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Section S1. Determination of response factors for uncalibrated species 24 

The concentration of one species A is calculated as: 25 

ሾܣሿ ൌ
݈ܽ݊݃݅ݏ

ݎ݋ݐ݂ܿܽ	݁ݏ݊݋݌ݏ݁ݎ
	ൌ 	

݈ܽ݊݃݅ݏ

ቀܵ௠௔௫ ∗
1
ܵ଴
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 26 

The response factors of iodide adducts are determined via determining 27 

(a) 
ଵ

ௌబ
: sensitivity of species A relative to maximum sensitivity, ܵ௠௔௫; 28 

(b) ݏ݊ܽݎ݈ܶ݁ݎ : relative transmission of species A, i.e., transmission efficiency of 29 

species A relative to primary ions. 30 

1.1 Relative sensitivity 31 

Previous work has verified the connections among the binding energy of the 32 

iodide-adduct bond, the voltage dissociating iodide adducts and the sensitivity of 33 

corresponding species (Iyer et al., 2016; Lopez-Hilfiker et al., 2016). First, we 34 

performed the voltage scanning procedure on the gases during different time of day: 35 

morning, afternoon, evening and night. Then we used sigmoidal function with 36 

constrains to fit the fraction of remaining signal and ܸ݀ which is the voltage difference 37 

of the interface between two quadrupoles in CIMS. Every fit of an individual iodide 38 

adduct yielded two parameters: ܵ଴, the relative signal at much weaker ܸ݀ compared 39 

to the signal under operational ܸ݀; ݀ ହܸ଴, the voltage at which half of the signal is 40 

removed (i.e. half of an iodide adduct dissociate). We constrained that ܵ଴ should be 41 

larger than 0.9 and ݀ ହܸ଴ should be less than 50. We averaged reasonable results of 42 

inverse ܵ଴ and ݀ ହܸ଴ for every iodide adduct. After removing outliers (Motulsky and 43 

Brown, 2006), we applied sigmoidal fit to the results of individual fits of all the iodide 44 

adducts and obtained an empirical relationship between relative sensitivity and ݀ ହܸ଴. 45 

As shown in Fig. S7a, our result is very similar to the curve reported in Lopez-Hilfiker 46 

et al., 2016. There are 107 of 1334 iodide adducts that we failed to obtain ݀ ହܸ଴, so we 47 

assume that they have a relative sensitivity of 0.23 which is the left limit of sigmoidal 48 

curve in Fig. S7a.  49 

We took the calibration factor of levoglucosan, 60 ncps/ppt, as the maximum 50 

sensitivity. On the one hand, levoglucosan is one of the compounds that we calibrated 51 
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most frequently; on the other hand, it is one of the maximum sensitivity compounds 52 

(Iyer et al., 2016) and has a transmission efficiency very close to primary ions (see Sect. 53 

1.2). The possible reason why the iodide cluster of ܥ଺ܪଵ଴ܱହ had a relative sensitivity 54 

lower than one is that it included isomers which were weakly bonded with iodide. 55 

Sensitivities derived from voltage scanning for gaseous species would be applied to 56 

particle-phase species, as discussed in the supplement file of Isaacman-VanWertz et al., 57 

2018. 58 

1.2 Relative transmission efficiency 59 

Transmission efficiency of an ion in CIMS instrument depends on its mass-to-60 

charge ratio. Known compounds across the m/z range of interest were introduced into 61 

the CIMS one by one and the relative transmission as a function of m/z was determined 62 

via comparing the increase of analyte ions relative to the decrease of primary ions 63 

(Heinritzi et al., 2016). Compounds used for this calibration were formic acid, acetic 64 

acid, lactic acid and C2-C5 perfluorinated acids (C2HF3O2, C3HF5O2, C4HF7O2, 65 

C5HF9O2). The gaussian function was applied for fitting this dependence curve as 66 

shown in Fig. S7b.  67 

The final response factors for iodide adducts are plotted in Fig. S7c. For 35 68 

species that we had calibrated, response factors derived were replaced by calibration 69 

factors when converting their signals to concentrations.  70 

Section S2. ࡯ࡿࡻതതതതതത of a ࢠࡻ࢟ࡴ࢞࡯ and ࡺ࢟ࡴ࢞࡯૚,૛ࢠࡻ compound 71 

The ܱܵ஼തതതതത െ ݊஼  space which plots ܱܵ஼തതതതത  as the function of carbon number, 72 

provides a framework for describing the bulk chemical properties and the evolution of 73 

organics (Kroll et al., 2011). The approximate ܱܵ஼തതതതത  of a ܥ௫ܪ௬ ௭ܱ  compound was 74 

calculated as: 75 

ܱܵ஼തതതതത ൌ 2 ൈ ை

஼
െ ு

஼
                                               (3) 76 

For ܥ௫ܪ௬ ଵܰ,ଶ ௭ܱ  compounds, the influence of N is dependent on functional 77 

groups so we made several assumptions to classify them. (1) N-containing functional 78 

groups are nitro (-NO2) or nitrate (-NO3) in our case; (2) N-containing aromatics feature 79 

nitro moieties and N-containing aliphatic hydrocarbons feature nitrate moieties; (3) N-80 
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containing aromatics have 6-9 carbon atoms and less hydrogen atoms than aliphatic 81 

hydrocarbons with the same carbon atoms. This was not an absolutely right 82 

classification but at least it provided a rough separation between nitro compounds and 83 

nitrate compounds for most ܥ௫ܪ௬ ଵܰ,ଶ ௭ܱ  species. After the above step, 3 ൈ ே

஼
  and 84 

5 ൈ ே

஼
 was minus from equation (3) for nitro compounds and for nitrate compounds, 85 

respectively: 86 

ܱܵ஼തതതതത ൌ 2 ൈ ை

஼
െ ு

஼
െ ሺ3	ݎ݋	5ሻ ൈ ே

஼
                                  (4) 87 

Section S3. Comparison of humidity dependences with literature 88 

Humidity dependence curves for most species shown in Fig. S5 are similar with 89 

those determined by Lee et al (2014). There are some discrepancies: e.g. (1) obvious 90 

positive slope for formic acid under very low humidity in Lee et al (2014); (2) mostly 91 

negative slope for nitric acid (for absolute humidity >2.5 mmol/mol), whereas positive 92 

slope in Lee et al (2014) (for water vapor pressure <8 hPa).  93 

These discrepancies probably resulted from the difference of pressures in the IMR 94 

between the two work: 90 mbar in Lee et al (2014) versus 380 mbar in this work. Table 95 

S3 compares the water vapor pressures used in the two studies. The maximum partial 96 

pressure of water in this work is 380 mbar×25 mmol/mol =9.5 mbar, higher than 0.8 97 

mbar in Lee et al. (2014). Therefore, the positive slope for formic acid for low humidity 98 

is very narrow in our work. For the same reason, their calibrations did not observe the 99 

negative slope for nitric acid as their water pressure <0.8 mbar. 100 

Over all, the humidity dependences in Lee et al (2014) and our work are pretty 101 

consistent if considering the water vapor pressure in the IMR. The humidity range used 102 

in our calibration experiments is sufficient to cover the humidity variations during the 103 

campaign (the range was 8.9-34.4 mmol/mol, and mean value was 22.1±5.3 mmol/mol).104 
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Table S1. The calibrated species and corresponding calibration methods 142 

No. Calibrated species Calibration method 

1 Chlorine, Hydrogen cyanide Gaseous standard dilution 

2 

Formic acid, Acetic acid, Propionic acid, Butyric acid, Pentanoic acid, 

Catechol, Acrylic acid, Glycolic acid, Lactic acid, Phenol, m-cresol, 4-

nitrophenol, 2,4-dinitrophenol, cis-pinonic acid, 3-Methylcatechol, 

Pyruvic acid 

Dissolve standards in the water; 

Thermally evaporate aqueous standards via the liquid 

calibration unit (LCU, Ionicon Analytic GmbH) to generate 

a flow at defined trace concentrations; 

Liquid standard dilution 

3 Nitric acid, Formic acid 
Inject a constant flow into the permeation tube; 

Dilute the outflow gradiently when its concentration is stable 

4 Isocyanic acid, Dinitrogen pentoxide, Nitryl chloride 

Use the flow tube reactor to generate the flow containing 

target compounds; 

Gas-phase standard dilution 

5 

Malonic acid, Succinic acid, Meso-erythritol, Glutaric acid, Adipic 

acid, Pimelic acid, Levoglucosan, Tricarballylic acid, Azelaic acid, 

Sebacic acid, Dodecanedioic acid, Citric acid, Dipentaerythritol, 4-

nitrocatechol, Xylitol, Heptaethylene glycol, Octaethylene glycol 

Dissolve standards in organic solvents (e.g., acetone, 

isopropanol); 

Deposit different amounts of solution on the FIGAERO filter 

 143 
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Table S2. The concentrations used in regular calibrations during the campaign 144 

Solution 

index 
Calibration date 

Amount deposited on the FIGAERO filter (ng) 

Levoglucosan PEG-7 PEG-8 

1 

2018/09/23 2500 2255 1129 

2018/09/23 5000 4511 2258 

2018/10/29 2500 2255 1129 

2 

2018/11/01 331.2 1409  

2018/11/02 331.2 1409  

2018/11/05 331.2 1409  

2018/11/07 265.0 1127  

2018/11/10 397.5 1691  

2018/11/19 530.0 2254  

3 

2018/11/20 6.56 1142 1129 

2018/11/20 13.12 2284 2255 

2018/11/20 19.68 3425 3383 

2018/11/20 26.24 4567 4511 

2018/11/20 31.49 5480 5413 

145 
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Table S3. Comparison of the water vapor pressures used in Lee et al (2014) and this 146 

work 147 

Pressure Lee et al. (2014) This work 

IMR pressure 90 mbar 380 mbar 

Maximum water vapor 

pressure 

0.8 mbar AH~25 mmol/mol, so PH2O =380 

mbar×25×10-3 =9.5 mbar 

Water vapor pressure of 

positive slope for CH2O2 

~ 0.15 mbar AH=0.32 mmol/mol, so PH2O =380 

mbar×0.32×10-3 =0.12 mbar 

Water vapor pressure of 

positive slope for HNO3 

~ 0.8 mbar AH=2.1 mmol/mol, so PH2O =380 

mbar×2.1×10-3 =0.8 mbar 

148 
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  149 

Figure S1. (a) Time series of meteorological parameters (temperature, relative humidity 150 

and wind), trace gases (ܱܥ , ܱܵଶ , ܱܰ , ܱܰଶ , ܱଷ ), VOCs (isoprene, monoterpenes, 151 

benzene, toluene) and measured photolysis rate constant (݆ேைమ) during the campaign. 152 

(b) Diurnal trends of trace gases and ݆ேைమ. (c) Diurnal trends of VOCs (Wu et al., 2020). 153 

The shaded areas indicate one standard deviation.154 
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 155 

Figure S2. Resolving power of the time-of-flight analyzer as a function of m/z in the 156 

beginning, in the middle and in the end of the campaign.  157 
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 158 

Figure S3. Experimental setups for (a) gas mode in which the instrument 159 

simultaneously measures gaseous compounds and collects particles and for (b) particle 160 

mode in which collected particles undergo through thermal desorption and analysis. 161 

  162 
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 163 

Figure S4. Schematic diagram of cycle modes (a) and FIGAERO heating temperature 164 

profile (b). 165 
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 166 

Figure S5. The effects of water content on the sensitivities of different species. The 167 

curves with square markers were obtained from calibrations using the FIGAERO. Other 168 

humidity curves were determined via the gas inlet. Diamonds, circles and triangles 169 

represent humidity curves of inorganic compounds, simple organic acids and multi-170 

functional organic compounds, respectively. Gray dots show how the signal of internal 171 

standard DCOOH varied with ambient humidity. The discrepancies with humidity 172 

dependences between this work and Lee et al. (2014) are discussed in Section S3 in the 173 

supplement. 174 
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   175 

Figure S6. The time series of calibration factors (a, c, e) and Tmax (b, d, f) of 176 

hepaethylene glycol, octaethylene glycol and levoglucosan in the regular calibrations 177 

during the campaign. Three markers represent three solutions that were used (Table S2). 178 

The concentration of levoglucosan was too high in the solution used in the first two 179 

calibrations. Excess levoglucosan severely depleted primary ions, resulting in the 180 

underestimation of the response of levoglucosan. On the other hand, low concentrations 181 

of primary ions caused the overestimated normalized signals for other ions, and the 182 

calibration factors of PEG7 and PEG8 were subsequently overestimated. (g) The 183 

measured concentration of DCOOH was steady after applying humidity correction to 184 

the signal of DCOOH based on its curve shown in Fig. S5.185 
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Figure S7. (a) Fitting the voltage scanning results as a sigmoidal function of sensitivity 187 

relative to maximum sensitivity versus dV50 (i.e. the voltage where half of an iodide 188 

adducts dissociate). The sigmoidal function is ݕ ൌ 0.23181 ൅ ଴.଼ଵସ଼଼

ଵାୣ୶୮	ሺమ.ఱరవమషೣ
మ.భలఱర

ሻ
 . (b) 189 

Fitting relative transmission efficiency as a gaussian curve of m/z. The gauss function 190 

is ݕ ൌ 0.27777 ൅ 1.0403 ൈ exp	ሺെሺ௫ିଶଵ଻.ସ
ଵସ଻.଻

ሻଶሻ . (c) The sensitivity derived from 191 

voltage scanning procedure. The transmission correction has been applied. The bottom 192 

line in Figure S7c that has a shape exactly the same as the transmission curve represents 193 

the points with a cutoff of 0.23 for the relative sensitivity. See text in Section S1.194 
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 195 

Figure S8. High-resolution peak fittings to the mass spectrum of I-CIMS at m/z 311. 196 

io
ns
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 197 

Figure S9. Mass defect diagram for iodide charged ܥ௫ܪ௬ ௭ܱ compounds in the gas 198 

phase (a) and particle phase (c), and ܥ௫ܪ௬ ଵܰ,ଶ ௭ܱ compounds in both phases (b, d). 199 

The circle size denotes the concentration and the circle color denotes the ratio of the 200 

average nighttime concentration (10 pm to 6 am) to average daytime concentration (10 201 

am to 6 pm).202 
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 203 

Figure S10. (a) Correlation between guaiacol derivatives (C7H8O2, C8H10O2, C9H12O2, 204 

C8H8O3, C10H12O2, C9H10O3, C8H8O4, C10H10O3, C10H12O3, C10H14O3, C9H10O4, 205 

C10H14O3) and levoglucosan (ܥ଺ܪଵ଴ܱହ) in the particle phase. (b) Time series of gaseous 206 

଺ܪ଻ܥ ସܱܥ ,ିܫ଻଼ܪ ସܱܥ ,ିܫ଻ܪ଻ܱܰଷିܫ and NOX.207 
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 208 

Figure S11. (a) Time series of low-molecular-weight organic acids in gas-phase. (b) 209 

Time series of particle-phase ܥସܪସ ସܱܥ , ିܫହܪ଺ ସܱିܫ  and gaseous aromatic 210 

hydrocarbons including benzene, toluene, styrene and xylene. 211 
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 212 

Figure S12. Diurnal variations of oxidation products of monoterpene in the gas phase 213 

(red) and particle phase (blue). The shaded areas indicate one standard deviation.214 
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 215 

Figure S13. Scatterplot between particle-phase C4H8O4 and OA color-coded by 216 

ambient RH and size binned by the daily maximums of photolysis rates of NO2.      217 
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 218 

 219 

Figure S14. Time series of daily maximum concentrations of gaseous ܥଵ଴ܪଵ଺ܱଷ220 ିܫ 

and pinonaldehyde (ܥଵ଴ܪଵ଺ܱଶܪା, m/z 169.12).221 
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 222 

Figure S15. Time series of three oxidation products of monoterpenes.223 
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 224 

Figure S16. (a) Diurnal trends of S-containing ions measured by FIGAERO-I-CIMS 225 

including ܪܥଷܱܵଷ
ି , ܱܵଷିܫ  and ܵܪ ସܱ

ି , as well as particulate sulfate measured by 226 

AMS. (b) Time series of particle-phase ܱܵଷିܫ and sulfate. 227 
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 229 

Figure S17. Fractions of species classes for iodide charged ions as a function of m/z in 230 

the gas phase (a) and particle phase (b). The concentration of every ion is summed to 231 

unit mass resolution to give an overall picture.232 
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 233 

Figure S18. (a) Van Krevelen diagrams for particle-phase ܥ௫ܪ௬ ௭ܱ  compounds 234 

detected by FIGAERO-I-CIMS. The size of circles represents the campaign-averaged 235 

concentration of this compound in particles. (b) Correlation coefficients between OA 236 

mass concentration measured by AMS and particle-phase signals of unit mass 237 

resolution (UMR) measured by FIGAERO-I-CIMS, plotted as a function of m/z. Star 238 

markers from left to right denote ܪܥଶܱଶܱܰܪ , ିܫଷܥ , ିܫସܪ଺ ସܱܥ , ିܫଽܪଵସ ସܱ239 , ିܫ 

ଵସܪଵ଴ܥ and ିܫଵଷܱܰ଻ܪଽܥ ଶܱܰଽ240 .ିܫ 
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