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Abstract. In response to the coronavirus disease of 2019
(COVID-19), California issued statewide stay-at-home or-
ders, bringing about abrupt and dramatic reductions in air
pollutant emissions. This crisis offers us an unprecedented
opportunity to evaluate the effectiveness of emission reduc-
tions in terms of air quality. Here we use the Weather Re-
search and Forecasting model with Chemistry (WRF-Chem)
in combination with surface observations to study the impact
of the COVID-19 lockdown measures on air quality in south-
ern California. Based on activity level statistics and satel-
lite observations, we estimate the sectoral emission changes
during the lockdown. Due to the reduced emissions, the
population-weighted concentrations of fine particulate mat-
ter (PM2.5) decrease by 15 % in southern California. The
emission reductions contribute 68 % of the PM2.5 concen-
tration decrease before and after the lockdown, while me-
teorology variations contribute the remaining 32 %. Among
all chemical compositions, the PM2.5 concentration decrease
due to emission reductions is dominated by nitrate and pri-
mary components. For O3 concentrations, the emission re-
ductions cause a decrease in rural areas but an increase in

urban areas; the increase can be offset by a 70 % emis-
sion reduction in anthropogenic volatile organic compounds
(VOCs). These findings suggest that a strengthened control
on primary PM2.5 emissions and a well-balanced control on
nitrogen oxides and VOC emissions are needed to effectively
and sustainably alleviate PM2.5 and O3 pollution in southern
California.

1 Introduction

Anthropogenic emissions from various emission sources,
including transportation, industrial, agricultural, residential,
and commercial sectors, contribute to California’s long-
existing air pollution problems (e.g., Shirmohammadi et al.,
2016; Hong et al., 2015; Warneke et al., 2013). The major
pollutants include, but are not limited to, fine particulate mat-
ter (PM2.5), nitrogen dioxide (NO2), sulfur dioxide (SO2),
and ozone (O3). Exposure to these pollutants has been corre-
lated with an increased rate of morbidity and mortality (Wang
et al., 2019). Mitigating the adverse effects of air pollution by
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reducing air pollutant emissions from major sectors has been
and will continue to be a major public policy challenge. How-
ever, the effect of emission reductions from various sources
on air quality improvement is subject to substantial uncer-
tainties because such effects cannot be directly measured and
because the atmospheric chemistry processes are highly non-
linear and complicated (Zhao et al., 2019b, 2015; Chen et
al., 2013). The recent coronavirus disease of 2019 (COVID-
19) provides an unprecedented opportunity for a more robust
understanding of the environmental impacts brought by the
emission reductions.

More than 200 countries and territories around the world
have reported a total of about 53 million confirmed cases
of COVID-19 that originated from Wuhan, China, and a
death toll of more than 1 300 000 (World Health Organiza-
tion, 2020). California is one of the most affected states in
the United States (US), partly because its poor air quality
makes Californians more susceptible to infectious diseases
such as COVID-19 (Bashir et al., 2020; Copat et al., 2020).
In response to the emergence of COVID-19, statewide stay-
at-home orders and related actions (e.g., closure of nonessen-
tial businesses) took effect on 19 March 2020 in California.
These orders are expected to reduce vehicle traffic and in-
dustrial activities, thereby changing the air pollutant emis-
sions and air quality in the state. It is essential to obtain
a high-spatiotemporal-resolution estimation of air pollution
for a better understanding of the atmospheric impacts caused
by changes in anthropogenic activity associated with the
COVID-19 pandemic.

A number of studies emerged soon after the start of the
COVID-19 pandemic and the subsequent lockdown to assess
the impact of the pandemic on air quality over various re-
gions around the world. For example, Archer et al. (2020)
compared the observed concentrations at all available ground
monitoring sites in the US between April 2020 and the prior
5 years (2015–2019) and found statistically significant de-
creases in NO2 concentrations at more than 65 % of the mon-
itoring sites, with an average drop of 2 ppb. Pan et al. (2020)
compared the surface air quality monitoring data in Califor-
nia during the period 20 March–5 May 2020 with those in
2015–2019 and found that PM2.5 in 2020 exhibited a notable
decrease, which could result from emission reductions asso-
ciated with the COVID-19 lockdown. Similar findings, i.e.,
reduced PM2.5 and NO2 concentrations, are also reported
for China (e.g., Chu et al., 2021; Le et al., 2020; Liu et al.,
2020; Marlier et al., 2020; Shi and Brasseur, 2020; Miyazaki
et al., 2020b), India (e.g., Pathakoti et al., 2020; Sharma et
al., 2020), and Europe (e.g., Chen et al., 2020; Menut et al.,
2020; Sicard et al., 2020; Ordóñez et al., 2020) based on sur-
face and/or satellite observations. For O3, the concentrations
either increased or slightly decreased during the pandemic,
depending on the region (Bekbulat et al., 2020; Huang et al.,
2021; Pan et al., 2020; Zhao et al., 2020). Most of the above
studies, however, are limited to comparing observations with

and without lockdown measures, which correspond to differ-
ent time periods under different meteorological conditions.

Meteorology plays significant roles in air pollution forma-
tion, transport, deposition, and transformation (P. Wang et al.,
2020), which is a very important factor that affects concen-
trations of O3 and PM2.5 (Stewart et al., 2017). The changes
in air quality due to meteorological variations may obscure
the effects of emission changes during the COVID-19 lock-
down. Using the Community Multiscale Air Quality model,
P. Wang et al. (2020) showed that the benefits of emission
reductions were overwhelmed by adverse meteorology over
the North China Plain, and severe air pollution events were
thus not avoided. Goldberg et al. (2020) reported that me-
teorological patterns were especially favorable for low NO2
in much of the United States in spring 2020, complicating
comparisons with spring 2019; meteorological variations be-
tween years can cause ∼ 15 % differences in monthly mean
column NO2. In view of this, a modeling approach is neces-
sary to accurately assess the impact of lockdown measures by
excluding the possible effects of meteorological conditions
and to examine the possible mechanisms responsible for the
changes in the air pollutant concentrations. In addition, while
previous studies have evaluated air quality changes in differ-
ent regions due to the emission reductions associated with the
COVID-19 lockdown, it remains unclear how the COVID-
19-induced emission reductions and the concurrent meteoro-
logical variations influence air quality in California.

The objective of this study is to investigate the air qual-
ity impact of the emission reductions in southern California
in association with COVID-19 by employing high-resolution
atmospheric modeling in combination with surface observa-
tions. Based on the statistics of activity levels together with
constraints from satellite observations, we estimate the sec-
toral emission changes during the COVID-19 lockdown. We
then conduct model simulations using the Weather Research
and Forecasting model with Chemistry (WRF-Chem) for the
periods before and during the COVID-19 lockdown to in-
vestigate the effects of reduced emissions and meteorology
on air pollution, respectively. Understanding how air quality
responds to the emission reductions during the COVID-19
pandemic will provide important insight into the future de-
velopment and optimization of effective air pollution control
strategies in southern California.

2 Method and data

2.1 Model configuration and emission estimation

We simulate the impact of COVID-19 lockdown measures
on air quality using the WRF-Chem version 3.9.1, which
considers highly nonlinear and complex meteorological and
atmospheric chemistry processes. The simulation period is
18 February to 23 April 2020, which includes about 1 month
before and after the California governor issued the stay-at-
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home (lockdown) order on 19 March (Pan et al., 2020). We
apply the model to two nested domains: Domain 1 cov-
ers the western United States and its surrounding areas at a
12 km× 12 km horizontal resolution; Domain 2 covers Cali-
fornia with a 4 km× 4 km resolution (Fig. 1). We focus our
analysis on southern California (the red rectangle in Fig. 1),
the largest metropolitan area in California, which is signifi-
cantly affected by the lockdown measures. We classify model
grids in southern California into urban and rural areas to fa-
cilitate the analysis of O3 simulation results. To be classified
as urban, an area in the US needs to have a population den-
sity of 1000 people per square mile (Ratcliffe et al., 2016),
i.e., about 6000 people per 4 km× 4 km model grid. As we
focus our analysis on southern California, one of the most
densely populated areas in the US, we use a higher popula-
tion density threshold of 30 000 people per model grid to bet-
ter distinguish areas with different photochemistry regimes
(Fig. S1 in the Supplement). We employ an extended Car-
bon Bond 2005 (CB05) (Yarwood et al., 2005) with chlo-
rine chemistry (Sarwar et al., 2008) coupled with the Modal
for Aerosol Dynamics in Europe volatility basis set (MADE
VBS) (K. Wang et al., 2015; Ahmadov et al., 2012). MADE
VBS uses a modal aerosol size representation and an ad-
vanced secondary organic aerosol (SOA) module based on
the VBS approach. The aqueous-phase chemistry is based on
the AQChem module used in the Community Multiscale Air
Quality (CMAQ) model (K. Wang et al., 2015). The chemi-
cal initial and boundary conditions were extracted from the
output of the Whole Atmosphere Community Climate Model
(WACCM) (Marsh et al., 2013). A 6 d spin-up period is used
to minimize the influence of initial conditions on simulation
results. The vertical resolution, meteorological initial and
boundary conditions, and physical options are the same as
our previous modeling studies based on WRF-Chem for Cal-
ifornia (Zhao et al., 2019a; T. Y. Wang et al., 2020; Shi et al.,
2019).

We obtain anthropogenic emissions in California without
the influence of COVID-19 lockdown measures from the
California Air Resources Board (CARB) for 2012, the latest
year for which data are available (California Air Resources
Board, 2018). We scale the 2012 emissions to 2020 levels
by employing the relative changes for 2012–2018 in Califor-
nia from the National Emissions Inventory (NEI) trend re-
port (US Environmental Protection Agency, 2018a) and as-
suming that the trends continued during 2018–2020. The an-
thropogenic emissions outside California are derived from
the National Emission Inventory (US Environmental Protec-
tion Agency, 2018b) in 2011 and are scaled to 2020 follow-
ing the same method. The biogenic, wind-blown dust, sea
salt, and wildfire emissions are calculated online in WRF-
Chem, as detailed in our previous studies (Zhao et al., 2019a;
T. Y. Wang et al., 2020; Shi et al., 2019).

In our baseline simulation (Base scenario in Table 1), we
use the above emission inventories. To evaluate the effect of
the COVID-19 response actions, we conduct another simu-

Figure 1. Simulation domains in this study. The red rectangle de-
notes the area of southern California where most analyses in this
study are focused.

lation (Lockdown scenario in Table 1) in which the CARB
anthropogenic emission inventory after 19 March is adjusted
to account for the emission changes due to the COVID-19
lockdown. Because of the lack of detailed emission data,
which often take years to update, we rely on a number of
key activity indicators to estimate the sector-specific relative
changes in anthropogenic emissions (as summarized in Ta-
ble 2), which are subsequently evaluated against satellite-
derived emission estimates. For the transportation sector,
we separately estimate the reduction rates for on-road, off-
road, and aircraft emissions due to the COVID-19 lockdown.
Specifically, we assume the reduction rates in gasoline and
diesel vehicle emissions in the on-road sector to be the same
as the reduction rates in gasoline and diesel production from
the pre-lockdown period to the lockdown period, as docu-
mented by the California Energy Commission’s Weekly Fu-
els Watch Reports (California Energy Commission, 2020b).
We then estimate the reduction rates in total emissions from
the on-road sector based on the relative fractions of gasoline
and diesel vehicle emissions reported by the CARB emission
inventory. Since the off-road sector involves few gasoline ve-
hicles, we assume the reduction rates in off-road emissions
to be the same as the reduction rate in diesel production.
For the aircraft sector, we assume the reduction rates in air-
craft emissions to be the same as the reduction rate in jet
fuel production from the Weekly Fuels Watch Reports (Cal-
ifornia Energy Commission, 2020b). The changes in emis-
sions from the industrial, residential, and commercial sec-
tors are assumed to be proportional to the changes in elec-
tricity consumption by the corresponding sector, as summa-
rized in the Energy Insights Reports of the California Energy
Commission (California Energy Commission, 2020a). The
changes in emissions from power plants are estimated as a
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Table 1. Summary of model scenarios developed in this study.

Scenario Definition

Base This scenario uses the default CARB emission inventory without considering the emis-
sion reductions induced by the COVID-19 lockdown. It provides a baseline for evaluat-
ing the effect of COVID-19 lockdown on air quality.

Lockdown This scenario adjusts the CARB emission inventory to account for the emission reduc-
tions due to the COVID-19 lockdown. The difference between Base and Lockdown
represents the effect of the COVID-19 lockdown.

VOC1.0 This scenario is the same as Lockdown except that the VOC emissions are kept at the
level of the Base scenario. It is used to evaluate the relative contribution of VOC and
NOx reductions to COVID-19-induced O3 concentration changes.

NOx0.3 This scenario is the same as Lockdown except that the NOx emissions are further re-
duced to 30 % of those in the Base scenario. It is used to assess the potential effects of
strengthened NOx control measures.

VOC0.3 This scenario is the same as Lockdown except that the VOC emissions are further re-
duced to 30 % of those in the Base scenario. It is used to assess the potential effects of
strengthened VOC control measures.

Table 2. The percentage of changes in air pollutant emissions during the COVID-19 lockdown relative to a hypothetical scenario without the
lockdown in southern California.

VOC CO NOx SOx PM10 PM2.5 NH3

On-road transportation −50 % −51 % −39 % −35 % −44 % −42 % −51 %
Off-road transportation −30 % −30 % −30 % −30 % −30 % −30 % −30 %
Aircraft −70 % −70 % −70 % −70 % −70 % −70 % −70 %
Power plants −7 % −7 % −7 % −7 % −7 % −7 % −7 %
Industrial −15 % −15 % −15 % −15 % −15 % −15 % −15 %
Residential 10 % 10 % 10 % 10 % 10 % 10 % 10 %
Commercial −15 % −15 % −15 % −15 % −15 % −15 % −15 %
Agriculture 0 % 0 % 0 % 0 % 0 % 0 % 0 %
Total −21.1 % −35.7 % −28.3 % −18.5 % −9.7 % −15.0 % −16.1 %

function of the total electricity demand in California (Cal-
ifornia Energy Commission, 2020a). We also checked the
emission change for power plants measured by the Continu-
ous Emission Monitoring System (CEMS). There are certain
differences between the emission reduction rates estimated
based on the CEMS and electricity demand, but the differ-
ence only results in a less than 1 % difference in the total
emissions of any pollutant (from 0.05 % to 1 %), which is
expected to have a limited effect on the simulation results
for mean air pollutant concentrations in southern California
(see details in the Supplement and Fig. S3). Having estimated
the emission changes using the preceding bottom-up method,
in order to prove the reliability of our bottom-up emissions,
we compare the changes in nitrogen oxide (NOx) emissions
with a top-down satellite-based emission inventory – an ex-
tended calculation of the Tropospheric Chemistry Reanaly-
sis version 2 (TCR-2) (Miyazaki et al., 2020a). This data
product has been obtained from the assimilation of multiple
satellite measurements of ozone, CO, NO2, HNO3, and SO2

from the OMI (Ozone Monitoring Instrument), TROPOMI
(TROPOspheric Monitoring Instrument), MLS (Microwave
Limb Sounder), and MOPITT (Measurement Of Pollution In
The Troposphere) satellite instruments. The reanalysis cal-
culation for the COVID-19 time period was conducted at
0.56◦ horizontal resolution using the global chemical trans-
port model MIROC-CHASER (Watanabe et al., 2011) and
an ensemble Kalman filter technique that optimizes chemi-
cal concentrations of various species and emissions of NOx ,
SO2, and CO. The extended reanalysis data for 2020 have al-
ready been used by Miyazaki et al. (2020b) to study the air
quality response to the Chinese COVID-19 lockdown mea-
sures. Here we use the NOx emission product, which has a
sufficiently high quality on the spatiotemporal scales of inter-
est for this study. Using this product, we first calculate NOx

emissions in a hypothetical scenario without considering the
COVID-19 effect. Here the hypothetical emission trend in
2020 is averaged from those trends from the top-down NOx

emission inventory in prior years (2017–2019). We subse-
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Figure 2. Satellite-derived NOx emission estimates in southern Cal-
ifornia. (a) Daily NOx emissions from 1 February to 23 April 2020.
The red line represents the average emissions during the period af-
ter 19 March. (b) NOx emission changes due to COVID-19 (i.e.,
the anomaly), which are quantified using the difference between the
real-world NOx emissions and the emissions in a hypothetical sce-
nario without considering COVID-19. The emissions in the hypo-
thetical scenario are estimated based on emission trends in prior
years (2017–2019) using 1 February as a reference. The difference
between two blue dashed lines represents the average reductions
of NOx emissions induced by the COVID-19 lockdown measures
that took effect on 19 March. The local valley between 24 February
and 3 March is caused by retrieval uncertainties due to unfavorable
meteorology conditions and is thus excluded when we estimate the
average NOx emissions before the lockdown.

quently quantify the emission changes due to COVID-19 us-
ing the difference between the hypothetical and real-world
emissions (see details in Fig. 2). The estimated NOx reduc-
tion ratio induced by the COVID-19 lockdown measures av-
eraged during 19 March to 23 April in southern California
is 27.2 % based on the top-down method, which is in good
agreement with the 28.3 % (see Table 2) reduction estimated
based on the bottom-up method. That said, we acknowl-
edge that, since more detailed data to support a more ac-
curate estimation are not yet available, the estimates of the
sector-specific relative changes in emissions inevitably in-
volve some degree of uncertainty, which can be improved
in future work.

2.2 Observational data and model evaluation

We use a series of meteorology and air quality observations
to evaluate the model performance and help analyze the in-
fluence of the COVID-19 lockdown. For meteorology, we
use observational data obtained from the National Climatic
Data Center (NCDC), from which hourly or 3 h observations
of wind speed at 10 m (WS10), temperature at 2 m (T2),
and water vapor mixing ratio at 2 m (Q2) are available for
82 sites distributed southern California (the red rectangle in
Fig. 1). We compare the WRF-Chem meteorological simula-
tions with these measurements and apply a number of statis-

tical indices defined in Emery et al. (2001) to quantitatively
evaluate the model performance, as summarized in Table 3.
In general, the model simulations agree fairly well with sur-
face meteorological observations. The performance statistics
for WS10, T2, and Q2 are all within the benchmark ranges
proposed by Emery et al. (2001).

For air quality, we achieve hourly observations of PM2.5,
O3, NO2, and SO2 from CARB (California Air Resources
Board, 2020) and use them to evaluate the air quality sim-
ulations of WRF-Chem (see the “Results and discussion”
section). The observational data are available at 42 sites for
PM2.5, 63 sites for O3, 48 sites for NO2, and 12 sites for
SO2 in southern California (the red rectangle in Fig. 1) dur-
ing the simulation period. We do not evaluate the model per-
formance in simulating the chemical composition of PM2.5
because the composition data from major observational net-
works were not available by the time we completed the
present study. Nevertheless, our previous studies using al-
most the same model configurations showed fairly good
agreement with PM2.5 composition observations during Jan-
uary, April, July, and October 2012 (Zhao et al., 2019a;
T. Y. Wang et al., 2020).

3 Results and discussion

3.1 Evaluation of the simulated results with surface
observations

In this study, we simulated the major air pollutants using
WRF-Chem under two scenarios, Base and Lockdown (Ta-
ble 1). To evaluate the model performance with regard to
the temporal variations in air pollutants, we compared the
simulated concentrations of PM2.5, maximum daily 8 h aver-
age (MDA8) O3, NO2, and SO2 with observational data from
CARB in southern California.

Before the COVID-19 lockdown (18 February to
18 March), results from model simulations under the Base
scenario (PreBase) capture the magnitude and temporal evo-
lution of the four key air pollutants reasonably well, with
normalized mean biases (NMBs) of 11.7 %, 4.5 %,−14.4 %,
and 7.8 % for PM2.5, MDA8 O3, NO2, and SO2, respectively
(Fig. 3). During the COVID-19 lockdown period (19 March
to 23 April), compared to the simulations for the Base sce-
nario (PostBase), which overestimates the surface concentra-
tions with NMBs of 28.1 %, 1.6 %, 21.4 %, and 39.2 % for
PM2.5, MDA8 O3, NO2, and SO2, respectively, the simulated
results using the adjusted emission inventory (PostLockdown)
not only agree better with surface observations for all four
air pollutants (with NMBs of 10.6 %, 1.0 %, −12.6 %, and
−13.1 % for PM2.5, MDA8 O3, NO2, and SO2, respectively),
but also show NMBs generally closer to those during the pre-
lockdown period (Fig. 3). The improvement in model perfor-
mance is observed for both urban and rural areas. In the ur-
ban areas, the NMB for PM2.5 drops from 25.8 % under the

https://doi.org/10.5194/acp-21-8693-2021 Atmos. Chem. Phys., 21, 8693–8708, 2021



8698 Z. Jiang et al.: Modeling the impact of COVID-19 on air quality in southern California

Table 3. Evaluation of meteorological simulation results compared to observational data from the National Climatic Data Center.

Variable Index Value Refa Variable Index Value Refa

Wind speed (m s−1) Mean observation 3.92 Temperature (K) Mean observation 287.48
Mean simulation 3.69 Mean simulation 287.21
Mean bias −0.22 ≤±0.5 Mean bias −0.28 ≤±0.5
Gross error 1.43 ≤ 2 Gross error 1.76 ≤ 2
IOAb 0.76 ≥ 0.6 IOA 0.93 ≥ 0.8

Wind direction (◦) Mean observation 243.45 Humidity (g kg−1) Mean observation 6.41
Mean simulation 232.90 Mean simulation 6.16
Mean bias 1.48 ≤±10 Mean bias −0.25 ≤±1
Gross error 44.53 ≤ 30 Gross error 0.83 ≤ 2

IOA 0.84 ≥ 0.6

a The reference values are taken from Emery et al. (2001). b IOA: index of agreement.

Base scenario to 3.9 % under the Lockdown scenario, get-
ting closer to the NMB of 4.0 % during the pre-lockdown
period. The corresponding NMB in rural areas drops from
29.7 % to 15.1 %, also getting closer to 17.8 % during the pre-
lockdown period (Fig. 3e, g). Regarding MDA8 O3, although
the differences between the Base and Lockdown scenarios
are quite small (Fig. 3b), the NMB is slightly improved from
−1.5 % (PostBase) to −0.2 % (PostLockdown) in urban areas
and from 3.2 % to 1.5 % in rural areas (Fig. 3f, h).

Subsequently, we evaluated the spatial distributions of
simulated PM2.5 and MDA8 O3 concentrations using obser-
vational data averaged during the pre-lockdown and lock-
down periods in southern California (Fig. 4). Figure S4
shows the scattergrams of the simulated and observed
monthly average PM2.5 and MDA8 O3 concentrations in
southern California. The Base scenario can simulate the
spatial patterns of PM2.5 and MDA8 O3 reasonably well
(Fig. 4a–b and d–e), but it overestimates the observations of
PM2.5 concentrations during the lockdown period (PostBase,
Figs. 4b and S4b). The simulated distributions of PM2.5
concentrations under the Lockdown scenario (PostLockdown)
match the observations better than those for the Base sce-
nario (PostBase) (Figs. 4b–c and S4b–c); the hot spots oc-
curring over Los Angeles County become less polluted and
more consistent with the surface observations after consider-
ing the emission reductions associated with the COVID-19
lockdown (Fig. 4b–c).

3.2 Effects of anthropogenic emission reductions and
meteorology conditions on air pollutants

Both observations and simulations in Fig. 3 show significant
changes in air pollutant concentrations during the COVID-
19 lockdown relative to the pre-lockdown period, resulting
from a combination of emission reductions and meteorology
variations. Our model simulations allow us to quantify the
relative contributions of these two factors. Figure 5a–f illus-
trate population-weighted concentrations of simulated PM2.5

components, NO2, SO2, MDA8 O3 in southern California,
and MDA8 O3 over the urban and rural areas of southern
California under the Base and Lockdown scenarios. We use
population-weighted concentrations because they are more
relevant to the health impacts of air pollutants (PM2.5 and
O3), the mitigation of which is an ultimate goal of control-
ling air pollution. Figure S5 shows the mean concentrations
of simulated PM2.5 components, MDA8 O3, NO2, and SO2
in southern California.

The simulations of the Base and Lockdown scenarios dur-
ing the lockdown period (PostBase and PostLockdown) have
the same model configurations and inputs (same large-
scale meteorological conditions) except for different emis-
sion inventories. The concentration differences between the
two scenarios during the lockdown period (PostLockdown-
PostBase) represent the effect of anthropogenic emission re-
ductions. Strictly speaking, while the large-scale meteoro-
logical fields are the same in PostBase and PostLockdown,
the different emission inputs could cause small differences
in regional meteorology fields through the interactions be-
tween air pollutants and meteorology. Such a meteorology
perturbation is considered to be part of the emission re-
duction effect because it is fundamentally caused by emis-
sion reductions. The simulations of the Base scenario dur-
ing the lockdown and pre-lockdown periods (PostBase and
PreBase) both use the emission inventories without consider-
ing COVID-19-induced emission reductions. The differences
between PostBase and PreBase can be regarded as the impact
of meteorology variations. Here our intention is to examine
the relative contribution of meteorological variations to the
population-weighted air pollutant concentrations before and
after the lockdown instead of the changes relative to the cli-
matological conditions. However, we acknowledge that it is
more meaningful and informative to assess the meteorologi-
cal effect by conducting ensemble simulations over multiple
years or using multiyear averaged meteorological conditions
to serve as a reference state (Le et al., 2020), which warrants
further studies in the future. Figures 6 and 7 further show
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Figure 3. Time series of observed and simulated concentrations of major pollutants. (a–d) Time series of (a) PM2.5, (b) MDA8 O3, (c) NO2,
and (d) SO2 averaged across all observational stations from CARB over southern California. (e–f) Time series of (e) PM2.5 and (f) MDA8
O3 across all stations over the urban areas of southern California. (g–h) The same as (e)–(f) but for the rural areas. Black lines are surface
observations from the CARB network. Blue, green, and red lines are simulated air pollutant concentrations during the pre-lockdown period
(18 February to 18 March) under the Base scenario (PreBase), during the lockdown period (19 March to 23 April) under the Base scenario
(PostBase), and during the lockdown period under the Lockdown scenario (PostLockdown). The definitions of the Base and Lockdown sce-
narios are summarized in Table 1. Normalized mean bias (NMB) is given by =

∑N
i=1(Varm−Varo)/

∑N
i=1Varo, where N is the number of

sites, and Varm and Varo are modeled and observed concentrations, respectively.

the spatial distribution of the concentration changes caused
by anthropogenic emission reductions and meteorology vari-
ations.

The simulated population-weighted NO2 concentrations
during the lockdown decrease by 4.3 ppb (from 10.7 to
6.4 ppb) relative to the pre-lockdown period, to which the an-
thropogenic emission reductions and meteorology conditions
contribute 2.4 ppb (56 %) and 1.9 ppb (44 %), respectively

(Fig. 5b). The decrease in NO2 concentrations as a result of
the anthropogenic emission reductions (27 %) is similar to
the reduction ratio in NOx emissions (28 %), indicating that
the NOx emission reductions can be almost fully transferred
to ambient concentrations. According to our emission esti-
mation, over 80 % of the NOx reductions is attributed to the
substantially lowered traffic intensity due to the stay-at-home
order. Note that the soil NOx emissions are not taken into
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Figure 4. Overlay plots of the simulated (contour) and observed (circles) PM2.5 and MDA8 O3 concentrations in southern California.
Panels (a)–(c) are for PM2.5 and (d)–(f) are for MDA8 O3. Panels (a) and (d) are for the pre-lockdown period (18 February to 18 March)
under the Base scenario (PreBase); (b) and (e) are for the lockdown period (19 March to 23 April) under the Base scenario (PostBase); (c) and
(f) are for the lockdown period under the Lockdown scenario (PostLockdown).

Figure 5. Effects of emission reductions and meteorology conditions on air pollutants. (a–d) Population-weighted concentrations of simu-
lated air pollutant concentrations in southern California: (a) PM2.5 components; (b) NO2; (c) SO2; (d) MDA8 O3 over southern California;
(e) MDA8 O3 over the urban areas of southern California; (f) MDA8 O3 over the rural areas of southern California. PreBase, PostBase, and
PostLockdown have the same meanings as in Fig. 3.
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Figure 6. Spatial distributions of the emission reductions and meteorology condition effects on air pollutants. (a, c) Emission reductions and
(b, d) meteorology variations in (a, b) PM2.5 and (c, d) MDA8 O3 concentrations.

account in our WRF-Chem simulation. According to Guo
et al. (2020), the total soil NOx emissions in California ac-
count for only about 1.1 % of the state’s total anthropogenic
NOx emissions (California Air Resources Board, 2017). The
soil NOx emissions in southern California are generally even
lower compared to other parts of the state (Guo et al., 2020).
Since our study focuses on the impact of anthropogenic emis-
sion reductions on air quality during the COVID-19 lock-
down period, the absence of soil NOx emissions has little
impact on our main results and will not change the main find-
ings of this study. The population-weighted concentrations of
SO2 also show a decreasing trend (Fig. 5c). Compared with
NO2, the decrease in SO2 concentrations due to emission re-
ductions is smaller (17 %), partly because power generators
and heavy industry (the main sources of SO2) are less af-
fected by the COVID-19 lockdown (see Table 2).

Coinciding with the decrease in NO2 and SO2, the sim-
ulated population-weighted PM2.5 concentrations decrease
by 1.8 µg m−3 from 8.7 µg m−3 during the pre-lockdown
period (PreBase) to 6.9 µg m−3 during the lockdown pe-
riod (PostLockdown). The emission reductions contribute
1.2 µg m−3 (67 %) of the above decrease, which translates
into a 15 % reduction in population-weighted PM2.5 concen-
trations from the levels without the lockdown (i.e., PostBase)
(Fig. 5a). The decrease occurs almost everywhere across the
domain (Fig. 6a), consistent with the results in the last sec-
tion that PM2.5 concentrations are lowered in both urban and
rural areas as a result of the emission reductions (Fig. 3e,
g). The concentration decrease is higher in urban areas than
in rural areas (Figs. 6a and 3e, g), with the most signifi-
cant decline occurring in urban areas of Los Angeles County
(Fig. 6a). In contrast, the meteorology variations can increase
the PM2.5 concentrations in some regions (mainly the inland
regions) and decrease them in others (mainly the coastal re-

gions) (Fig. 6b). The net effect is to reduce the population-
weighted concentration by 0.6 µg m−3 since the concentra-
tion decrease happens to occur in more densely populated
regions (Fig. 5a).

The concentrations of PM2.5 are affected by emissions
of multiple pollutants through both primary emissions and
chemical reactions. To further explore the reasons behind
the PM2.5 concentration changes, we examine the changes
in individual chemical components, as shown in Figs. 5a
and 7. Following the emission changes (from PostBase to
PostLockdown), all major PM2.5 components experience a con-
centration decrease throughout almost the entire domain
(Fig. 7), since the emissions of essentially all pollutants
are reduced to some extent due to the lockdown measures
(Table 2). The population-weighted concentrations of ni-
trate decrease the most (0.42 µg m−3), followed by “others”
(0.32 µg m−3, including all other components besides the key
components listed here), organic matter (OM, 0.16 µg m−3),
ammonium (0.15 µg m−3), black carbon (BC, 0.10 µg m−3),
and sulfate (from 0.07 µg m−3) (Fig. 5a). The largest de-
crease in nitrate is tied to the substantial reduction in NOx

emissions, which is further explained by a larger reduction
ratio in transportation emissions (by 30 %–70 %) compared
to other emission sources (Table 2). In addition, the decreases
in others, elemental carbon (EC), and primary OM (a frac-
tion of the total OM) are attributable to the reductions in pri-
mary PM2.5 emissions. In our emission estimates, the sector-
specific relative emission changes of EC, primary OM, and
others are assumed to be the same as the total primary PM2.5,
as summarized in Table 2. For the total emissions of all
sectors, the reductions in EC, primary OM, and others are
22.7 %, 15.8 %, and 13.5 %, respectively, which are slightly
different from the reduction in total primary PM2.5 since
different chemical components have different sectoral dis-
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Figure 7. The same as Fig. 6 but for NO2, SO2, and different PM2.5 chemical components.
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tributions. The overall concentration decrease in these pri-
mary chemical components even exceeds that of nitrate; this
clearly indicates an important role of primary PM2.5 com-
ponents in improving PM2.5 air quality during the lockdown
period, although the primary PM2.5 emissions have only been
reduced by 15 %.

The simulated population-weighted O3 concentrations in-
crease noticeably from 38 ppb in the pre-lockdown period
(PreBase) to 42 ppb (PostLockdown) during the lockdown, and
the effects of meteorological changes (i.e., PostBase−PreBase)
play a dominant role in the variation of O3. The O3 level
is strongly affected by ambient conditions like temperature
and solar radiation (Z. Wang et al., 2015). As the tempera-
ture gets warmer and the radiation gets stronger over time,
the O3 concentrations are elevated in most areas during the
COVID-19 lockdown compared to the pre-lockdown period
(Fig. 6d). The emission reductions cause an O3 decrease in
rural areas but a slight increase in the urban areas (Figs. 6c
and 3f, h), which is consistent with previous findings (Zhao et
al., 2019a; T. Y. Wang et al., 2020; Martien et al., 2003; Qin
et al., 2004). In urban areas where NOx emissions are high,
a volatile-organic-compound-limited (VOC-limited) regime
is seen, while in rural areas, a NOx-limited regime is ob-
served (Martien et al., 2003; Qin et al., 2004). It follows
that the decrease in NOx emissions leads to opposite changes
in O3 concentrations in urban and rural areas. The increase
and decrease in different areas largely offset each other, re-
sulting in a negligible change in population-weighted O3
concentrations (0.07 ppb) (Fig. 5d) and a slight decrease in
area-averaged O3 concentrations over the modeling domain
(0.77 ppb) (Figs. 6c and S5b). Last but not least, the small
sensitivity of O3 to emission reductions is also partly ex-
plained by the fact that 75 % of the ambient O3 concentra-
tion is background O3 (Zhao et al., 2019a; T. Y. Wang et al.,
2020).

3.3 Effects of anthropogenic NOx and VOC emission
reductions on ozone concentration

Our modeling results showed an increase in O3 in urban areas
due to the emission reductions in association with the lock-
down during the COVID-19 pandemic. The O3 concentra-
tions are most significantly affected by emissions of NOx and
VOCs (Stewart et al., 2017). To further explore the drivers
of the O3 changes and potential approaches to effectively
reduce O3 concentrations, we conduct three sensitivity ex-
periments involving NOx and VOC emission perturbations,
as summarized in Table 1. Figure 8 illustrates population-
weighted concentrations of simulated PM2.5 components and
MDA8 O3 after the COVID-19 lockdown under these sensi-
tivity scenarios. Figure 9 shows the spatial distribution of the
differences in MDA8 O3 between the sensitivity scenarios
and the Base scenario. Figure 10 shows the concentration
time series for the sensitivity scenarios. The first sensitiv-
ity experiment is the VOC1.0 scenario, which is the same

as Lockdown except that the VOC emissions are kept at the
level of the Base scenario (Table 1). This scenario, in com-
bination with the Base and Lockdown scenarios, can be used
to evaluate the response of O3 concentrations if the COVID-
19-induced emission reductions of NOx and VOC were im-
plemented in sequence. Without the control of VOC emis-
sions in VOC1.0 (Fig. 9a), the increase in urban O3 con-
centration relative to the Base scenario becomes larger than
the Lockdown scenario (Fig. 6c). This confirms our conclu-
sion in the last section that the NOx emission control elevates
urban O3 concentrations under the VOC-limited regime and
meanwhile indicates that the VOC control is conducive to O3
decrease. To assess the potential effects of strengthened NOx

and VOC control measures, we conduct two other sensitiv-
ity experiments named NOx0.3 and VOC0.3, which are the
same as Lockdown except that the anthropogenic NOx (for
the NOx0.3 scenario) and VOC (for the VOC0.3 scenario)
emissions are further reduced to 30 % of those in the Base
scenario. As a 70 % reduction is close to the maximum re-
ductions in NOx and VOC emissions that could be achieved
through the full implementation of technologically and eco-
nomically feasible control measures (Amann et al., 2020), we
select an emission ratio of 0.3 (70 % reduction) to represent
the potential impact of highly stringent control policies in
the future. Figure 8a and b show that strengthened NOx con-
trol further reduces the population-weighted concentrations
of PM2.5, while further reduction of anthropogenic VOCs
helps to decrease the concentration of MDA8 O3. Differ-
ences in O3 concentration clearly illustrate different spatial
distribution patterns for urban and suburb areas (Fig. 9b, c).
For the suburbs with high O3 values, reducing anthropogenic
NOx and VOCs is conducive to the decline of O3 (Fig. 8d).
For urban areas, however, strengthened control with anthro-
pogenic NOx reduced by 70 % (NOx0.3) results in even more
O3 increase in the central urban area (Figs. 9b and 8c). Am-
plified ozone pollution has also been reported by Sicard et
al. (2020) based on their observational studies in four south-
ern European cities and Wuhan, China, associated with NOx

reductions in response to COVID-19. To control O3 concen-
trations in urban areas, VOC control may be an effective
method. While a NOx emission reduction might cause an in-
crease in O3 concentration, a VOC reduction generally leads
to a monotonous reduction of O3 concentrations regardless
of the O3 formation regime, as indicated by the classical
O3 EKMA isopleth (Fig. 6-1 of National Research Council,
1991, or Fig. 3.2.1 of Donahue, 2018) as well as some re-
cent studies in southern California (Fujita et al., 2013; Collet
et al., 2018; Qian et al., 2019). We find that in the VOC0.3
scenario, there is almost no O3 concentration increase rela-
tive to the Base scenario, in contrast to a significant urban
O3 increase in the Lockdown scenario (Fig. 9c). This means
that a 70 % reduction in anthropogenic VOCs can offset the
increases in O3 caused by the 28.3 % NOx reduction during
the lockdown. Note that we are specifically looking at the
extent of VOC emission reductions that are needed to offset
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Figure 8. Simulated population-weighted PM2.5 and O3 concentrations under three sensitivity scenarios (VOC1.0, NOx0.3, and VOC0.3)
during the lockdown period (19 March to 23 April) over southern California. (a) PM2.5 components, (b) MDA8 O3, and (c) MDA8 O3 over
the urban areas, as well as (d) MDA8 O3 over the rural areas. The definitions of all scenarios are summarized in Table 1.

the 28.3 % NOx reduction caused by the lockdown, which
minimizes the complexity due to the nonlinear O3 responses
when the NOx emissions change simultaneously. Further-
more, Wang et al. (2019) found that 75 % of the average O3
concentration in California was due to distant emissions out-
side the western United States. Many other studies have also
revealed that background O3 dominates over the contribu-
tion from local emissions in the western US (Huang et al.,
2015; Oltmans et al., 2008; Fiore et al., 2014; Emery et al.,
2012; Zhang et al., 2011). Therefore, cooperating with other
regions and countries in emission reductions may be another
way to control O3 in urban areas of southern California.

4 Conclusion and policy implications

In this study, we investigated the air quality impact of
emission reductions in southern California in association
with COVID-19 by employing WRF-Chem to conduct high-
resolution atmospheric modeling during 18 February to
23 April 2020.

Based on the statistics of activity levels, we first adjusted
the emission inventory considering the emission reductions
during the COVID-19 lockdown. The adjusted emission in-
ventory is shown to be consistent with the emission inven-
tory based on satellite observations. The simulated magni-
tude and temporal evolution of the concentrations of the key
air pollutants, including PM2.5, NO2, SO2, and MDA8 O3,
using the adjusted emission inventory agree better with sur-
face observations than simulation results without considering
the COVID-19-induced emission reductions. Due to the re-
duced emissions, the population-weighted concentrations of
NO2 and PM2.5 decreased by 27 % and 15 %, respectively,
in southern California in the 5 weeks after the stay-at-home
orders. Emission reductions and meteorological variations
contributed about two-thirds and one-third, respectively, to

Figure 9. Spatial distribution of the differences in MDA8 O3
between the three sensitivity scenarios and the Base scenario:
(a) VOC1.0 minus Base; (b) NOx0.3 minus Base; (c) VOC0.3 mi-
nus Base. The definitions of all scenarios are summarized in Table 1.

the total decrease in population-weighted PM2.5 concentra-
tions before and after the lockdown. For O3 concentration,
however, the COVID-19-related emission reductions caused
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Figure 10. Time series of simulated and observed PM2.5 concentrations (a, c) and MDA8 O3 concentrations (b, d) under several sensitivity
scenarios averaged across the CARB observational stations over the urban (a, b) and rural (c, d) areas of southern California during the
lockdown period (19 March to 23 April). Black lines are surface observations from CARB networks. Blue, red, cyan, magenta, and green
lines are simulated results for the Base, Lockdown, VOC1.0, NOx0.3, and VOC0.3 scenarios. The definitions of all scenarios are summarized
in Table 1.

a decrease in suburb areas but a slight increase in the urban
areas. In order to further explore the effects of anthropogenic
NOx and VOC emission reductions on O3 concentration, we
conducted sensitivity experiments by strengthening VOC and
NOx controls. Our results showed that strengthened control
with NOx reduced by 70 % (NOx0.3) results in even more O3
increase in the central urban area, and anthropogenic VOC
control may be an effective method to reduce O3 concen-
trations in urban areas. A 70 % reduction in anthropogenic
VOCs can effectively offset all the increases in O3 caused by
NOx reduction during the lockdown.

Using COVID-19 as an unprecedented experiment with
substantial emission reductions from multiple sectors, espe-
cially transportation, this study helps to elucidate the com-
plex and nonlinear response of chemical compositions to air
pollution control measures and thus provides important in-
sight into the development and optimization of effective air
pollution control strategies in southern California. We find
that the reduced NOx emissions (∼ 28 %) have been almost
fully transferred to the reduction in the ambient concentra-
tion of NO2 (∼ 27 %). This further translates into a remark-
able reduction in nitrate, which makes the largest contribu-
tion to the PM2.5 concentration decrease among all individ-
ual chemical components. Therefore, to alleviate PM2.5 pol-
lution, measures focusing on sectors such as transportation,
which is among the main sources of NOx emissions, could
be effective. Moreover, we find that a moderate 15 % reduc-
tion of primary PM2.5 emissions has resulted in a substan-
tial reduction in ambient PM2.5 concentrations, with the to-

tal concentration decreases in all primary PM2.5 components
exceeding that of nitrate. Therefore, a strengthened control
on primary PM2.5 emissions could be an effective strategy
to sustainably mitigate PM2.5 pollution. For O3, reduction of
NOx can effectively reduce high O3 concentrations in subur-
ban areas but may cause an increase in urban concentrations.
A 70 % VOC emission reduction is found to fully offset the
urban O3 increase caused by the lockdown. Therefore, the
reduction in NOx emissions needs to be accompanied by a
well-balanced reduction in VOC emissions to avoid side ef-
fects on urban O3 pollution.
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Board (CARB) monitoring stations used in the present study can be
obtained from https://www.arb.ca.gov/aqmis2/aqdselect.php (Cali-
fornia Air Resources Board, 2020). The meteorology observational
data obtained from the National Climatic Data Center (NCDC) can
be freely downloaded from ftp://ftp.ncdc.noaa.gov/pub/data/noaa/
(NCDC, 2020). Other data needed to support the findings of this
study are in the paper and the Supplement. The satellite-based NOx

emission data used in the study can be downloaded freely from
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