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Abstract. We examined biases in the global GEOS-Chem
chemical transport model for the period of February–May
2010 using weak-constraint (WC) four-dimensional vari-
ational (4D-Var) data assimilation and dry-air mole frac-
tions of CH4 (XCH4) from the Greenhouse gases Observing
SATellite (GOSAT). The ability of the observations and the
WC 4D-Var method to mitigate model errors in CH4 concen-
trations was first investigated in a set of observing system
simulation experiments (OSSEs). We then assimilated the
GOSAT XCH4 retrievals and found that they were capable
of providing information on the vertical structure of model
errors and of removing a significant portion of biases in the
modeled CH4 state. In the WC 4D-Var assimilation, correc-
tions were added to the modeled CH4 state at each model
time step to account for model errors and improve the model
fit to the assimilated observations. Compared to the conven-
tional strong-constraint (SC) 4D-Var assimilation, the WC
method was able to significantly improve the model fit to in-
dependent observations. Examination of the WC state cor-

rections suggested that a significant source of model errors
was associated with discrepancies in the model CH4 in the
stratosphere. The WC state corrections also suggested that
the model vertical transport in the troposphere at middle and
high latitudes is too weak. The problem was traced back to
biases in the uplift of CH4 over the source regions in eastern
China and North America. In the tropics, the WC assimila-
tion pointed to the possibility of biased CH4 outflow from the
African continent to the Atlantic in the mid-troposphere. The
WC assimilation in this region would greatly benefit from
glint observations over the ocean to provide additional con-
straints on the vertical structure of the model errors in the
tropics. We also compared the WC assimilation at 4◦× 5◦

and 2◦× 2.5◦ horizontal resolutions and found that the WC
corrections to mitigate the model errors were significantly
larger at 4◦× 5◦ than at 2◦× 2.5◦ resolution, indicating the
presence of resolution-dependent model errors. Our results
illustrate the potential utility of the WC 4D-Var approach for
characterizing model errors. However, a major limitation of
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this approach is the need to better characterize the specified
model error covariance in the assimilation scheme.

1 Introduction

Atmospheric concentrations of methane (CH4), the second
most important anthropogenic greenhouse gas, have been
rapidly raising since 1850 (Etheridge et al., 1992). However,
atmospheric measurements in recent decades show that the
rate of CH4 increase in the atmosphere has varied, and its
behavior is not well understood (Dlugokencky et al., 2009).
Significant effort has been put into characterizing surface
emissions of CH4 in order to attribute its recent trends. In this
context, a number of satellites have been launched to mea-
sure atmospheric CH4 in order to constrain its sources. These
include Envisat carrying the Scanning Imaging Absorption
Spectrometer for Atmospheric Cartography (SCIAMACHY;
Schneising et al., 2011), the Greenhouse Gases Observing
Satellite (GOSAT) carrying the Thermal And Near-infrared
Sensor for carbon Observation Fourier Transport Spectrom-
eter (TANSO-FTS; Kuze et al., 2009), Sentinel-5p with the
Tropospheric Monitoring Instrument (TROPOMI) on board
(Veefkind et al., 2012), and the Greenhouse Gases Satel-
lite (GHGSat). Proposed missions include the Methane Re-
mote Sensing Lidar Mission (MERLIN; Kiemle et al., 2014),
GOSAT-2 (Nakajima et al., 2017), the Geostationary Carbon
Cycle Observatory (GeoCARB; Polonsky et al., 2014), and
the recently announced MethaneSat. However, current re-
gional CH4 emissions remain largely uncertain (e.g., Saunois
et al., 2016). One of the biggest challenges for reducing un-
certainty in emission estimates is the relatively weak sig-
nal of emissions in the atmospheric column of CH4, which
puts tight requirements on the accuracy of satellite measure-
ments. However, while future satellite instruments and im-
proved spectroscopy are expected to provide better CH4 mea-
surements, errors in the atmospheric models used to simulate
CH4 remain poorly characterized. While random model er-
rors can be accounted for in flux inversion analyses, the im-
pact of biases in chemistry and transport are often neglected
or accounted for using various ad hoc approaches. In the
case of CH4, which is a relatively long-lived gas with an at-
mospheric lifetime of about 9 years (Prather et al., 2012),
chemistry plays a critical role in long-term trends (McNor-
ton et al., 2016), whereas transport, alone or coupled with
chemistry, defines how total surface emissions are distributed
on a regional scale. Therefore, transport errors, such as those
produced by numerical advection schemes, biases and uncer-
tainties of meteorological fields, and parametrization of sub-
grid-scale processes, may significantly undermine our ability
to use models to relate emissions to atmospheric observa-
tions and thus our ability to improve CH4 emission estimates
(Prather et al., 2008; Locatelli et al., 2015; Patra et al., 2011).

One potential solution is to apply a bias correction to
the model in the context of the inversion analysis. Simple
bias correction schemes with uniform or latitudinally depen-
dent bias estimates have been attempted before (Bergam-
aschi et al., 2009; Fraser et al., 2013; Monteil et al., 2013;
Alexe et al., 2015; Locatelli et al., 2015), mostly to cor-
rect poor descriptions of the modeled stratosphere. Here
we explore the utility of a “weak-constraint” (WC) four-
dimensional variational (4D-Var) data assimilation method
to characterize forward model errors. In contrast to the tra-
ditional “strong-constraint” (SC) 4D-Var method, the WC
scheme does not assume that the model evolution is perfect.
The WC 4D-Var method was introduced by Sasaki (1970)
and used in numerical weather prediction (NWP) models by
Derber (1989), Zupanski (1997), and Trémolet (2006, 2007).
It was first applied by Keller (2014) in the GEOS-Chem sim-
ulation of atmospheric carbon monoxide (CO) to character-
ize model bias. One of the first attempts to apply bias cor-
rection in chemical data assimilation was done in the frame-
work of the suboptimal Kalman filter by Lamarque et al.
(2004), who used the bias estimation approach of Dee and
Da Silva (1998) to constrain the CO state using measure-
ments from the Measurement of Pollution in the Troposphere
(MOPITT) instrument. The study pointed to the possibil-
ity of errors in the model vertical transport; however, most
of the estimated biases were attributed to poor a priori es-
timates of CO surface emissions in the model. The major
challenge for this type of analysis for CH4 is the limited in-
formation available about the global vertical distribution of
CH4 in the atmosphere. There are satellite observations that
contain information about the CH4 distribution in the middle
and upper troposphere, such as the thermal infrared CH4 re-
trievals from the Tropospheric Emission Spectrometer (TES)
on board the NASA Aura satellite (Worden et al., 2012), and
in the stratosphere, such as the solar occultation measure-
ments from the Atmospheric Chemistry Experiment Fourier
Transform Spectrometer (ACE-FTS; Bernath et al., 2005)
on board SCISAT. However, the accuracy of these measure-
ments, based on validation studies (for example, De Maz-
ière et al., 2008; Wecht et al., 2012), may not be sufficient
to detect model errors. The most accurate satellite measure-
ments are those of the total dry-air mole fraction of CH4 in
the total atmospheric column (XCH4) obtained by TANSO-
FTS on board GOSAT. However, these measurements pro-
vide less vertical information on CH4 than those from TES
and ACE-FTS, although the latter are less sensitive to sur-
face emissions. Highly accurate aircraft or AirCore CH4 pro-
file measurements would be an ideal source of information,
but they are limited in space and time. We explore the infor-
mation content of GOSAT CH4 observations and show that
despite being designed to constrain surface emissions, they
contain sufficient information to help characterize possible
model errors. We assimilate the GOSAT observations using
the WC 4D-Var data assimilation approach to estimate biases
in GEOS-Chem. This approach is shown to provide a valu-
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able tool for diagnosing and determining the origin of model
errors.

This paper is organized as follows. Section 2 gives an
overview of the forward model, the observations, and the
WC 4D-Var method. It also contains a description of the var-
ious sensitivity studies conducted through a series of observ-
ing system simulation experiments (OSSEs). In Sect. 3, we
present the results of the sensitivity experiments and the re-
sults of the assimilation of real GOSAT observations. Sec-
tion 4 provides an interpretation of the pattern of model bi-
ases estimated from the GOSAT assimilation. Finally, con-
clusions are given in Sect. 5.

2 Data and methods

2.1 The GEOS-Chem model

For all assimilation experiments we use version v35 of the
GEOS-Chem adjoint, which is based on version v8-02-01 of
the forward model, with updates up to v9-02 (Henze et al.,
2007). The GEOS-Chem chemical transport model (CTM)
(http://www.geos-chem.org, last access: 21 May 2021) is
driven by archived meteorological fields from the God-
dard Earth Observing System (GEOS-5.2.0) produced by the
NASA Global Modeling and Assimilation Office (GMAO).
The meteorological fields are regridded from their native
resolution of 0.5◦× 0.67◦ with 72 vertical levels to 4◦× 5◦

and 2◦× 2.5◦ with 47 vertical levels. The vertical grid spac-
ing in the troposphere varies from about 150 m in the lower
part to about 1 km in the upper part. CH4 is advected us-
ing the multidimensional flux-form semi-Lagrangian (FFSL)
scheme by Lin and Rood (1996). Convection is implemented
based on the relaxed Arakawa–Schubert scheme (Moorthi
and Suarez, 1992). The model uses a simple treatment of
turbulent mixing in the boundary layer by instantaneously
mixing species from the surface to the top of the plane-
tary boundary layer (PBL). The GEOS-Chem CH4 sources
and sinks used here are described in detail in Wecht et al.
(2014). Anthropogenic CH4 sources include emissions from
natural gas and oil extraction, coal mining, livestock, land-
fills, wastewater treatment, rice cultivation, biofuel burn-
ing, and other minor sources based on the 2004 anthro-
pogenic inventory from the Emission Database for Global
Atmospheric Research (EDGAR) v4.2 (European Commis-
sion Joint Research Centre/Netherlands Environmental As-
sessment Agency, 2009). Natural CH4 sources include wet-
land emissions after Kaplan (2002) and Pickett-Heaps et al.
(2011), termite emissions (Fung et al., 1991), and open fire
emissions from the daily Global Fire Emissions Database
version 3 (GFED3) (van der Werf et al., 2010; Mu et al.,
2011). The CH4 emissions at 4◦× 5◦ and 2◦× 2.5◦ resolu-
tions are slightly different due to the dependence of wet-
land emissions on the meteorological fields. Therefore, for
consistency of the analysis of model errors, the emissions

were regridded from the coarser to the finer resolution. The
main loss of CH4 (about 90 % of the total loss) in the atmo-
sphere is due to oxidation by OH, with the remaining 10 %
sink mainly due to soil absorption and oxidation in the strato-
sphere. CH4 chemistry is performed in offline mode in which
changes in CH4 concentrations do not feed back on other
species. Tropospheric OH fields in the model are prescribed
as a three-dimensional monthly mean climatology from a tro-
pospheric chemistry simulation in GEOS-Chem v5-03 (Park
et al., 2004). Stratospheric CH4 loss frequencies are from
archived climatology of the NASA Global Modeling Initia-
tive (GMI) (Murray et al., 2012).

The adjoint model is described by Henze et al. (2007)
and has been used for assimilation of CH4 observations by
Wecht et al. (2012, 2014), Turner et al. (2015), Bousserez
et al. (2016), and Tan et al. (2016). For the analysis presented
here, we focus on the period of 1 February to 31 May 2010.
The CH4 fields were spun up at a resolution of 4◦× 5◦ and
2◦× 2.5◦ for about 5.5 years until July 2009. From July 2009
to January 2010 we assimilated the GOSAT proxy XCH4 re-
trievals (Parker et al., 2015) to obtain monthly mean emis-
sion estimates at 4◦× 5◦ resolution. The optimized emissions
were then regridded and used to perform forward model sim-
ulations at 2◦× 2.5◦ resolution for the same period from July
2009 to January 2010. The updated model fields on 1 Febru-
ary 2010 at both model resolutions were taken as initial con-
dition for the analysis period. As a result, the initial condi-
tions at both resolutions contain similar amounts of CH4 in
the atmosphere. However, CH4 is distributed differently, re-
flecting the balance between emissions and transport at each
model resolution.

2.2 Measurements

2.2.1 GOSAT

We obtain information about the CH4 distribution in the at-
mosphere from XCH4 retrievals from the TANSO-FTS on
board GOSAT, which has a 3 d repeat orbit period. The in-
strument has a surface footprint of 10.5 km in diameter and
records spectra at about 13:00 local time. We use version 5.2
of the University of Leicester (UoL) GOSAT proxy XCH4
data product. The retrieval algorithm is explained in detail in
Parker et al. (2011, 2015). In this algorithm, simplified spec-
tral retrievals of XCO2 and XCH4 are obtained in spectral
bands centered at 1.65 and 1.61 µm, respectively. The final
total column-averaged dry-air mole fraction of CH4 is ob-
tained by multiplying the retrieved XCH4 /XCO2 ratio by
modeled XCO2 fields. This is useful for canceling out com-
mon spectral features caused by light path modifications due
to thin clouds, aerosol scattering, and instrumental artifacts
in close spectral bands. However, reliable knowledge of the
XCO2 data is required. The proxy method provides signifi-
cantly greater observational coverage, especially in tropical
areas, compared to “full-physics” retrievals. The weakness
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of the approach is in the fact that the modeled CO2 fields
may still contain biases that are not accounted for in the fi-
nal XCH4 product. Version 5.2 of the XCH4 data does not
include retrievals from spectra recorded over oceans (glint
observations). This is in contrast to the later versions 6 and
7, which use the same algorithm for XCH4 retrievals over
land. Furthermore, in our analysis we exclude all retrievals
over Greenland and poleward of 75◦ (including retrievals
over snow).

The original XCH4 retrievals utilized XCO2 fields based
on the median of three models: GEOS-Chem (from the Uni-
versity of Edinburgh), LMDZ/MACC-II, and CarbonTracker
(National Oceanic and Atmospheric Administration, NOAA)
smoothed with GOSAT CO2 averaging kernels (Parker and
the GHG-CCI group, 2016). CO2 fields in all three models
were produced by assimilating in situ surface CO2 observa-
tions. In this work, we replaced the original modeled CO2
fields with optimized CO2 fields from a GEOS-Chem CO2
surface flux assimilation analysis that used GOSAT XCO2
retrievals over land (Deng et al., 2014). For the period of in-
terest (February–May 2010), the XCH4 retrievals using both
proxy CO2 fields are unbiased against each other with a scat-
ter of 3 ppb and a correlation of R = 0.99. Sensitivity tests
that were conducted showed that a posteriori inversion re-
sults using the new CO2 fields and the original fields gener-
ally produced comparable fits to independent CH4 measure-
ments from the Total Carbon Column Observing Network
(TCCON; Wunch et al., 2011) and from the NOAA Earth
System Research Laboratory (ESRL) global cooperative air
sampling network (Dlugokencky et al., 2016). The use of
the alternative CO2 fields did not change any of the findings
about model errors in our study.

GOSAT CH4 retrievals contain about 1 degree of freedom
for signal (DOFS) and have relatively flat averaging kernels
in the troposphere that slowly decrease in the stratosphere
(Yoshida et al., 2011). Therefore, they contain little vertical
information about the atmosphere at the time of measure-
ment. We use these averaging kernels to smooth the GEOS-
Chem CH4 fields and map them into the measurement space
of the GOSAT retrievals using the expression

XCH4 = XCHa
4+ a

T (zmod− za) , (1)

where zmod is the GEOS-Chem CH4 profile, za is the GOSAT
a priori profile, aT is the GOSAT column averaging kernel,
and XCHa

4 is the a priori XCH4 based on za. The absence of
vertical information in the measurements is a challenge for
constraining the 3D structure of model errors, but we expect
vertical structure to emerge from atmospheric transport pat-
terns.

Errors in GOSAT proxy XCH4 retrievals with the orig-
inal XCO2 data were assessed against co-located TCCON
ground-based measurements by Hewson et al. (2015). That
validation study found that GOSAT retrievals contain ran-
dom errors of 12.55 ppb and systematic errors of 4.8 ppb

(although per-site biases ranged from −2.15 ppb in Wol-
longong to 13.44 ppb in Garmisch). However, errors away
from TCCON sites could be larger. Overall, GOSAT and TC-
CON were highly correlated, with a correlation coefficient
of 0.86. Buchwitz et al. (2017) obtained similar results with
random errors of 11.9 ppb and systematic errors of 5.7 ppb
for GOSAT proxy XCH4 retrievals against co-located TC-
CON retrievals. Such precision, combined with spatial and
temporal aggregation of the data, could be enough to im-
prove knowledge about CH4 a priori surface emissions in
regions such as North America, where the XCH4 enhance-
ments above the background are about 10 ppb (Sheng et al.,
2018). However, the presence of potential model errors sig-
nificantly undermines this assumption. Therefore, here we
explore the potential utility of the weak-constraint 4D-Var
scheme to discern model biases using the XCH4 data.

2.2.2 Validation data

The a priori and constrained model CH4 fields are validated
against in situ NOAA-ESRL CH4 measurements (Dlugo-
kencky et al., 2016) as well as measurements from the third
HIAPER Pole-to-Pole Observations (HIPPO-3) aircraft cam-
paign (Wofsy et al., 2011), TCCON ground-based XCH4
retrievals (Wunch et al., 2011), and ACE-FTS space-based
CH4 retrievals (Boone et al., 2005).

The NOAA network operates by collecting air flask sam-
ples, which are later analyzed by gas chromatography with
flame ionization detection. At stationary sites, samples are
collected once per week. Shipborne samples from sites in the
Pacific Ocean and the South China Sea are collected once
every 3 weeks and weekly, respectively, per latitude band.
Measurements are reported relative to the NOAA X2004A
CH4 scale. The absolute uncertainty of the scale is 0.2 %
(about 3 ppb), and measurements are reproducible to within
1–3 ppb.

Airborne data are provided by the HIPPO-3 aircraft cam-
paign, which took place between 20 March and 20 April
2010. The campaign sampled the atmospheric curtain from
the North Pole to the coast of Antarctica through the cen-
tral Pacific Ocean and from the surface to 14 km of altitude.
We used CH4 measurements performed by a quantum cas-
cade laser spectrometer (QCLS) at 1 Hz frequency. QCLS
measurements have a precision of 0.5 ppb and accuracy of
1 ppb, while the mean bias relative to simultaneous flask-
based measurements is 0.44 ppb (Santoni et al., 2014). We
exploited the merged 10 s meteorology, atmospheric chem-
istry, and aerosol data product (Wofsy et al., 2012), which
was derived from 1 s measurements, by applying a median
filter.

TCCON is a global network of ground-based high-
resolution Fourier transform infrared (FTIR) spectrometers
retrieving XCH4 from solar absorption spectra in the near-
infrared band. We used the GGG2014 version of TCCON
XCH4 data from multiple stations around the globe (Kivi
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and Heikkinen, 2016; Kivi et al., 2017; Blumenstock et al.,
2017; Griffith et al., 2017; Hase et al., 2017; Notholt et al.,
2017; Sherlock et al., 2017; Sussmann and Rettinger., 2017;
Warneke et al., 2017; Wennberg et al., 2017b, a). The es-
timated accuracy and precision of XCH4 retrievals are less
than 0.5 % and 0.3 %, respectively (Wunch et al., 2015). Re-
trievals are bias-corrected based on comparisons with cali-
brated aircraft and AirCore profiles.

ACE-FTS on board SCISAT performs solar occultation
measurements over a range of tangent heights. The satellite
makes 15 occultations for both sunrise and sunset per day
separated by about 24◦ in longitude. Measurements cover
an altitude range from the cloud tops in the upper tropo-
sphere up to 150 km. Spectra are recorded continuously dur-
ing 2 s scans, which implies that the altitude and tangent
point change slightly during the scan. As a result, the in-
strument has a low horizontal resolution of about 300 km
in the limb direction. The vertical resolution determined by
the instrument field of view is about 3 km at a tangent point
3000 km away from the satellite. However, vertical sampling
ranges from 2 to 6 km depending on viewing geometry. In
this study, we use the most recent v3.6 CH4 retrievals with
geolocation information (Boone et al., 2013; Waymark et al.,
2013). Version 3.6 only differs from version 3.5 in that a lo-
cal computer was used to process v3.5, while a shared su-
percomputing system was used for v3.6. Olsen et al. (2017)
compared ACE-FTS v3.5 and MIPAS CH4 vertical profiles
coincident with TANSO-FTS measurements and found small
differences above the tropopause except in the tropics. The
mean differences were larger than 20 % below about 450 hPa,
within 5 % between 450 and 40 hPa, and larger than 5 %
above 40 hPa.

2.3 The weak-constraint 4D-Var approach

The estimation of surface emissions of CH4 using the strong-
constraint 4D-Var scheme is achieved by minimizing the
strong-constraint cost function:

J (p)=

N∑
i=0

1
2

(
yi −Hixi

)TR−1
i

(
yi −Hixi

)
+

1
2

(
p−pa

)TB−1 (p−pa
)
, (2)

where N is the number of 1-hourly time steps, yi is the vec-
tor of XCH4 observations during the time step i, xi ∈ Rn is
the model state at time step i that is represented by a 3D field
of CH4 concentrations, p ∈ Rp is the vector of surface emis-
sions of CH4, and pa ∈ Rp is the a priori estimate of the CH4
emissions. Here, H is the observation operator that maps the
modeled CH4 state into the measurement space at the loca-
tion of the GOSAT XCH4 observations, Ri represents the ob-
servation error covariance matrix, and B is the a priori error
covariance matrix. In minimizing J , we solve for monthly
mean emission estimates over the specified assimilation pe-

riod. The evolution of the model state in Eq. (2) is performed
by the GEOS-Chem model, which can be represented by an
operator M that acts on the model state xi and emissions p
at time step i to produce a new model state xi+1 at the next
time step as follows:

xi+1 =M(xi,p) . (3)

In Eq. (3), it is assumed that there are no errors in propagat-
ing the state forward in time. This is the assumption that is
implicit in Eq. (2), and thus the optimization is referred to
as strong-constraint 4D-Var; the model trajectory is used as
a strong constraint in the optimization.

As described by Trémolet (2006), Eq. (3) can be modified
to account for model errors by adding corrections ui+1 to
the CH4 state at time step i+ 1 so that the model forecast
becomes

xi+1 =M(xi,p)+Gui+1, (4)

where G is an operator that maps corrections u ∈ Rm into the
model state. Here, the corrections u are referred to as forcing
terms, which is distinct from the adjoint forcing commonly
used in 4D-Var. The operator G can also be understood as a
mask that defines the spatial regions in the 3D model state in
which corrections need to be applied. Hence, the second term
in Eq. (4) represents additional sources and sinks of CH4 in
the region of the atmosphere defined by G. In the case in
which G represents the whole atmosphere, m= n and u will
have the same dimension as x. The sources and sinks could
arise from errors in the model transport or chemistry. In mini-
mizing Eq. (2) we solve only for the surface emissions. How-
ever, because of Eq. (4) we have the means of solving for the
surface emissions as well as the 3D distribution of sources
and sinks. In this case, the 4D-Var cost function, which is
minimized with respect to both surface emissions (p) and
state corrections (u), is expressed as

J (p,ui)=

N∑
i=0

1
2

(
yi −Hixi

)TR−1
i

(
yi −Hixi

)
+

+
1
2

(
p−pa

)TB−1 (p−pa
)

+

N∑
i=1

1
2
uTi Q−1

i ui, (5)

where Qi defines the a priori model error covariance matrix.
This is the weak-constraint 4D-Var cost function, which is
similar to Eq. 2, except for the addition of the third term that
accounts for the errors in the evolution of the model state.
This approach provides a means of capturing the model er-
rors in the context of the 4D-Var formalism, whereas other
approaches may try to account for these errors by including
u in p. As described by Trémolet (2006), ui can be consid-
ered to represent model errors on timescales as short as each
model time step or as long as the full assimilation period,
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and it is assumed to be constant over the appropriate inter-
val. In the case in which the forcing is estimated over the full
assimilation window, the optimized forcing will represent a
constant model bias over the whole model trajectory. For the
results presented here, ui changes in time, but we assume
that Q is constant.

The WC 4D-Var approach was implemented into the
GEOS-Chem model by Keller (2014), and here we describe
that approach. The cost function (Eq. 5) is minimized sub-
ject to the equality constraints in Eq. (4) by adding the model
constraints to the cost function to create the following La-
grangian function:

L(p,xi,λi,ui)=
1
2

(
p−pa

)TB−1 (p−pa
)

+

N∑
i=0

1
2

(
yi −Hixi

)TR−1
i

(
yi −Hixi

)
+

N∑
i=1

1
2
uTi Q−1

i ui

−

N∑
i=1

λTi
[
xi −M(xi−1,p)−Gui

]
, (6)

where λi represents the Lagrange multipliers. We define gra-
dients of the Lagrangian L with respect to xi , p, and ui by
the following system of equations:

∂L
∂xi
=−HT

i R−1
i

[
yi −Hixi

]
−λi +

(
∂M

∂xi

)T
λi+1, (7)

∂L
∂xN
=−HT

i R−1
i

[
yN −HixN

]
−λN , (8)

∂L
∂p
= B−1 (p−pa

)
+

N∑
i=1

(
∂M

∂p
(xi−1,p)

)T
λi, (9)

∂L
∂ui
=Q−1

i ui +GT λi, (10)

where MT
=

(
∂M
∂xi

)T
is the adjoint of the tangent linear

model M. At the minimum, the L gradients are equal to zero.
In this case, Eqs. (7)–(8) give the adjoint model equations:

λN =−HT
i R−1

i

[
yN −HixN

]
,

λi =

(
∂M

∂xi

)T
λi+1−HT

i R−1
i

[
yi −Hixi

]
. (11)

Values of λi are derived from the forward and adjoint model
integrations and are substituted into Eqs. (9)–(10). In general,
∂L
∂ui

and ∂L
∂p

do not equal zero as the minimum has yet to be
reached by iteratively minimizing the Lagrangian function L.
In GEOS-Chem this is done using the L-BFGS-B algorithm
(Byrd et al., 1995). Finally, the entire optimization algorithm
consists of the following steps.

1. Run the forward model (Eq. 4) from time t1 to tN using
the current estimates of p and ui .

2. Run the adjoint model and simultaneously accumulate
the estimate of λi based on Eq. (11).

3. Calculate the gradients of L with respect to p and ui
using Eqs. (9)–(10) and estimates of λi .

4. Update the estimates of p and ui using the L-BFGS-B
optimization algorithm based on the descent direction
defined by ∂L

∂ui
and ∂L

∂p
.

5. Repeat steps 1–4 until convergence is reached.

For the assimilation configurations employed here, it took
about 20 iterations for the SC scheme to converge and 30–35
iterations to obtain convergence with the WC scheme. Gen-
erally, at some point during the convergence process the in-
version will start fitting the noise in GOSAT observations.
This can be prevented by stopping the iterative algorithm
when the reduced chi-squared value for the fitted model ap-
proximately equals unity. In practice, the real uncertainty in
GOSAT XCH4 retrievals is unknown due to errors in the CO2
fields that are unaccounted for, for example, so we used a dif-
ferent approach. For each WC inversion that was performed,
we monitored the evolution of the optimized model fields
and compared them to independent observations (from TC-
CON, the NOAA in situ network, and the HIPPO-3 aircraft
campaign). The iterative process was terminated when the fit
to independent observations did not improve any further or
started to get worse based on the assumption that after this
threshold the optimization began to fit noise in GOSAT ob-
servations. On average, the level of noise was estimated to
correspond to GOSAT XCH4 uncertainty of about 10 ppb,
which produced a reduced χ2

≈ 1 for the model fit to the
GOSAT observations.

We assumed that the observation errors are uncorrelated so
that R was assumed to be diagonal. In constructing R, we uti-
lized the reported uncertainty in the GOSAT XCH4 retrievals
(with the median value of approximately 10 ppb) and inflated
it to match the GOSAT scatter against TCCON observations
(approximately 13 ppb). The a priori error covariance matrix
B was also assumed to be diagonal, with 50 % uncertainty in
CH4 emissions in each surface grid box. Emissions were not
split into separate categories but optimized as monthly totals
in each surface grid box. GOSAT provides global coverage
with a period of 3 d. Therefore, we did not attempt to charac-
terize the global pattern of model errors on shorter timescales
and explored keeping the forcing terms constant over a time
interval that varied from a minimum of 3 d up to 1 month.
Little is known about the a priori structure of the model er-
rors, so in the design of the cost function, a priori estimates
of model errors were set to zero (u= 0 at the beginning of
the assimilation).

The WC algorithm optimizes scaling factors (SFs) for both
the forcing terms and the model parameters (surface emis-
sions). Emission SFs are ratios of optimized emissions to
a priori emissions, while forcing SFs are the ratios of op-
timized forcing terms to a constant scaling parameter ũ.
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The WC inverse method becomes sensitive to the choice
of the scaling parameter when working with multidimen-
sional problems. This choice does not affect the Lagrangian
L (Eq. 6); however, it does change the relative magnitude
of L gradients with respect to forcing terms ∂L

∂ui
(Eq. 10)

and to surface emissions ∂L
∂p

(Eq. 9). The state vector of the
WC inversion is largely dominated by the number of forcing
SFs as opposed to the emission SFs (with a ratio of up to
500 : 1). Due to the high dimensionality of the problem, the
L-BFGS-B optimization algorithm can search only a fraction
of parameter space in the direction of the largest gradient de-
scent. Therefore, it becomes sensitive to the relative magni-
tude of the forcing gradients ∂L

∂ui
versus the emission gradi-

ents ∂L
∂p

. For large values of ũ (for example, ũ > 50 ppb), the
algorithm descends in the direction of the forcing gradient
and the WC inversion is transformed into the so-called “full
state assimilation”. Meanwhile, small values of ũ (for exam-
ple, ũ < 0.05 ppb) force the algorithm to minimize the cost
function in the direction of emission gradients (“flux assim-
ilation”). The value of ũ= 1.0 ppb was empirically chosen
to perform simultaneous optimization of the emissions and
forcing terms (“flux+state assimilation”).

Application of the WC 4D-Var method is sensitive to the
specification of the covariance matrix Q, which is difficult to
characterize (Trémolet, 2007). We adopted a diagonal struc-
ture of matrix Q as our standard option. This implies that
there was no explicit temporal or spatial correlation assumed
between model errors. However, some correlation is implic-
itly present in the model and emerges from both atmospheric
transport patterns and the definition of the constant forc-
ing time window. Still, assigning adequate model error un-
certainty is one of the major challenges for using the WC
method. Generally, there is no single recipe for that, as model
errors come from a variety of sources with different charac-
teristics and, moreover, vary on daily to seasonal timescales.
Additionally, in practice, there is usually no way to prop-
erly validate whether the inversion correctly attributed biases
in CH4 fields as being caused by surface emissions, model
errors, or observational biases. This latter statement is re-
lated to the fact that surface emissions, observational bias,
and some model errors may leave similar signatures in the
CH4 fields that would not be easy to distinguish even with
perfect observational coverage. The situation may even be
worse for CH4 biases if incorrect emissions and model errors
mask each other and do not show up in the model comparison
with the GOSAT data.

Given these issues, our focus here is not on estimating
surface emissions of CH4. Instead, we use the WC 4D-Var
method to optimally constrain the 3D corrections to the CH4
state and explore the structure of the errors in the model. We
performed two types of inversions: full state assimilation, in
which we estimate only the 3D corrections (u) to the model
state, and flux+state assimilation, in which we estimate the
surface emissions (p) and the 3D corrections. Given that lit-

tle is known about the distribution of model errors in CH4
in the troposphere, in both cases we chose a uniform spatial
and temporal structure of model error uncertainty q so that
the model error covariance is defined as Q= q2I.

We conducted a series of parameter tuning experiments in
which the WC 4D-Var analysis was performed using values
of q ranging from 0.05 ppb to about 2000 ppb, and optimized
CH4 fields were validated against independent observations.
The experiments showed that for larger values of q above
50 ppb, the fit of optimized CH4 fields to independent obser-
vations did not change noticeably. However, for values of q
below 50 ppb, the fit deteriorated as q became smaller. There-
fore, q was set to 50 ppb. It is important to note that the mag-
nitude of estimated forcing terms changes with changing q,
but the general pattern of positive and negative corrections
was not significantly affected by the choice of q. As shown
in the experiments described in Sect. 2.4, the WC method
was able to improve the model and capture the bias in the
CH4 state with q set to 50 ppb. Therefore, we considered a
uniform structure for Q to be a satisfactory assumption for
this initial assessment of model errors in the context of the
WC 4D-Var analysis.

2.4 Configuration of the OSSEs

We conducted three OSSEs in order to evaluate the perfor-
mance of the WC 4D-Var method in regards to mitigating ar-
tificially introduced model errors for February–May 2010. In
particular, we investigated model biases due to vertical trans-
port, chemical loss, and initial conditions. The “true” model
state was defined as optimized CH4 global fields obtained
from an inversion analysis to constrain estimates of monthly
CH4 fluxes using GOSAT XCH4 proxy retrievals during the
same time period. We also refer to these constrained fluxes
as true CH4 surface emissions. The CH4 initial conditions
are described in Sect. 2.1. This true model state was used to
produce pseudo-GOSAT XCH4 measurements by sampling
at the corresponding times and locations of the real GOSAT
measurements and then convolving them with GOSAT aver-
aging kernels. No noise was added to pseudo-observations.
The perturbed model was defined by introducing bias in the
true model from one of the three specified sources of model
bias. Then the pseudo-observations were used to constrain
and mitigate biases in the perturbed model CH4 state. It
should be noted that these are “perfect model” experiments
since we are using GEOS-Chem to simulate the pseudo-data
as well as for the inversions. The performance of the pseudo-
inversion was evaluated by comparing the recovered CH4
fields to the true ones. The analyses were conducted for the
standard period of 4 months (February–May 2010), but most
of the results are presented for the second month of the as-
similation period, March 2010. This gives the model errors
time to accumulate during February and provides 2 months
of pseudo-data, for April and May, to constrain the CH4 state
in March. Given that and the fact that, usually, the state is
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most optimally constrained in the middle of the assimilation
period, we believe that the OSSEs should reveal the best per-
formance of the WC method.

In the first and second OSSEs, the bias in vertical transport
and chemistry was introduced by turning off convection and
chemistry, respectively, in the model for the duration of the
assimilation period. In the third OSSE, a bias in initial condi-
tions was introduced by replacing the true initial conditions
with the ones obtained by running the forward model with-
out convection and with 70 % of the a priori emissions from
1 July 2009 to 1 February 2010, the beginning of the assimi-
lation period. The applied biases for these three OSSEs were
intentionally designed to be extreme; for real-world applica-
tions, we expect less extreme model errors.

We configured the WC method to carry out a full state as-
similation (as described in Sect. 2.3) to enable the optimiza-
tion to independently determine the location and magnitude
of the bias in the modeled state. The constant forcing time
window was set to 3 d and the forcing terms were optimized
throughout the entire atmosphere (the mask G equals unity
everywhere). This particular configuration may not be opti-
mal to mitigate a specific type of bias in a real assimilation
with limited observational coverage. Here, we intend to in-
vestigate the performance of the measurements and the as-
similation method when no information is given about the
sources and magnitude of model errors.

2.5 Configuration of the assimilation with real GOSAT
data

For the assimilation of the real GOSAT CH4 data, the model
error corrections to the CH4 state were constrained during the
standard 4-month period of February–May 2010. The CH4
initial conditions are as described in Sect. 2.1. We conducted
four sets of experiments, which are described below, to assess
the sensitivity of the results to the WC 4D-Var configuration.
Additionally, we compared results of the WC inversions with
results of the SC surface flux assimilation.

The a priori model validation presented in Sect. 3.2.2, as
well as the results of Saad et al. (2016), pointed to the fact
that the stratosphere in GEOS-Chem at the 4◦× 5◦ resolu-
tion, particularly at high latitudes, may be positively biased.
The OSSE results also suggested that the WC assimilation
may benefit from additional constraints on stratospheric forc-
ing terms. Therefore, for the assimilation of the real GOSAT
data we imposed a negativity bound in the L-BFGS-B al-
gorithm for the optimization of the forcing terms in the ex-
tratropical stratosphere (above about 210 hPa and poleward
of 44◦) to remove the known bias at 4◦× 5◦ resolution. No
bound was imposed on forcing terms in the 2◦× 2.5◦ resolu-
tion assimilation.

In the first set of experiments, we performed a full state
assimilation and changed the length of the time window over
which the forcing terms are held constant in the assimila-
tion. In these experiments, the forcing mask G comprised the

entire atmosphere, and biases in the CH4 state potentially in-
duced by incorrect surface emissions were treated as just an-
other source of model errors included in forcing terms. The
length for the forcing window was varied from 3 to 30 d.
Short time windows (less than 2 d, for example) would be
more appropriate if the model were affected by temporally
changing biases such as those related to transient mesoscale
eddies. However, the observations may not be able to con-
strain the short timescales. Also, for short temporal corre-
lation length scales, there is a higher risk that the inversion
will fit noise or possible biases in observations. In contrast,
the use of long time windows introduces additional temporal
correlations between forcing terms that may be suitable only
for mitigation of stationary systematic biases in the model,
such as those related to surface emissions, chemistry, or sta-
tionary transport errors.

In the second set of experiments, we carried out a WC
4D-Var source+state assimilation and explored the sensi-
tivity of the results to the vertical extent of the forcing
mask G. Here, the forcing window was set to 3 d. The al-
gorithm was configured to optimize the 3D forcing terms on
model levels (1) above the surface (the whole atmosphere),
(2) above 750 hPa, (3) above 500 hPa, and (4) above 200 hPa.
Then in the third set of experiments, the horizontal extent
of G was modified. Forcing terms were applied (1) globally
throughout the stratosphere and (2) in the troposphere only
over the following four regions: the three regions defined by
the boundaries of the GEOS-Chem nested model domains
(North America – NA, Europe – EU, and China with South-
east Asia – CH) and over equatorial Africa (EQAf). In these
experiments we also attempted to identify the origin of the
biases affecting the model at the location of the TCCON and
NOAA measurement sites.

All the above experiments were conducted at the 4◦× 5◦

model resolution. In the fourth experiment, we applied the
WC 4D-Var full state assimilation to constrain errors in
GEOS-Chem at 2◦× 2.5◦ resolution. We used the standard
configuration with a forcing time window of 3 d. The only
difference between the 4◦× 5◦ and 2◦× 2.5◦ assimilation
was in the initial conditions, which are described in Sect. 2.1.

3 Results

3.1 OSSEs

In the first OSSE, we investigated the ability of the WC 4D-
Var method to mitigate errors in vertical transport by turning
off convection in the model. The spatial patterns of the es-
timated model corrections are shown in Fig. 1. As can be
seen, the assimilation resulted in enhanced CH4 concentra-
tions in the lower troposphere and reduced CH4 in the upper
troposphere over the main source regions. Furthermore, the
positive CH4 anomalies in the lower troposphere were partly
advected downstream. For example, over equatorial Africa
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and South America, instead of being convectively lifted over
the continent, CH4 emissions were transported westward in
the lower and middle troposphere (see Fig. 1, first column,
third row). As shown in the figure, the state corrections cap-
ture the general structure of the a priori bias, which consists
of excessive CH4 in the lower troposphere and a deficit in
the upper troposphere. The largest corrections are co-located
with the regions of deep convection. Positive corrections are
found in the upper troposphere and negative corrections in
the lower. Still, this was not sufficient to fully mitigate the
extreme bias associated with turning off convection, but the
results show that GOSAT retrievals contain information to
enable us to capture vertical transport bias even when the
sources and magnitude of model errors are unknown.

Figure 2 shows the mean vertical distribution of the a priori
and a posteriori residual biases in the CH4 state over equa-
torial South America, equatorial Africa, equatorial Southeast
Asia, and Europe. In midlatitudes over Europe, the convec-
tion bias was much weaker than over the tropics and reached
just about 16 ppb near the surface. At altitudes above 600 hPa
the WC 4D-Var method was able to strongly mitigate this
bias, and below 800 hPa it reduced the bias by more than a
factor of 2. The worst results in terms of the fractional reduc-
tion of the bias were achieved over equatorial Southeast Asia,
most likely due to fewer GOSAT retrievals over this region
and limited constraints on the CH4 distribution in the outflow
region over the ocean. The assimilation also removed a large
fraction of the bias in the CH4 fields over equatorial Africa
and South America, particularly in the middle and upper tro-
posphere over Africa and in the lower troposphere over South
America.

The second OSSE, in which a chemistry bias was created
by turning off the reaction of CH4 with OH, was the least
challenging bias for the WC 4D-Var scheme to mitigate. This
bias was rather smooth in the troposphere and did not contain
small-scale features. Although the actual chemistry bias in
the model may have a more complex vertical structure, we do
not expect chemical biases to be as strongly localized as the
biases associated with emissions and vertical transport. The a
priori and a posteriori residual biases, as well as WC forcing
terms, are shown in Fig. 3. The WC state optimization per-
formed best over land where the a priori biases were almost
completely removed. The optimization was least successful
over the oceans in the lower troposphere. This situation is
consistent with the fact that the assimilation of GOSAT data
has lower sensitivity to variations in CH4 in the lower tropo-
sphere compared to the upper troposphere, due in part to the
absence of GOSAT observations over oceans in our analysis
as well as to different transport patterns and stronger winds
in the upper troposphere. Shown in Fig. 4 are the mean verti-
cal profiles of the prior and posterior bias over the same four
regions considered in Fig. 2. The model does indeed suc-
cessfully mitigate the bias. Over the convection regions in
the tropics, there are some compensatory corrections in the
lower troposphere and in the upper troposphere and lower

stratosphere (UTLS), which is probably due to the fast ver-
tical transport in these regions and the limited vertical infor-
mation in the GOSAT retrievals.

In the third OSSE, with biased initial conditions, the ini-
tial condition bias is shown in the left panel in Fig. 5. The
stratosphere and southern troposphere were positively bi-
ased, whereas the northern troposphere was negatively bi-
ased. The right panel shows the structure of the a posteriori
bias after the WC assimilation on the last day of the assim-
ilation window, 31 May. It shows that the CH4 state con-
verged to the true concentrations everywhere except in the
upper stratosphere; the positive upper-stratospheric bias was
compensated for in the column by a small negative CH4 bias
in the troposphere and the lower stratosphere. Examination
of the evolution of the initial condition bias (not shown) in-
dicates that different regions of the atmosphere converged
to the true CH4 mass at different rates, with levels above
200 hPa converging the slowest, such that by the third month
the CH4 mass had not fully recovered at these levels.

3.2 Assimilation of real GOSAT retrievals

The bias between the GOSAT data and the 4◦× 5◦ a priori
and a posteriori model is shown in Fig. 6. Here we will re-
fer to the a posteriori results as the WC_4x5 assimilation,
which is our standard WC 4D-Var assimilation at 4◦× 5◦ res-
olution with a 3 d forcing time window and a forcing mask
G comprising the entire vertical extent of the atmosphere.
As can be seen, there are large positive a priori biases at
high latitudes in the Northern Hemisphere and in some low-
latitude regions, such as equatorial Africa and eastern China.
The WC_4x5 assimilation successfully reduces the a priori
bias. There is some residual high-latitude bias, which resem-
bles noise or bias in the GOSAT observations. In a compan-
ion analysis (Stanevich et al., 2020) in which we examine
the impact of model resolution on the modeled CH4 distribu-
tion, we showed that the large positive a priori CH4 bias over
China may partly be explained by weakening of the vertical
transport in the model due to the coarse 4◦× 5◦ resolution.
In Stanevich et al. (2020), we also showed that a significant
fraction of the high-latitude bias comes from the stratosphere
and is a consequence of running the model at 4◦× 5◦ resolu-
tion. As a result, here we repeated the GOSAT WC assimila-
tion at the higher resolution of 2◦× 2.5◦. The results, which
are shown in Fig. 7, reveal that the high-latitude a priori bias
is indeed smaller in the 2◦× 2.5◦ model. At the higher res-
olution, the WC assimilation also successfully reduces the
model bias. For comparison, we repeated the assimilation at
4◦× 5◦ but optimized the emissions instead of the CH4 state.
The results for this experiment, referred to as SC_4x5, are
shown in Fig. 8. As can be seen, the SC assimilation leaves
significantly larger residual biases. The pattern of the resid-
ual bias indicates that there were other biases that the assim-
ilation could not fit at the expense of the emissions. We will
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Figure 1. Mean differences in the CH4 distribution in March 2010 in the OSSE with biased convection. Left column: mean differences
between the a priori CH4 state and the true CH4 state. Middle column: mean differences between the WC optimized CH4 state and the true
CH4 state. Right column: the mean WC state corrections (the forcing terms) in parts per billion (ppb). Shown are the latitude–longitude
differences at (top row) the surface and (second row) at 300 hPa, as well as the altitude–longitude differences (third row) along the Equator
and (bottom row) along 42◦ N. The black boxes indicate the four domains considered for the regional analysis discussed in the text and
shown in Fig. 2.

investigate possible sources for these biases in the sections
below.

The signal of surface emissions is mixed with possible
model errors in the troposphere, such as those related to ver-
tical transport. Biases in the CH4 fields caused by incorrect
surface emissions will in some cases have an identical struc-
ture as those caused by biased vertical transport, which may
complicate the interpretation of WC 4D-Var state corrections
in the troposphere. On the other hand, it takes much longer
for the surface emission signal to mix into the stratosphere.
We therefore assumed that, on the short (4-month) timescale
of the simulation, optimized forcing corrections ui in the
stratosphere can be considered independent from the influ-
ence of surface emissions. The third column in Figs. 6 and
7 shows the actual mean monthly bias in the a priori CH4
fields that was corrected by the stratospheric forcing terms.
The bias corrections in the 2◦× 2.5◦ CH4 simulation are
smaller than for the 4◦× 5◦ simulation, which is consistent
with Stanevich et al. (2020), who suggested that part of the

stratospheric bias at 4◦× 5◦ resolution is due to the model
resolution itself. The WC inversion results suggest that the
4◦× 5◦ model is positively biased in the stratosphere at high
latitudes and weakly negatively biased in the tropics. In con-
trast, the 2◦× 2.5◦ model is mainly negatively biased in the
stratosphere, particularly around 30–40◦ N, except for a few
high-latitude regions, possibly related to the polar vortex.

3.2.1 Evaluation with TCCON and NOAA data

Table 1 presents the results of the evaluation of the SC_4x5
and WC_4x5 assimilation with the in situ and TCCON data,
whereas Table 2 gives the comparison results at individual
TCCON sites. Based on the OSSE results in Sect. 3.1 and
provided that the only model bias is due to incorrect sur-
face emissions, we would anticipate the WC assimilation to
produce generally worse fits to the surface measurements
than the SC assimilation. The comparisons show that both
approaches produced similar improvements in the fit to the
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Figure 2. Mean vertical profiles of the CH4 differences in March
2010 in the OSSE with biased convection for the four regions de-
picted in Fig. 1. The differences are between (black lines) the a pri-
ori and the true CH4 state and between (red lines) the WC optimized
state and the true CH4 state.

NOAA in situ observations, with slightly better performance
from the WC method. The WC assimilation had a signifi-
cant impact on the overall fit to the TCCON XCH4 retrievals,
whereas the SC assimilation had a much more limited im-
pact. Table 2 shows the benefits of using the WC method at
the individual TCCON sites. With the exception of Park Falls
and Lamont, the WC assimilation significantly improved the
correlation and reduced the bias between the model and the
TCCON observations. The results suggest that the GEOS-
Chem a priori CH4 simulation suffered from biases that were
not only related to incorrect surface emissions.

The evaluation of the WC sensitivity experiments is sum-
marized in Fig. 9. The series of WC experiments described
in Sect. 2.5 were organized into four groups. The most sensi-
tive indicator of the quality of the model–observation fit is the
correlation. The scatter was close to the level of the GOSAT
measurement noise and did not change much among the dif-
ferent assimilation experiments. In the set of experiments
(first panel in Fig. 9) in which we changed the vertical ex-
tent of the forcing mask G, we found that restricting the op-
timized forcing to the stratosphere (altitudes above 200 hPa)
resulted in correlation statistics that were only slightly worse
than when we optimized the forcing throughout the whole
atmosphere. This suggests that a significant part of model
errors above all TCCON stations may be related to the rep-

resentation of the stratosphere in the model. In addition, the
bias and scatter plots show that optimization of forcing terms
above 200 hPa produced the best fit to NOAA surface obser-
vations. In the experiments (second panel in Fig. 9) in which
we modified the horizontal extent of the forcing mask G, we
found that optimization of the forcing throughout the strato-
sphere and only over North America, Europe, China, and
equatorial Africa in the troposphere, as described in Sect. 2.5,
produced almost identical fits to the case of the full state as-
similation. These four regions are major sources of CH4, and
our results suggest that at the TCCON sites the model was
likely affected by errors in emissions and the transport of the
emission signal over these regions. Henceforth, we refer to
these assimilation results as WC_4REG_4x5. In the experi-
ments (see the third panel in Fig. 9) in which we varied the
length of the forcing window from 3 to 7, 14, and 30 d, we
found that the agreement at some of the stations, such as La-
mont, Park Falls, and Sodankylä, was generally insensitive
to increasing the length of the forcing window, which could
suggest that the model above these stations was affected by
slowly varying biases. The model fit at other stations, partic-
ularly Bialystok, Bremen, and Karlsruhe, degraded when the
window length was increased. The latter three stations are lo-
cated close to each other and are probably affected by similar
model errors on synoptic timescales of about 1 week.

In the last group of experiments (see the fourth panel in
Fig. 9), we compared the performance of the two 4D-Var
assimilation modeling approaches (WC full state assimila-
tion and SC flux assimilation) at the two model resolutions
(4◦× 5◦ and 2◦× 2.5◦). The comparison suggested that, in
the absence of a priori bias correction, the SC method brings
limited improvements to the a prior CH4 fields at both reso-
lutions. Indeed, we conclude that the SC assimilation at the
4◦× 5◦ resolution is futile as the a priori model at 2◦× 2.5◦

resolution produces a better fit to the TCCON observations
than the SC 4◦× 5◦ assimilation. The performance of the
SC assimilation at the 2◦× 2.5◦ resolution was similar to
but was surpassed by the “best-fit” WC state assimilation
at the 4◦× 5◦ resolution in term of its fit to TCCON and
NOAA in situ measurements. Overall, the WC state assim-
ilation at 2◦× 2.5◦ resolution generated the best model fit to
TCCON observations. However, in all 2◦× 2.5◦ resolution
experiments the model bias against NOAA surface measure-
ments was larger compared to the 4◦× 5◦ experiments. For
example, the smallest WC a posteriori bias at 4◦× 5◦ was
about 10 ppb, whereas at 2◦× 2.5◦ it was about 17 ppb.

Another important conclusion can be drawn from the fact
that the WC assimilation at both model resolutions signif-
icantly improved the model fit to Izana measurements (see
the fourth panel in Fig. 9). The Izana station is located at
an altitude of 2370 m above sea level on a small island near
the coast of Africa that has no local CH4 emission sources.
The model at 2◦× 2.5◦ and 4◦× 5◦ resolutions is not able
to resolve the topography of the island. Therefore, the model
transport in the vicinity of this high-altitude station, particu-
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Figure 3. Mean differences in the CH4 distribution in March 2010 in the OSSE with biased chemistry. (a, d, g) Mean differences between the
a priori CH4 state and the true CH4 state. (b, e, h) Mean differences between the WC optimized CH4 state and the true CH4 state. (c, f, i) The
mean WC state corrections (the forcing terms) in parts per billion (ppb). Shown are the latitude–longitude differences at (a–c) the surface and
(d–f) at 300 hPa, as well as the altitude–longitude differences (g–i) along the Equator. The black boxes indicate the four domains considered
for the regional analysis discussed in the text and shown in Fig. 4.

Table 1. Evaluation of a priori, SC_4x5, and WC_4x5 optimized CH4 fields using TCCON XCH4 from the stations listed in Table 2 and
NOAA surface in situ observation (mean statistics for the period of February–May 2010). The first, second, and third columns represent the
mean difference, standard deviation, and correlation between the model and measurements, respectively. The fourth column represents the
slope of the regression line, with modeled data on the y axis and measurements on the x axis.

Mean difference Standard deviation Correlation (R) Slope of regression
(ppb) (ppb)

Prior SC WC Prior SC WC Prior SC WC Prior SC WC

TCCON 9.1 8.2 5.3 15.0 13.8 9.9 0.83 0.86 0.93 1.16 1.14 1.07
In situ 15.1 9.7 9.6 34.5 30.3 28.9 0.88 0.89 0.90 0.90 1.02 0.99

larly in the lower troposphere, may be subject to similar er-
rors at both the 2◦× 2.5◦ and 4◦× 5◦ resolutions. Hence, the
improvement in the assimilated CH4 fields may be related
to the corrected model errors in the upper troposphere and
the stratosphere rather than in the lower troposphere where
topography-related errors would be dominant.

The WC full state assimilation at 4◦× 5◦ leaves weak pos-
itive biases in the GEOS-Chem fields against the TCCON ob-
servations (excluding Sodankylä) in most of the experiments.
Mean a posteriori inter-station bias at 4◦× 5◦ (2◦× 2.5◦) res-
olution is 3.4 ppb (4.0 ppb) (excluding Sodankylä), while the
scatter is 8.6 ppb (7.3 ppb) (excluding Sodankylä). It is not
clear if the GOSAT data are positively biased or if this could
be caused by differences between the GOSAT and TCCON

averaging kernels in the stratosphere and the fact that, for
example, the stratospheric model bias was not fully recov-
ered by the assimilation, particularly during the first couple
of months of the assimilation period. The results also do not
indicate the presence of a latitudinal bias between TCCON
and GEOS-Chem and hence between TCCON and GOSAT.

There is a larger positive XCH4 bias between the model
and Sodankylä measurements of 12.6 and 11.2 ppb for the
WC assimilation at 4◦× 5◦ and 2◦× 2.5◦ resolution, re-
spectively; however, the correlation is also high at 0.81 and
0.93, respectively. Tukiainen et al. (2016) and Ostler et al.
(2014) pointed to the fact that polar vortex conditions at
high-latitude stations may induce biases in TCCON XCH4
retrievals. It has been claimed that a priori profiles in the re-
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Table 2. Evaluation of a priori, SC_4x5, and WC_4x5 optimized CH4 fields using TCCON XCH4 (mean station-wise statistics for the period
of February–May 2010). The first, second, and third columns represent the mean difference, standard deviation, and correlation between the
model and measurements, respectively.

Mean difference Standard deviation Correlation (R)
(ppb) (ppb)

Prior SC WC Prior SC WC Prior SC WC

Sodankylä (67.37◦ N, 26.63◦ E) 30.0 25.7 13.7 18.9 19.1 12.6 0.49 0.50 0.81
Bialystok (53.23◦ N, 23.03◦ E) 11.9 7.3 5.1 9.3 10.6 8.0 0.39 0.43 0.65
Bremen (53.10◦ N, 8.85◦ E) 6.3 3.2 0.7 14.3 15.2 10.5 −0.37 −0.28 0.47
Karlsruhe (49.10◦ N, 8.44◦ E) 6.4 4.4 0.8 9.7 9.9 8.9 0.33 0.29 0.49
Orleans (47.97◦ N, 2.11◦ E) 3.9 3.5 2.5 8.9 9.6 8.3 0.31 0.30 0.51
Garmisch (47.48◦ N, 11.06◦ E) 9.9 10.0 5.7 9.0 9.7 8.4 0.46 0.56 0.65
Park Falls (45.95◦ N, 90.27◦W) 1.9 3.6 2.3 9.7 10.6 8.5 0.37 0.47 0.65
Lamont (36.60◦ N, 97.486◦W) 1.4 3.7 4.4 11.1 11.5 9.4 0.27 0.30 0.49
Izana (28.30◦ N, 16.5◦W) −5.8 −5.3 3.1 7.6 8.2 6.7 0.64 0.58 0.72
Wollongong (34.41◦ S, 150.88◦ E) 7.5 3.9 3.7 8.9 8.8 8.4 0.58 0.55 0.59
Lauder (45.04◦ S, 169.68◦ E) 9.6 9.2 5.9 5.6 5.7 5.4 0.72 0.72 0.73

Figure 4. Mean vertical profiles of the CH4 differences in March
2010 in the OSSE with biased chemistry for the four regions de-
picted in Fig. 3. The differences are between (black lines) the a pri-
ori and the true CH4 state and between (red lines) the WC optimized
state and the true CH4 state.

trievals do not account for and are not adjusted to these dy-
namic conditions; hence, they significantly deviate from the
real CH4 profiles. When there is not enough information in
the spectra to correct for such discrepancies, the XCH4 re-
trievals can be systematically biased. It is possible that both

GOSAT and TCCON could have been affected by the polar
vortex conditions during some days in February–April 2010
so that the biases in co-located retrievals are partially can-
celed. It should also be noted that the negative a priori cor-
relation between the model and Bialystok XCH4 measure-
ments is partly caused by the limited number (84) of mea-
surements during the 4-month assimilation time window.

3.2.2 Evaluation with ACE-FTS and HIPPO-3 data

Figures 10 and 11 show the results of the GEOS-Chem com-
parison with the ACE-FTS and HIPPO-3 data. Model ver-
sus ACE-FTS data are shown only in the stratosphere in
order to exclude potentially biased data due to interference
with clouds in the upper troposphere. The mean XCH4 dif-
ference between GEOS-Chem and ACE-FTS that is shown
was obtained by artificially extending the ACE-FTS CH4
profiles down into the troposphere using the GEOS-Chem
fields and then applying the GOSAT column averaging ker-
nels. Consistent with Saad et al. (2016), the CH4 differences
reveal that the a priori 4◦× 5◦ model has a positive strato-
spheric bias that can be as large as 250 ppb averaged zon-
ally (see Fig. 10). The HIPPO-3 comparison also showed
that the 4◦× 5◦ model is positively biased in the stratosphere
and slightly negative in the troposphere. Wang et al. (2017)
showed that similar positive CH4 biases at middle and high
latitudes exist in TM3, TM5, and Laboratoire de Météorolo-
gie Dynamique (LMDz) CTMs. The 4◦× 5◦ WC assimila-
tion reduced the positive stratospheric bias with respect to
both HIPPO-3 and ACE-FTS, but it did not remove it com-
pletely. For example, the maximum model minus ACE-FTS
XCH4 bias due to the stratosphere was reduced from about
40 to 30 ppb. The average negative tropospheric CH4 bias
relative to HIPPO-3 was reduced. It is possible that the WC
method was not able to properly localize the stratospheric
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Figure 5. Results of the OSSE with biased initial conditions. (a) A priori bias in initial conditions. (b) A posteriori bias at the end of the
assimilation window. The dashed line represents the mean tropopause height on 31 May 2010 taken from GEOS-5 meteorological fields.

Figure 6. Monthly mean fields from the 4◦× 5◦ resolution model for February–May 2010. First column: differences between the GEOS-
Chem a priori XCH4 state and the GOSAT data. Middle column: differences between the a posteriori WC_4x5 XCH4 state and the GOSAT
data. Right column: the optimized stratospheric XCH4 bias correction calculated as the difference between the model simulation with
optimized forcing corrections everywhere and the model simulation with the forcing corrections estimated only in the troposphere. The rows
represent results for (top row) February, (second row) March, (third row) April, and (bottom row) May 2010. All model simulations were
sampled at the locations and times of the GOSAT observations and smoothed with the GOSAT averaging kernels.
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Figure 7. Same as Fig. 6 but for the 2◦× 2.5◦ resolution model.

bias. However, the validation analysis may also reflect the
influence of the slow recovery of the stratospheric CH4 fields
from the bias in the initial conditions. Therefore, discrepan-
cies in the stratospheric CH4 field from the initial conditions
in the first 2 months of the WC assimilation could be con-
tributing to the observed HIPPO-3 and ACE-FTS bias. Un-
fortunately, the measurements are either too sparse or limited
in space and time to verify this assumption.

The positive a priori stratospheric bias relative to ACE-
FTS and HIPPO-3 was significantly smaller at 2◦× 2.5◦ than
at the 4◦× 5◦ resolution (see Fig. 11); however, it was not
completely removed. Stratospheric CH4 fields in the North-
ern Hemisphere (NH) above 200 hPa even became negatively
biased at 2◦× 2.5◦, particularly around 30–40◦ N, where the
absolute bias became larger than at 4◦× 5◦. The WC assim-
ilation at 2◦× 2.5◦ further corrected the positive biases and
significantly reduced the negative bias around 30–40◦ N. As
can be inferred from Fig. 7, the latter covered the entire lat-
itudinal band but was particularly pronounced over the Hi-
malayas. Despite the reduction of the stratospheric bias, the
2◦× 2.5◦ WC assimilation introduces a positive CH4 bias
relative to HIPPO-3 in the NH lower troposphere.

4 Discussion of model biases

4.1 Stratospheric bias

The sensitivity experiments carried out in Sect. 2.4 suggest
that a stratospheric bias introduced in the system through
the initial conditions has the slowest correction rate. How-
ever, by the start of the last month of the assimilation, May
2010, the bias is either removed or does not change much
with time. Therefore, we focus the discussion here on the
stratosphere in the month of May 2010, with the assumption
that the model is free of the influence of the initial conditions.
Figure 12 compares the a priori CH4 fields to the optimized
fields from the WC_4x5 and SC_4x5 assimilations. The top
panel shows that corrections in the stratospheric CH4 abun-
dance are the most pronounced feature of the WC optimized
CH4 fields and that changes are smaller in the zonal mean
tropospheric fields. The bottom panel is presented to contrast
the behavior of the two 4D-Var approaches. It shows that the
SC assimilation attempts to correct the positive high-latitude
stratospheric CH4 bias at the expense of surface emissions.
This results in a negative CH4 bias in the lower troposphere,
while the surface signal hardly impacts the stratosphere. In
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Figure 8. Monthly mean differences between the GEOS-Chem a posteriori XCH4 state and GOSAT. Left column: differences between the
a posteriori state from the SC flux assimilation at 4◦× 5◦ (SC_4x5) and GOSAT. Right column: differences between the a posteriori state
from the SC flux assimilation at 2◦× 2.5◦ (SC_2x25) and GOSAT. The rows represent results for (top row) February, (second row) March,
(third row) April, and (bottom row) May 2010.

the WC assimilation, stratospheric CH4 was significantly re-
duced at high latitudes and increased in the tropics relative
to the a priori, which is consistent with the correction of the
biases shown in Figs. 10 and 11. The changes are more sub-
stantial in the Northern Hemisphere due to the asymmetri-
cally larger number of GOSAT measurements in the North-

ern Hemisphere since we are assimilating data only over
land.

Large biases in the stratosphere were previously identified
in GEOS-Chem (Saad et al., 2016) and in other chemistry
transport models (Strahan and Polansky, 2006; Patra et al.,
2011; Ostler et al., 2016). The problem was mainly linked
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Figure 9.

to biases in the meridional Brewer–Dobson circulation in the
stratosphere and in the rate of troposphere–stratosphere ex-
change. However, neither mechanism was analyzed in detail.
Indeed, the observed changes in Fig. 12 may partly reflect
discrepancies in the Brewer–Dobson circulation projected
from the initial conditions. In particular, meridional overturn-
ing that is too rapid in the months prior to the assimilation
would have transported excess CH4 from the tropics and to
the high latitudes. In the companion study, Stanevich et al.
(2020) show that the stratospheric bias in GEOS-Chem can
also be due to increased numerical diffusion at the coarse hor-
izontal model resolution. This leads to additional unphysical
horizontal mixing between the troposphere and the strato-
sphere and between the high latitudes and the tropics in the
stratosphere.

4.2 Tropospheric bias

4.2.1 Pattern of forcing terms

The forcing terms are corrections applied to the CH4 fields at
each model time step. This time step is 30 and 15 min for the
4◦× 5◦ and 2◦× 2.5◦ simulations, respectively. In order to
compare the forcing terms in the two simulations, we added
together the state corrections at two successive 2◦× 2.5◦

time steps. Therefore, all forcing terms discussed in this sec-
tion are presented for 30 min time intervals. The first col-
umn in Fig. 13 presents forcing terms in the troposphere op-

timized by the WC_4x5 assimilation. The observed structure
of the forcing terms simultaneously mitigated model errors
from multiple sources. In this section, we attempt to give the
most likely explanation for the retrieved pattern of the state
correction and identify sources of regional biases.

In general, the original a priori CH4 fields can be affected
by model errors that either occurred during the assimilation
period or were projected onto the assimilation window from
the initial conditions. Here, we investigate the former case.
Given the results of the OSSE with biased initial conditions
in Sect. 3.1, we focus in Fig. 13 on the mean forcing terms in
the last 3 months of the assimilation (March–May 2010) as
they are much more likely to be related to recent model errors
than to biases in the initial conditions. The temporally aver-
aged structure also gives insight into systematic model er-
rors and is easier to interpret. Figure 13 (first column) shows
that negative forcing terms dominate near the surface and in
the lower troposphere, particularly over Europe, equatorial
Africa, and East Asia. The CH4 reduction at the surface is
consistent with NOAA observations. Positive state correc-
tions are more frequently found in the upper troposphere,
mainly at midlatitudes over the Pacific and Atlantic oceans
as well as over Europe and a significant part of Russia. There
are also several regions, such as eastern China and equatorial
Africa, where the forcing terms are negative throughout the
entire tropospheric column. Vertical slices over midlatitudes
(bottom right panel) show that strong negative corrections
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Figure 9. Evaluation of the mean (February–May 2010) a priori and optimized CH4 fields using TCCON XCH4 and NOAA surface in situ
observations. Results are shown for the four experiments described in Sect. 2.5. For each set of experiments (each row), the left column
shows the correlation with respect to the TCCON and NOAA data, whereas the right column shows the mean bias and scatter. Top row:
comparison of (red) the a priori fields, (light green) the standard WC assimilation, and the WC assimilation with the forcing terms estimated
at altitudes above (dark green) 750 hPa, (blue) 500 hPa, and (purple) 200 hPa. Second row: comparison of (red) the a priori fields, (dark
green) the standard WC assimilation, and (blue) the WC assimilation with joint estimation of the state and surface emissions with forcing
terms estimated only over North America, Europe, and Asia. Third row: comparison of (red) the a priori fields, (light green) the standard
WC assimilation, and the WC assimilation with a constant forcing window of (dark green) 7 d, (blue) 14 d, and (purple) 30 d. Bottom row:
comparison of the a priori fields at (red) 4◦× 5◦ and (light blue) 2◦× 2.5◦, the SC assimilation at (light green) 4◦× 5◦ and (dark blue)
2◦× 2.5◦, and the WC assimilation at (dark green) 4◦× 5◦ and (purple) 2◦× 2.5◦.

over the east coast of Asia and North America are accompa-
nied by positive corrections in the upper troposphere down-
wind of the continents. Forcing terms are generally weaker in
the lower troposphere over the oceans where we lack GOSAT
observations.

Generally, corrections of one sign with monotonically de-
caying magnitude from the surface to the upper troposphere
could be associated with biases in the surface emissions,
while the dipole structures with corrections of the opposite
sign in the upper and lower troposphere could be related
to errors in vertical transport. However, it is not feasible to
uniquely identify the origin of model errors from the pattern
of forcing terms because model errors from separate sources
are mixed in the atmosphere and the estimation of the forcing
terms is an under-constrained inverse problem.

Still, we may try to identify possible sources of model er-
rors. For example, initial assessment of the state corrections
pointed to potential issues in vertical transport. Indeed, the
dipole structure of the forcing terms could indicate that up-

ward transport of CH4 at midlatitudes may be insufficient,
particularly over regions with strong vertical CH4 gradients
that are present over large sources of CH4. At NH mid-
latitudes the major CH4 source regions are China, the US,
and Europe. Moreover, the eastern parts of China and North
America are located in regions of significant extratropical cy-
clone activity (Stohl, 2001; Shaw et al., 2016), where CH4
emitted from the surface is being lifted into the free tropo-
sphere in warm conveyor belts associated with these cyclones
(Kowol-Santen et al., 2001; Li et al., 2005; Sinclair et al.,
2008; Lin et al., 2010). Moist convection over land could
also contribute to the total transport bias; however, convec-
tive transport is not strong over these midlatitude regions dur-
ing the months of February–May.

A similar vertical structure in the forcing terms was iden-
tified above and downwind of eastern North America and
China (see the first column, fourth row of Fig. 13). The WC
method applied negative corrections over land from the sur-
face to the upper troposphere, large positive corrections in
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Figure 10. Evaluation of the mean (February–May 2010) a priori and WC_4x5 optimized CH4 fields using ACE-FTS and HIPPO-3 CH4
measurements. Shown are (a, d, g) the a priori bias, (b, e, h) the a posteriori bias, and (c, f, i) the reduction in absolute bias. (a–c) XCH4
bias between GEOS-Chem and ACE-FTS. (d–f) Zonally averaged CH4 bias between GEOS-Chem and ACE-FTS. (g–i) CH4 bias between
GEOS-Chem and HIPPO-3. We used ACE-FTS retrievals only in the stratosphere. The XCH4 bias between GEOS-Chem and ACE-FTS was
obtained by augmenting the ACE-FTS profile in the stratosphere with the GEOS-Chem profile in the troposphere and smoothing the vertical
CH4 profile with mean meridional GOSAT averaging kernels. The dashed line represents the mean tropopause height.

the upper troposphere, and weakly negative corrections in
the lower troposphere over the oceans downwind of the con-
tinents. The WC method may suggest that vertical transport
over eastern parts of the continents has to be stronger. In such
a case, more CH4 emitted from local sources reaches the mid-
dle to upper troposphere and is transported away from the
continents by strong westerly winds. Meanwhile, CH4 con-
centrations in the entire atmospheric column over land and in
the lower troposphere over the adjacent oceans are reduced.
Therefore, the large positive a priori bias between the model
and GOSAT over China shown in Fig. 6 (first column) may
be partly attributed to weak local uplift of CH4.

Another region of interest, as suggested by the WC assim-
ilation (Fig. 13, first column, third row), is equatorial Africa.
Similar to China, a large positive a priori model XCH4 bias
was found here. However, due to the observational cover-
age, there are limited direct constraints on the CH4 out-
flow from equatorial Africa except for sparse GOSAT ob-
servations over South America. While the African XCH4
bias could be related to positively biased local a priori sur-
face emissions, the WC assimilation also suggested another
transport-related explanation. The WC assimilation applied
negative CH4 forcing terms over central Africa and positive

forcing terms downwind in the middle troposphere (between
400 and 800 hPa) over the Atlantic Ocean. Such a pattern of
state correction could point to potential errors in CH4 out-
flow from the African continent. Southern Africa is charac-
terized by a persistent high-pressure system that drives east-
erly outflow from southern tropical Africa to the Atlantic in
the lower to middle troposphere (Garstang et al., 1996). In
their analysis of the sources of moisture in the Congo Basin,
Dyer et al. (2017) showed that there is a strong export of
moisture from southern tropical Africa to the Atlantic be-
tween 800 and 500 hPa. Furthermore, Arellano et al. (2006)
found, in their inversion analysis of carbon monoxide (CO)
data from the MOPITT instrument, a discrepancy between
their a posteriori CO and observations at Ascension Island,
which they speculated could be due to errors in the altitude
dependence of the outflow from Africa in the GEOS-Chem
model. It is possible that too much CH4 is being convectively
lifted to the upper troposphere over central Africa and not
enough is exported out over the Atlantic in the lower tropo-
sphere. Figure 1 (first column) displays the bias in CH4 fields
when convection was turned off in the model. This caused
CH4 emitted over Africa to take a different transport path-
way. Instead of being lifted up over the continent, more CH4
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Figure 11. Same as Fig. 10 but for the 2◦× 2.5◦ resolution model.

Figure 12. Zonal mean CH4 differences (in ppb) in May 2010 be-
tween (a) the WC_4x5 optimized state and the a priori fields and
(b) between the SC_4x5 optimized state and the a priori fields. The
dashed line represents the mean monthly tropopause height.

was transported out to the Atlantic in the lower to middle tro-
posphere between 500 and 900 hPa. Under such conditions,
CH4 is simultaneously depleted over the continent and in-
creased over the Atlantic, which is similar to what the WC
forcing terms suggest. We cannot determine the exact origin
of the XCH4 bias over Africa, but the forcing terms do sug-
gest the presence of a transport bias.

The estimation of the forcing terms is an under-
constrained inverse problem. Consequently, here we eval-
uate the impact of reducing the dimensionality of the in-
verse problem by limiting the region of the atmosphere
where the forcing terms should be applied. This was done
in the WC_4REG_4x5 assimilation, in which we restricted
the forcing optimization to the stratosphere and only over
the main CH4 anthropogenic emission regions in the tropo-
sphere. The results presented in Sect. 3.2.1 suggest that the
WC_4x5 and WC_4REG_4x5 assimilations produced simi-
lar fits to the independent observations. Therefore, errors af-
fecting the model, at least at the location of the validation sta-
tions, could emerge from the NA, CH, EU, EQAf, or STRAT
regions. The second column in Fig. 13 presents the struc-
ture of optimized forcing terms from the WC_4REG_4x5
assimilation in which the number of optimized variables was
reduced using the forcing mask G. Over China and North
America, the forcing terms acquired a better-defined dipole
structure with a positive correction in the upper troposphere
and a negative correction in the lower troposphere. Over
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Figure 13. Mean optimized forcing terms (in ppb) for March–May 2010. Left column: WC_4x5 assimilation at 4◦× 5◦. Middle column:
WC_4REG_4x5 assimilation at 4◦× 5◦. Right column: WC_2x25 inversion at 2◦× 2.5◦. Top row: forcing terms at the surface. Second row:
forcing terms at 300 hPa. Third row: altitude–longitude distribution of the forcing terms along the Equator. Bottom row: altitude–longitude
distribution of the forcing terms along 34◦ N. In the plots in the left column, arrows represent the direction and relative magnitude of
horizontal winds.

equatorial Africa, the region of positive corrections in the
mid-troposphere moved closer to the continent.

4.2.2 Dependence of the forcing terms on model
resolution

Coarsening the model resolution from 2◦× 2.5◦ to 4◦× 5◦

can be considered equivalent to introducing errors in the
finer-resolution model. Yu et al. (2018) and Stanevich et al.
(2020) showed that at coarse resolution vertical transport in
GEOS-Chem is weakened due to loss of eddy mass flux and
air mass flux in the regridding of the meteorological fields.
Stanevich et al. (2020) also showed that the efficiency of
transport barriers is reduced due to increased numerical dif-
fusion, which causes unphysical mixing between the interior
and the exterior of the polar vortex, mixing of CH4 between
the tropical and extratropical branch of the Brewer–Dobson
circulation that is too rapid, and increased troposphere–
stratosphere exchange. Thus, in Fig. 13 we compare the forc-
ing terms from the 4◦× 5◦ assimilation (WC_4x5) with those

from the 2◦× 2.5◦WC assimilation (WC_2x25). Differences
between the 2◦× 2.5◦ and 4◦× 5◦ forcing represent the re-
sponse of the WC method to the resolution-induced trans-
port errors. We found that the magnitude of the negative
forcing term was reduced in the lower troposphere, partic-
ularly over China. Similarly, the magnitude of positive forc-
ing terms was reduced in the upper troposphere. The pattern
of forcing terms on the vertical slice at midlatitudes became
significantly weaker. Comparison of Figs. 6 and 7 also sug-
gests smaller stratospheric corrections at the 2◦× 2.5◦ reso-
lution. At the same time, the structure and magnitude of forc-
ing terms at the Equator (particularly over equatorial Africa)
were not significantly affected by the increase in resolution.

Several conclusions follow from Fig. 13. First, the results
suggest that a large fraction of model errors at 4◦× 5◦ reso-
lution, particularly in the stratosphere and over midlatitudes
in the troposphere, are resolution-induced. Second, although
the magnitude of the forcing terms at the 2◦× 2.5◦ resolution
is smaller, the pattern remains similar, which implies that the
2◦× 2.5◦ resolution model may still be affected by the same
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type of transport errors. Third, the assumptions made about
sources of model errors in the tropics, particularly over equa-
torial Africa, still apply to the 2◦× 2.5◦ simulation as the
structure and magnitude of forcing terms remained unrespon-
sive to the model resolution. It is possible that these regions
are dominated by discrepancies in moist convective transport
that are large at 2◦× 2.5◦ and 4◦× 5◦.

5 Conclusions

In this study, we assessed errors in the global GEOS-Chem
chemistry transport model during the 4-month period of
February–May 2010 using the weak-constraint 4D-Var data
assimilation method at model resolutions of 4◦× 5◦ and
2◦× 2.5◦. This was done by constraining simulated CH4
fields with GOSAT XCH4 retrievals. This represents the first
application of the WC 4D-Var scheme for assimilation of
GOSAT XCH4 retrievals to characterize model errors in a
CTM.

An analysis of the sensitivity of the GOSAT measurements
to the atmospheric CH4 state found that the XCH4 retrievals
are most sensitive to CH4 mass changes in the stratosphere
and in the upper troposphere in the Northern Hemisphere,
which was explained by the GOSAT observational cover-
age and stronger horizontal winds in the UTLS, allowing
the CH4 perturbations to be observed by a larger number
of measurements. Sensitivity at the Equator was about half
that at northern midlatitudes. In a series of OSSEs, the ob-
servations and the WC method were tested to determine the
ability of the system to recover “unknown” errors in CH4
fields associated with artificially introduced biases in convec-
tion, chemistry, and initial conditions. We found that when
not supplied with any information about the errors, the WC
method was able to significantly mitigate biases in the CH4
fields with slowly changing spatial structures, but it was not
able to correct strongly localized biases, particularly those in
the boundary layer. Despite having almost flat averaging ker-
nels in the troposphere, our analysis showed that the GOSAT
XCH4 retrievals could help constrain the vertical distribution
of model errors when convection was turned off in the model.
The WC method needed about a month to recover the bias in-
troduced in the initial condition in the troposphere and about
2 months to do so in the stratosphere. Generally, the method
was successful in mitigating model errors of unknown origin
and magnitude. However, more optimal performance could
be achieved by supplying the method with additional infor-
mation about model errors, such as their temporal and spatial
correlation, using the model error covariance matrix Q. How-
ever, characterizing these correlations will be challenging.

The WC method was tuned in a set of experiments to di-
agnose real model errors in the GEOS-Chem CTM at the
4◦× 5◦ resolution. The a posteriori model fit to independent
observations, such as ACE-FTS, HIPPO-3, TCCON, and
NOAA surface measurements, was used to evaluate the as-

similation. Initial comparisons suggested that GEOS-Chem
was affected by biases not solely related to discrepancies in
surface emissions. Results suggested that the modeled CH4
fields at the location of most NH TCCON stations were af-
fected by slowly varying biases. However, a few stations,
such as Bialystok, Bremen, and Karlsruhe, were more likely
influenced by errors varying on timescales of 1 week. The
evaluations pointed to a large positive bias in the strato-
sphere relative to ACE-FTS and HIPPO-3 measurements and
a weakly negative bias in the middle to upper troposphere
relative to HIPPO-3 data. The WC assimilation was able to
mitigate the negative tropospheric bias and partly removed
the stratosphere bias. We found that the SC 4D-Var assimila-
tion that optimized the surface emissions had only a limited
impact on the model fits. Furthermore, the WC assimilation
at 4◦× 5◦ resolution performed better than the SC assimila-
tion at 2◦× 2.5◦ resolution. Meanwhile, the results showed
that running the a priori model at 2◦× 2.5◦ resolution pro-
duced better agreement with TCCON observations than the
a posteriori fields from the SC 4D-Var surface emission op-
timization at 4◦× 5◦.

State corrections at the 4◦× 5◦ resolution also explicitly
pointed to issues with vertical transport, suggesting that ver-
tical transport of CH4 at midlatitudes over the large CH4
source regions of eastern China and North America is too
weak. In the tropics, the WC inversion corrected for large
positive XCH4 biases over equatorial Africa. From the pat-
tern of forcing terms, it remained unclear whether the bias
over Africa was related to surface emissions. However, the
WC method suggested the possibility of biased CH4 outflow
from the African continent to the Atlantic Ocean in the mid-
troposphere, which could be related to a discrepancy in the
partitioning between deep convection transport to the upper
troposphere and shallow outflow to the Atlantic Ocean.

In a companion analysis, Stanevich et al. (2020) examined
the impact of model resolution on CH4 simulation and found
larger model biases at 4◦× 5◦ compared to 2◦× 2.5◦. We
found that assimilating the GOSAT data at the higher reso-
lution of 2◦× 2.5◦ produced state corrections that were sim-
ilar to those obtained at 4◦× 5◦. However, the magnitude of
these corrections in the stratosphere and in the midlatitude
troposphere was significantly reduced at the higher resolu-
tion. This suggests that the model at both resolutions was
affected by transport errors of similar origin, although less
so at the 2◦× 2.5◦ resolution. The WC assimilation also cor-
rected for the negative CH4 bias relative the ACE-FTS and
HIPPO in the northern midlatitude stratosphere, which was
found only at the 2◦× 2.5◦ resolution, and located this bias
particularly over the Himalayas. However, the origin of this
bias remained unclear.

In our analysis, we used only GOSAT CH4 data over land.
However, XCH4 glint measurements over oceans could help
better constrain the vertical structure of the model errors.
The WC 4D-Var assimilation of shorter-lived species, such
as CO, could also help better diagnose model errors, espe-
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cially when transport and emission errors mask each other
in CH4 fields, although shorter-lived species may also be
more strongly affected by errors in chemistry. The advantage
of CH4 is its longer memory of model transport; however,
shorter-lived gases are more strongly affected by, and hence
may be more sensitive to, the same model errors. Clearly, the
detected transport error at the 4◦× 5◦ resolution would have
a considerable impact on inferred emissions if the evolution
of the model state were assumed to be perfect, as is the case
in SC 4D-Var. Instead of reducing the positive high-latitude
bias in the stratosphere, the 4◦× 5◦ SC 4D-Var surface flux
assimilation negatively biased the lower troposphere. The SC
inversion also significantly reduced Chinese CH4 emissions
by incorrectly attributing model errors in vertical transport to
emissions. Some of the detected transport errors were signif-
icantly smaller at the 2◦× 2.5◦ resolution, while others re-
mained resolution-independent. The effect of these remain-
ing errors at the 2◦× 2.5◦ resolution has to be further inves-
tigated.

In the context of optimizing fluxes, potentially any CTM
may be improved if the signal from the surface emissions can
be separated from other model errors. This would be a rather
challenging task for GOSAT XCH4 measurements. Further
analysis is needed on this problem, particularly on the design
of the model error covariance matrix Q. For example, Tré-
molet (2007) proposed a design based on statistics of model
tendencies. The Q matrix had a rather primitive structure in
our analysis, although it is sufficient for the objectives of this
work. Based on our initial assessment of model errors, the
structure of Q can be further improved. In the meantime, the
WC 4D-Var method has a number of immediately useful ap-
plications. In general, it is a valuable instrument for diagnos-
ing model errors. It can also be used as a tool to produce a
better estimate of the CH4 state in a model in order to pro-
vide boundary and initial conditions for forecasting purposes
or regional-scale analysis at higher spatial resolution.

Code and data availability. The GOSAT satellite data are de-
scribed in Parker et al. (2015) and are available from the Euro-
pean Space Agency Greenhouse Gases Climate Change Initiative
at http://cci.esa.int/ghg (last access: 21 May 2021). The individ-
ual TCCON GGG2014 data sets used in the analysis are cited in
the paper, and these references are included in the reference list.
The TCCON data are available at https://tccondata.org/2014 (last
access: 21 May 2021) (TCCON, 2014). The NOAA-ESRL Global
Greenhouse Gas Reference Network data (Dlugokencky et al.,
2016) are available at ftp://aftp.cmdl.noaa.gov/data/trace_gases/
ch4/flask/surface/ (last accessed: 21 May 2021). The HIPPO air-
craft data (Wofsy et al., 2011) are available at https://www.eol.ucar.
edu/field_projects/hippo/ (last access: 21 May 2021). The ACE-
FTS data (Waymark et al., 2013) are available at https://databace.
scisat.ca/level2/ace_v3.5_v3.6/ (last access: 21 May 2021), and
registration is required to download the data. The code for the
GEOS-Chem model and its adjoint (Henze et al., 2007) is pub-
licly available, and instructions for downloading the adjoint model

are available at http://wiki.seas.harvard.edu/geos-chem/index.php/
GEOS-Chem_Adjoint (last access: 21 May 2021). The output from
the GEOS-Chem model simulations used in this analysis is avail-
able upon request.
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