble sys-
tem develops a good amount of spread for NO2 states and

Atmos. Chem. Phys., 21, 9573–9583, 2021 https://doi.org/10.5194/acp-21-9573-2021

https://www.acom.ucar.edu/wrf-chem/mozart.shtml
https://www.acom.ucar.edu/wrf-chem/mozart.shtml


X. Liu et al.: The potential for geostationary remote sensing of NO2 to improve weather prediction 9577

Figure 2. The U wind state variable at 07:00 UTC on 4 July (a) prior minus truth, (b) posterior minus truth, (c) posterior minus prior and
(d) the difference between the prior TEMPO NO2 column and the truth.

wind states as well because the NO2 spread results from the
wind differences among ensemble members.

For all the experiments assimilating synthetic TEMPO
NO2 observations, the diurnal variation in the prior RMSE
and spread is related to the NO2 column variation with the
peaks in the morning and evening rush hours and local min-
ima in the early afternoon. The errors in the comparison to
the synthetic TEMPO NO2 columns are reduced by 78 %
on average from the prior to the posterior estimates. The
temporal average of the posterior RMSE varies from 2.6 to
2.9× 1014 molec. cm−2, which is very similar to the NO2
assimilation results in our previous experiment ENS.1 as
shown in Fig. 4 of Liu et al. (2017). Experiment CHEM
shows lower prior RMSE of TEMPO NO2 than the FREE
for two reasons. First, assimilation of TEMPO in CHEM re-
duces the errors in the posterior NO2 of the last cycle, which
results in better forecasts of prior NO2. Second, assimilation
of NO2 improves the wind forecast in models (as shown in
Sect. 4.2) and thus reduces the NO2 transport errors. This
demonstrates that in places without wind observations, as-
similating synthetic TEMPO NO2 observations can reduce
the errors in the NO2 forecast by allowing NO2 observations
to improve wind simulations in models.

4.2 Using synthetic TEMPO NO2 observations to
constrain the winds

Errors of the winds in models affect the horizontal advection
of NO2 and result in differences between observed and mod-
eled NO2 vertical column density that can be used to correct
the winds. In this ensemble assimilation system, we exam-
ine the impact of assimilating synthetic TEMPO NO2 obser-
vations on the winds in the boundary layer when different
sets of meteorological observations are assimilated. Figure 4
shows the hourly evolution of the posterior RMSE of wind
state variable U for all six experiments. Results for V are
similar. We exclude the first daytime point in our analysis
because it takes time for the assimilation system to equili-
brate. Without any constraint on winds, FREE shows varying
wind RMSE with higher values in the night than the daytime.
With the assimilation of TEMPO only, CHEM shows error

reduction in the posterior wind analysis in each daytime cy-
cle (Fig. 4a). Table 1 compares the temporal average of the
posterior wind RMSE for the six runs during daytime. The
daytime average posterior RMSE is reduced by 0.44 m s−1

(15.70 %) and 0.41 m s−1 (15.45 %) for U and V wind from
FREE to CHEM. We find that the reduction in wind RMSE
resulting from daytime assimilation disappears after the first
night cycle (Fig. 4). This is because the daytime error reduc-
tion is only observed in regions with abundant NO2 concen-
trations; wind errors in regions with little NO2 remain high
during the day and quickly propagate into the regions with
high daytime NO2 during the night once there is no longer
any NO2 assimilation to constrain the error. As a result, the
nighttime average RMSE of CHEM is very close to that of
FREE, independent of the improvement of wind simulations
from daytime. In the transition from night to daytime, the
influence of assimilating NO2 observations on winds begins
with the first daytime cycle. This demonstrates that the co-
variance of wind and NO2 develops and remains during the
night.

Figure 2a and b show the difference in U wind between
the CHEM run and the truth at 13:00 MST on 4 July before
and after assimilation. The incremental change in U wind af-
ter assimilation is plotted in Fig. 2c. The difference between
the truth and the prior NO2 column amounts viewed by the
TEMPO simulator is also shown in Fig. 2d. Because the U
wind is underestimated in the prior, the modeled NO2 plume
in the prior is more concentrated at the source and more dis-
persed to the east than in truth. After the assimilation of the
synthetic TEMPO NO2 columns, we observe that the wind
increases at the top and middle of the domain, where it was
most underestimated prior to assimilation (Fig. 4). Averaged
over the domain, the U wind RMSE is reduced from 2.32 to
1.56 m s−1 from the prior to the posterior.

In the next two experiments (hereafter, T and RH, respec-
tively) we assimilate observations of temperature and humid-
ity in the (T , RH) run to adjust the wind variables. As shown
in Table 1, (T , RH) shows 13.91 % and 15.10 % error re-
duction in posterior U and V winds during daytime com-
pared to the unconstrained run FREE. These are improve-
ments to winds from assimilating temperature and humidity
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Figure 3. (a) Evaluation of the time evolution of TEMPO column NO2 observations in Denver from 2 July at 16:00 to 5 July at 00:00 UTC
for the CHEM experiment. Prior (black) and posterior (red). Left: RMSE, right: spread. (b) Evaluation of the pseudo TEMPO column NO2
observations in Denver from 2 July at 16:00 to 5 July at 00:00 UTC for the (T , RH, CHEM) experiment. Prior (black) and posterior (red).
Left: RMSE, right: spread. (c) Evaluation of the time evolution of the pseudo TEMPO column NO2 observations in Denver from 2 July at
16:00 to 5 July at 00:00 UTC for the (MET, CHEM) experiment. Prior (black) and posterior (red). Left: RMSE, right: spread.

Table 1. RMSE of assimilated U (left) and V (right) daytime winds.

Assimilated U Assimilated V

Without assimilated With assimilated Without assimilated With assimilated
chemistry chemistry chemistry chemistry

FREE 2.635 2.231 2.77 2.515
(T , RH) 2.239 2.109 2.389 2.228
MET 1.583 1.532 1.669 1.646

observations using the covariances between meteorological
variables. In addition, we find the averaged daytime posterior
wind RMSE of (T , RH) is very close to that of the CHEM
run. This demonstrates that TEMPO NO2 columns, as in-
direct chemical observations of winds, can be used to con-
strain winds, as well as temperature and humidity observa-
tions which are also indirect observations of winds. However,
the temporal variations in the daytime posterior wind RMSE
between the two runs are different (Fig. 4b). At the beginning
of the daytime cycles, the (T , RH) run shows lower pos-

terior wind RMSE than CHEM as temperature and humid-
ity observations are assimilated during the night, resulting
in lower nighttime wind errors, whereas no nighttime NO2
TEMPO observations are available to be assimilated. In the
later daytime cycles, the posterior wind RMSE in CHEM be-
comes lower than that in (T , RH) due to the assimilations of
TEMPO NO2.

When we assimilate TEMPO NO2 together with tempera-
ture and humidity observations in (T , RH, CHEM), we find
further error reductions in posterior wind during the third day
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Figure 4. RMSE for the U winds in the urban assimilation domain. (a) Free (black) vs. CHEM (red). (b) (T , RH) (black), (T , RH, CHEM)
(red). (c) MET (black), (MET, CHEM) (red). Note the change in scale.

compared with (T , RH) (Fig. 4b). This is because (T , RH)
shows no error reductions in posterior winds in the afternoon
of the third day, while the assimilation of TEMPO NO2 alone
can successfully reduce wind errors (Fig. 4a). There are only
minor differences between the (T , RH) and (T , RH, CHEM)
runs during the second daytime. This is because assimilating
temperature and humidity observations alone has reduced the
wind errors to the extent that assimilations of additional NO2
observations can not provide further improvements. Further-
more, Fig. 5 shows the wind speed in the afternoon is mostly
between 2 to 4 m s−1 on the second day (4 July) and 4–
6 m s−1 on the third day (5 July). When the wind is stagnant,
we do not expect strong covariances between winds and NO2
because the horizontal transport of NO2 due to wind is not
strong. When wind speed is higher on the third day, it in-

creases the ensemble covariances between wind and NO2 to
achieve further improvement on wind.

The MET experiment has the lowest RMSE in the prior
estimates of NO2 because it has the lowest wind errors, and
thus NO2 transport errors, as a result of the assimilation of di-
rect wind observations (Figs. 4c and 5). Nevertheless, even in
this run there is a small benefit to assimilating NO2 columns
as can be seen in the reduced RMSE of the wind on the third
day.

5 Conclusions

The assimilation of column NO2 is explored as a constraint
on boundary layer winds. Compared with assimilations of
temperature and humidity, assimilations of column NO2 are
as effective as a constraint on winds during the daytime. Col-
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Figure 5. Winds for successive hours from 18:00 to 23:00 UTC on the second (4 July – top row) and third (5 July – bottom row) days of the
assimilation.

umn NO2 which is only available in sunlight is less effec-
tive than T and RH in the morning but more effective in
the afternoon. In addition, we find that assimilating column
NO2 as will be provided by the TEMPO satellite instrument
does not degrade the results of assimilating temperature and
humidity observations to constrain winds, and it improves
on wind reanalysis, especially when wind speeds are above
4 m s−1. Including all available data, T , RH, winds and col-
umn NO2 makes it more difficult to discern the improvement
from the NO2 column assimilation. Nevertheless, we observe
improvements in wind reanalysis even under these circum-
stances (Table 1). This initial experiment covers a small do-
main surrounding the city of Denver and only a few days.
With this initial study suggesting the method has promise, a
larger-scale experiment should now be evaluated. We hope
this study will inspire such research.

Code availability. The data used in this paper and the associated
software packages are available via the Github open repository via
the following links, with descriptions (last access: 20 June 2020);
https://github.com/NCAR/DART (Anderson and Collins, 2007; the
ensemble Kalman filter solver and the WRF-Chem/DART interface
code), https://github.com/NCAR?q=wrf&type=&language=&sort=
(Skamarock et al., 2008; WRF model, as well as access to utilities
used by WRF-Chem-DART, and ensemble spread for meteorology),
and https://github.com/NCAR/WPS (Skamarock et al., 2008; the
WRF pre-processor for taking large scale meteorology fields and
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