

Supplement of

Urban organic aerosol composition in eastern China differs from north to south: molecular insight from a liquid chromatography–mass spectrometry (Orbitrap) study

Kai Wang et al.

Correspondence to: Ru-Jin Huang (rujin.huang@ieecas.cn) and Thorsten Hoffmann (t.hoffmann@uni-mainz.de)

The copyright of individual parts of the supplement might differ from the article licence.

- 25 Table S1: The daily average concentrations of $PM_{2.5}$, SO₂, NO₂, CO and O₃, average
- 26 temperature (T) and daily solar radiation in Changchun, Shanghai and Guangzhou during filter
- 27 sampling dates

								Solar
	Sampling	PM _{2.5}	SO_2	NO_2	CO	O ₃	Т	radiation
Sample ID	Date	$(\mu g m^{-3})$	$(\mu g m^{-3})$	$(\mu g m^{-3})$	$(mg m^{-3})$	$(\mu g m^{-3})$	(°C)	$(J \text{ cm}^{-2})$
Changchun	04/01/2014	222	72	63	1.5	43	-14	841*
	24/01/2014	162	77	51	1.4	70	-11	485*
	29/01/2014	185	70	29	0.9	58	-9	576*
Shanghai	01/01/2014	171	63	99	1.7	61	10	1133*
	19/01/2014	159	33	61	1.3	74	7	1307
	20/01/2014	172	59	76	1.8	42	6	994
Guangzhou	05/01/2014	152	39	89	1.4	113	16	1372
	06/01/2014	138	42	109	1.7	117	15	1164
	11/01/2014	138	24	80	1.6	69	16	1329

The data of SO₂, NO₂, CO, O₃ and T have been taken from an open air quality database (<u>www.aqistudy.cn</u>), while the data of solar radiation wereprovided by the World Radiation Data Centre (http://wrdc.mgo.rssi.ru/wrdc_en_new.htm). * Since the data of solar radiation for Changchun (43.54°N, 125.13°E) are not available, here we present the daily solar radiation data observed for Shengyang (41.44° N, 123.31°E), which is located quite close to Changchun.

33

Table S2: The concentrations ($\mu g m^{-3}$) of organic carbon (OC), elemental carbon (EC) and inorganic ions in the filter samples of each city.

Sample ID	Sampling	OC	EC	Cl-	NO ₃ -	SO4 ²⁻	Na ⁺	$\mathrm{NH_{4^+}}$	K ⁺	Mg ²⁺	Ca ²⁺
Sample ID	04/01/2014	68	7.1	13.69	9.77	22.81	0.84	10.70	1.78	0.06	1.12
Changchun	24/01/2014	42	7.9	3.12	25.26	28.84	0.42	13.00	1.99	0.09	0.54
	29/01/2014	28	7.6	2.58	11.45	10.65	0.60	5.63	1.38	0.31	2.92
	Average	46	7.5	6.47	15.49	20.77	0.62	9.78	1.72	0.15	1.53
	±*SD	±20	±0.4	±6.26	±8.50	±9.27	±0.21	±3.78	±0.31	±0.13	±1.24
Shanghai	01/01/2014	34	5.4	4.19	21.12	12.48	0.45	7.14	1.63	0.21	5.04
	19/01/2014	20	4.5	3.00	38.91	27.31	0.48	16.55	1.43	0.08	0.88
	20/01/2014	19	5.4	3.28	24.60	20.02	0.80	9.02	1.44	0.31	4.63
	A∨erage	24	5.1	3.49	28.21	19.93	0.58	10.90	1.50	0.20	3.52
	±SD	±8	±0.5	±0.62	±9.43	±7.41	±0.19	±4.98	±0.11	±0.12	±2.30
Guangzhou	05/01/2014	26	4.1	1.93	24.74	22.39	0.59	10.51	1.93	0.25	1.61
	06/01/2014	23	4.1	2.42	23.67	25.48	0.79	11.40	1.73	0.25	1.32
	11/01/2014	27	5.0	2.28	25.48	19.83	0.68	10.05	1.59	0.18	1.52
	Average	25	4.4	2.21	24.63	22.56	0.69	10.65	1.75	0.23	1.48
	±SD	±2	±0.5	±0.25	±0.91	±2.83	±0.10	±0.69	±0.17	±0.04	±0.15

36 *SD refers to standard deviation.

Figure S1. 48 hours back trajectories of air arriving at the three cities (Changchun, Shanghai and Guangzhou) during the sampling time calculated using the NOAA HYSPLIT model (Rolph et al.,

2017).

46

Figure S2. Double bond equivalent (DBE) versus carbon number for all CHO– compounds for all sample locations. The molecular formula represents the abundance-weighted average CHO– formula and the area of the circles is proportional to the absolute peak abundance of an individual compound. The color bar denotes the aromaticity equivalent (gray with Xc < 2.50, purple with 2.50 \leq Xc < 2.70 and red with Xc \geq 2.70). The pie charts show the percentage of each Xc category (i.e., gray color-coded compounds, purple color-coded compounds and red color-coded compounds) in each sample in terms of peak abundance.

Figure S3. Classification of CHON+ compounds into different subgroups according to O/N ratios
in their formulas. The y-axis indicates the relative contribution of each subgroup to the sum of peak
abundance of CHON+ compounds.

Figure S4. Classification of CHON- compounds into different subgroups according to nitrogen
atoms number in their formulas. The y-axis indicates the relative contribution of each subgroup to
the sum of peak abundance of all CHON- compounds.

Figure S5. Classification of CHON+ compounds into different subgroups according to nitrogen
 atoms number in their formulas. The y-axis indicates the relative contribution of each subgroup to
 the sum of peak abundance of all CHON+ compounds.

68

Figure S6. Double bond equivalent (DBE) versus carbon number for all CHON– compounds for all sample locations. The molecular formula represents the abundance-weighted average CHONformula and the area of circles is proportional to the absolute peak abundance of an individual compound. The color bar denotes the aromaticity equivalent (gray with Xc < 2.50, purple with 2.50 \leq Xc < 2.70 and red with Xc \geq 2.70). The pie charts show the percentage of each Xc category (i.e., gray color-coded compounds, purple color-coded compounds and red color-coded compounds) in each sample in terms of peak abundance.

78

Figure S7. Double bond equivalent (DBE) vs C number for all CHON+ compounds of all samples. 79 80 The molecular formula represents the abundance-weighted average CHON+ formula and the area 81 of the circles is proportional to the fourth root of the peak abundance of an individual compound 82 (the diagram with circle area related to absolute peak abundance is presented in Fig. S8). The color 83 bar denotes the aromaticity equivalent (gray with Xc < 2.50, purple with $2.50 \le Xc < 2.70$ and red 84 with $Xc \ge 2.70$). The pie charts show the percentage of each Xc category (i.e., gray color-coded 85 compounds, purple color-coded compounds and red color-coded compounds) in each sample in 86 terms of peak abundance.

87

Figure S8. Double bond equivalent (DBE) vs C number for all CHON+ compounds of all samples. The molecular formula represents the abundance-weighted average CHON+ formula and the area of the circles is proportional to the absolute peak abundance of an individual compound. The color bar denotes the aromaticity equivalent (gray with Xc < 2.50, purple with $2.50 \le Xc < 2.70$ and red with $Xc \ge 2.70$). The pie charts show the percentage of each Xc category (i.e., gray color-coded compounds, purple color-coded compounds and red color-coded compounds) in each sample in terms of peak abundance.

Figure S9. Classification of CHN+ compounds into different subgroups according to nitrogen
atoms number in their formulas. The y-axis indicates the relative contribution of each subgroup to
the sum of peak abundance of all CHN+ compounds.

100

101 Figure S10. Van Krevelen diagrams for CHN+ compounds in Changchun, Shanghai and 102 Guangzhou samples. The area of circles is proportional to the absolute peak abundance of an 103 individual compound and the color bar denotes the aromaticity equivalent (gray with Xc < 2.50, 104 purple with $2.50 \le Xc < 2.70$ and red with $Xc \ge 2.70$). The pie charts show the percentage of each 105 Xc category (i.e., gray color-coded compounds, purple color-coded compounds and red color-106 coded compounds) in each sample in terms of peak abundance.

108Figure S11. Double bond equivalent (DBE) versus carbon number for all CHOS- compounds for109all sample locations. The molecular formula represents the abundance-weighted average CHOS-110formula and the area of circles is proportional to the absolute peak abundance of an individual111compound. The color bar denotes the aromaticity equivalent (gray with Xc < 2.50, purple with 2.50)</td>112 \leq Xc < 2.70 and red with Xc \geq 2.70). The pie charts show the percentage of each Xc category (i.e.,113gray color-coded compounds, purple color-coded compounds and red color-coded compounds) in114each sample in terms of peak abundance.

117 **References**

- Kind, T., and Fiehn, O.: Seven Golden Rules for heuristic filtering of molecular formulas obtained by
 accurate mass spectrometry, BMC Bioinformatics, 8, 10.1186/1471-2105-8-105, 2007.
- Kourtchev, I., Godoi, R. H. M., Connors, S., Levine, J. G., Archibald, A. T., Godoi, A. F. L., Paralovo, S. L., Barbosa, C. G. G., Souza, R. A. F., Manzi, A. O., Seco, R., Sjostedt, S., Park, J.-H., Guenther, A., Kim, S., Smith, J., Martin, S. T., and Kalberer, M.: Molecular composition of organic aerosols in central Amazonia: an ultra-high-resolution mass spectrometry study, Atmos. Chem. Phys., 16, 11899-11913, https://doi.org/10.5194/acp-16-11899-2016, 2016.
- Lin, P., Rincon, A. G., Kalberer, M., and Yu, J. Z.: Elemental composition of HULIS in the Pearl River Delta
 Region, China: results inferred from positive and negative electrospray high resolution mass
 spectrometric data, Environ. Sci. Technol., 46, 7454-7462, 10.1021/es300285d, 2012.
- Rincón, A. G., Calvo, A. I., Dietzel, M., and Kalberer, M.: Seasonal differences of urban organic aerosol
 composition an ultra-high resolution mass spectrometry study, Environ. Chem., 9, 298,
 10.1071/en12016, 2012.
- Rolph, G., Stein, A., and Stunder, B.: Real-time Environmental Applications and Display sYstem: READY,
 Environ. Model. Softw., 95, 210-228, 10.1016/j.envsoft.2017.06.025, 2017.
- Wang, K., Zhang, Y., Huang, R.-J., Cao, J., and Hoffmann, T.: UHPLC-Orbitrap mass spectrometric characterization of organic aerosol from a central European city (Mainz, Germany) and a Chinese megacity (Beijing), Atmos. Environ., 189, 22-29, 10.1016/j.atmosenv.2018.06.036, 2018.
- Wang, X. K., Hayeck, N., Brüggemann, M., Yao, L., Chen, H. F., Zhang, C., Emmelin, C., Chen, J. M.,
 George, C., and Wang, L.: Chemical characterization of organic aerosol in: A study by UltrahighPerformance Liquid Chromatography Coupled with Orbitrap Mass Spectrometry, J. Geophy. Res.-Atmos.,
 122, 703-722, https://doi.org/10.1002/2017JD026930, 2017.
- Yassine, M. M., Harir, M., Dabek-Zlotorzynska, E., and Schmitt-Kopplin, P.: Structural characterization of
 organic aerosol using Fourier transform ion cyclotron resonance mass spectrometry: aromaticity
 equivalent approach, Rapid Commun. Mass Spectrom., 28, 2445-2454, 10.1002/rcm.7038, 2014.
- Zielinski, A. T., Kourtchev, I., Bortolini, C., Fuller, S. J., Giorio, C., Popoola, O. A. M., Bogialli, S., Tapparo,
 A., Jones, R. L., and Kalberer, M.: A new processing scheme for ultra-high resolution direct infusion
 mass spectrometry data, Atmos. Environ., 178, 129-139, 10.1016/j.atmosenv.2018.01.034, 2018.