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Abstract. Among the biogenic volatile organic compounds
(BVOCs) emitted by plant foliage, isoprene is by far the
most important in terms of both global emission and atmo-
spheric impact. It is highly reactive in the air, and its degra-
dation favours the generation of ozone (in the presence of
NO,) and secondary organic aerosols. A critical aspect of
BVOC emission modelling is the representation of land use
and land cover (LULC). The current emission inventories are
usually based on land cover maps that are either modelled
and dynamic or satellite-based and static. In this study, we
use the state-of-the-art Model of Emissions of Gases and
Aerosols from Nature (MEGAN) model coupled with the
canopy model MOHYCAN (Model for Hydrocarbon emis-
sions by the CANopy) to generate and evaluate emission in-
ventories relying on satellite-based LULC maps at annual
time steps. To this purpose, we first intercompare the dis-
tribution and evolution (2001-2016) of tree coverage from
three global satellite-based datasets, MODerate resolution
Imaging Spectroradiometer (MODIS), ESA Climate Change
Initiative Land Cover (ESA CCI-LC), and the Global For-
est Watch (GFW), and from national inventories. Substantial
differences are found between the datasets; e.g. the global
areal coverage of trees ranges from 30 to 50 x 10° km?, with
trends spanning from —0.26 to +0.03 % yr~! between 2001
and 2016. At the national level, the increasing trends in for-
est cover reported by some national inventories (in particular
for the US) are contradicted by all remotely sensed datasets.
To a great extent, these discrepancies stem from the plurality
of definitions of forest used. According to some local cen-

suses, clear cut areas and seedling or young trees are clas-
sified as forest, while satellite-based mappings of trees rely
on a minimum height. Three inventories of isoprene emis-
sions are generated, differing only in their LULC datasets
used as input: (i) the static distribution of the stand-alone ver-
sion of MEGAN, (ii) the time-dependent MODIS land cover
dataset, and (iii) the MODIS dataset modified to match the
tree cover distribution from the GFW database. The mean
annual isoprene emissions (350-520 Tgyr~') span a wide
range due to differences in tree distributions, especially in
isoprene-rich regions. The impact of LULC changes is a mit-
igating effect ranging from 0.04 to 0.33 % yr~! on the pos-
itive trends (0.94 % yr—!) mainly driven by temperature and
solar radiation. This study highlights the uncertainty in spa-
tial distributions of and temporal variability in isoprene asso-
ciated with remotely sensed LULC datasets. The interannual
variability in the emissions is evaluated against spaceborne
observations of formaldehyde (HCHO), a major isoprene ox-
idation product, through simulations using the global chem-
istry transport model (CTM) IMAGESv2. A high correlation
(R > 0.8) is found between the observed and simulated in-
terannual variability in HCHO columns in most forested re-
gions. The implementation of LULC change has little impact
on this correlation due to the dominance of meteorology as
a driver of short-term interannual variability. Nevertheless,
the simulation accounting for the large tree cover declines
of the GFW database over several regions, notably Indone-
sia and Mato Grosso in Brazil, provides the best agreement
with the HCHO column trends observed by the Ozone Mon-
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itoring Instrument (OMI). Overall, our study indicates that
the continuous tree cover fields at fine resolution provided
by the GFW database are our preferred choice for constrain-
ing LULC (in combination with discrete LULC maps such
as those of MODIS) in biogenic isoprene emission models.

1 Introduction

The total biogenic volatile organic compound (BVOC) emis-
sion into the atmosphere amounts to ca. 1000 Tgyr~! of
which about 50 %—60 % of the share consists of isoprene
(Lathiere et al., 2006; Guenther et al., 2012; Sindelarova
et al., 2014; Messina et al., 2016; Granier et al., 2019) and
is roughly equal to the global methane emission (Lelieveld
et al., 1998; Saunois et al., 2020). Isoprene is highly reactive
and affects tropospheric chemistry (Fehsenfeld et al. 1992;
Atkinson, 2000; Pike and Young, 2009). Under high-NO,
conditions (NO, =NO 4 NO»), isoprene is a major precur-
sor of tropospheric ozone (Atkinson, 2000; Ryerson et al.,
2001; da Silva et al., 2018; Mo et al., 2018; Saunier et al.,
2020). BVOCs also affect the growth of secondary organic
aerosols (Claeys et al., 2004; Kroll et al., 2005, 2006; Carl-
ton et al., 2009) and influence tropospheric hydroxyl radi-
cal (OH) levels through depletion or regeneration (Lelieveld
et al., 2008; Hofzumahaus et al., 2009; Fuchs et al., 2013;
Hansen et al., 2017), thereby altering the lifetime of methane.
Isoprene is primarily emitted from terrestrial vegetation, in
particular broadleaf trees, and therefore, isoprene emissions
are critically dependent on the land cover (e.g. tree, shrub,
grass, crop) and on the plant species within those land covers
(Arneth et al., 2011; Guenther et al., 2012).

Land use and land cover changes (LULCCs) are consid-
ered among the main drivers of environmental and climate
changes (Foley et al., 2005; Turner et al., 2007; Jia et al.,
2019). They bring about disruption in land—atmosphere in-
teractions through multiple biophysical and biogeochemical
fluxes across different spatial and temporal scales. In par-
ticular, the impact of deforestation on the climate system
was reviewed by Bonan (2008), Unger (2014), Scott et al.
(2018), and Zeppetello et al. (2020). Distribution and dis-
turbances in vegetation, in particular trees, have an impact
on the emissions of BVOCs that in turn control the load-
ings of several short-lived climate forcers, with effects on
climate via the radiative forcing (Unger, 2014; Ward et al.,
2014) and over the long-term via the climate—carbon feed-
back (Fu et al., 2020). The effect of historical or projected
LULCCs on BVOC emissions were reviewed, for instance,
in Pefiuelas and Staudt (2010), Unger (2013, 2014), and
Hantson et al. (2017). Estimates of past and future emis-
sions accounting for climate change and increasing CO; lev-
els rely on dynamic global vegetation models such as OR-
CHIDEE (Krinner et al., 2005), LPJ-GUESS (Sitch et al.,
2003), SDGVM (Woodward and Lomas, 2004), or Commu-
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nity Land Model (CLM; Lawrence et al., 2019). However,
human-driven land use practices must be included from other
independent datasets of crops from Ramankutty and Foley
(1999) or from De Noblet-Ducoudré and Peterschmitt used
in Lathiere et al. (2010), the 1500-2100 land use dataset from
Hurtt et al. (2011), or the 2015-2100 GCAM-Demeter land
use dataset from Chen et al. (2020). The evaluation of the
present-day impact of LULCC on BVOC emissions could
however benefit from the availability of satellite observa-
tions. Remotely sensed land cover (LC) maps are built with
either discrete classification schemes, the result of which is
a raster (e.g. ESA Climate Change Initiative Land Cover —
ESA CCI-LC — and MODerate resolution Imaging Spectro-
radiometer — MODIS — MCD12Q1 and MCD12C1), or as
continuous classification, viewing vegetation as a continuum,
obtained with the use of vegetation spectral indices (e.g.
MODIS VCF MOD44B; AVHRR VCF VCF5KYR; Sexton
et al., 2013; Hansen et al., 2013). Traditionally, LC products
use a discrete biome-based classification approach. The main
drawback is that biomes are not natural vegetation units with
common physiological and biochemical features required in
the land surface modelling but are products of classifica-
tion. Plant functional types, or PFTs, commonly adopted in
modelling, comprise plant species that share similar plant
physiognomy (tree, shrub, or grass), leaves (needleleaf or
broadleaf), phenology (evergreen or deciduous), and photo-
synthetic types (C3 or Cy4) for crops and grasses (Smith et al.,
1997; Bonan et al., 2002). Currently, PFT classifications are
obtained through the mapping from biome schemes, a com-
plex task that is flawed by arbitrariness (Bonan et al., 2002;
Sun and Liang, 2008; Ustin and Gamon, 2010; Poulter et al.,
2015).

The present study aims to incorporate different satellite-
based land cover datasets in the Model of Emissions of Gases
and Aerosols from Nature (MEGAN) model (Guenther et al.,
2006, 2012) for estimating global isoprene emissions and to
give a measure of the uncertainty associated with their use.
It complements the study of Chen et al. (2018) about the im-
pact of LULCCs on isoprene emissions based on remotely
sensed LC. The methodology is presented in Sect. 2. Sec-
tion 3 reviews the distribution and trends of tree cover (TC)
through 2001-2016 at regional and global scales from differ-
ent satellite-based LC products. A comparison with the latest
2020 database from Forest Resources Assessment (FRA) is
made, and trends over large forested regions are discussed.
In Sect. 4, we perform a sensitivity analysis and quantify the
impact of LULCCs on estimated isoprene emissions using
MEGAN-MOHYCAN (Model for Hydrocarbon emissions
by the CANopy; Guenther et al., 2012; Miiller et al., 2008).
In Sect. 5, the IMAGESv?2 global chemistry transport model
(CTM) with BVOC emissions obtained in Sect. 4 is used
to evaluate the simulated interannual variability and trends
in formaldehyde (HCHO) columns between 2005 and 2016
against satellite observations from the Ozone Monitoring In-
strument (OMI). While direct satellite observations of iso-
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prene are still in the early stages of development (Fu et al.,
2019; Wells et al., 2020), the evaluation method used here
is based on spaceborne formaldehyde (HCHO) and relies on
the fact that HCHO is a high-yield product of the oxidation
of isoprene and has been widely used in past studies (Palmer
et al., 2006; Millet et al., 2008; Stavrakou et al., 2009; Marais
et al., 2012; Bauwens et al., 2016; Kaiser et al., 2018). Con-
clusions are drawn in Sect. 6.

2  Methods: datasets and model descriptions

2.1 MEGAN-MOHYCAN: biogenic VOC emission
modelling

The biogenic emissions of isoprene, monoterpenes, and 2-
methylbutenol are estimated using the Model of Emissions
of Gases and Aerosols from Nature (MEGAN; Guenther
et al., 2006, 2012) coupled with the Model for Hydro-
carbon emissions by the CANopy (MOHYCAN; Wallens,
2004; Miiller et al., 2008), a multi-layer canopy environ-
ment model. MEGAN estimates the net emission rates F
(ugm~2h~1) into the above-canopy atmosphere using simple
mechanistic algorithms encapsulated in the following equa-
tion:
F=e¢-y, with y=Ccg-ypr-LAL ya-yco, ysm, (1)
where the emission factor ¢ (ugm~2h~!) represents the
emission rate at standard conditions. The latter specify all
relevant meteorological (temperature, solar radiation, air hu-
midity, soil moisture, wind speed, etc.) and phenological
(leaf area index, LAI, and leaf age, A) variables, as defined
by Guenther et al. (2006). Deviations from those conditions
are accounted for by the activity factors y representing the
response of biogenic emissions to their major identified en-
vironmental and phenological drivers such as leaf tempera-
ture (T'), photosynthetic photon flux density (P), soil mois-
ture (SM), CO; concentration, A, and LAI The temperature
and light response algorithm incorporates the influence of
the past conditions. The adjustment factor Ccg related to the
canopy environment model is set to 0.52 for MOHYCAN
so that y =1 at standard canopy conditions. The effects of
CO; inhibition and soil moisture stress are neglected here
(yco, = 1 and ysm = 1).

The meteorological fields are obtained from ECMWF
(European Centre for Medium-Range Weather Forecasts)
Interim reanalysis (ERA-Interim; Dee et al.,, 2011). The
canopy model determines the leaf temperature and the ra-
diation fluxes as a function of height inside the canopy.
The land cover features are described by the LAI and the
vegetation map, classified as PFTs. Monthly LAI distribu-
tions at 0.5° x 0.5° resolution (in m?> m~2) are based on the
MODIS dataset (MODIS 15A2H collection 6) available at
https://Ilpdaac.usgs.gov (last access: 31 May 2021). Follow-
ing Guenther et al. (2006) and Miiller et al. (2008), we as-
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sume that the foliage covers only the vegetated fraction of the
grid cell. The stand-alone MEGANV2.1 uses a static vegeta-
tion map that provides the spatial distribution of 16 PFTs for
the present day compatible with the Community Land Model
version 4 (CLM4; Lawrence and Chase, 2007; Lawrence
et al., 2011) including trees, shrubs, and grasses (Table S1
in the Supplement). In each model grid, vegetation is de-
fined by the fractional coverage of each of the PFTs. This
PFT distribution was based on various satellite products from
MODIS, AVHRR, and the global cropland distribution for
the year 2000 from Ramankutty et al. (2008), and hereafter, it
is referred to as CLM. The methodology is briefly described
in Oleson et al. (2010). The emission factor ¢ is calculated
based on PFT-dependent emission factors provided in Guen-
ther et al. (2012) weighted by the fractional areal coverage of
the corresponding PFT class of a grid cell (Table S1).

2.2 Satellite-based vegetation datasets

The current satellite-based LC products cannot be directly
translated into PFT classes for use in MEGAN-MOHYCAN
since they differ by their primary classification, traditionally
biome-based, and by the number of classes (Sun and Liang,
2008). In order to generate MEGAN-compatible LC maps,
the biome classes were first cross-walked (reclassified) into
phenology-based PFT classes. The uncertainty of this step is
mainly due to the relative arbitrariness of the cross-walking
land cover legend tables resulting from the sometimes am-
biguous definitions of the biome classes. Next, the PFT trees
and shrubs were further subdivided into zonal or geograph-
ical subtypes (tropical, temperate, and boreal), and grasses
were subdivided into photosynthetic pathways Cz and Cy,
based on the Koppen—Geiger maps and climatological con-
siderations, as explained in the following section.

Three datasets were considered that provide global-scale
time-dependent vegetation maps over 2001-2016 (Tables 1
and 2). Those include the land cover maps based on biome
classes from (1) the MODerate resolution Imaging Spectro-
radiometer (MODIS), (2) the European Space Agency (ESA)
Climate Change Initiative Land Cover (CCI LC), and (3) the
tree cover product of the Global Forest Watch (GFW; Hansen
et al., 2013) based on 30 m Landsat images. The schematic
representation of the consecutive transformations applied on
the original datasets is shown in Fig. S1 in the Supplement.

2.2.1 Koppen-Geiger biome types

The subdivisions of climate zones and C3/C4 photosynthetic
paths are obtained based on Table 3 from Poulter et al.
(2011) that establishes a simplified correspondence between
the Koppen—Geiger classes and climate zones defined on
the basis of temperature criteria. In particular, the distinc-
tion between C3 and C4 photosynthesis adaptations is set
at the threshold temperature of 22°C (Collatz et al., 1998).
The methodology is described in the Supplement. The dis-
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Table 1. Main features of the satellite vegetation products used for the comparison of land cover maps. Discrete LULC products, namely
MCD12Q1 and ESA CCI-LC, rely on a primary classification (PC) such as the LCCS, standing for Land Cover Classification System. Details

are found in Sect. 2.2.

Products Satellite sensors Resolution  Availability

MCD12Q1 (v006) MODIS Terra/Aqua 500 m Global, gridded, annual (2001-2019)

Friedl and Sulla-Menashe (2019) https://lpdaac.usgs.gov (last access: 31 May 2021)
Discrete LULC using LCCS as PC

ESA CCI-LC AVHRR 300 m Global, gridded, annual (1992-2019)

(v2.0.7 and v2.1.1) MERIS FR and RR https://maps.elie.ucl.ac.be (last access: 31 May 2021)
ESA CCI-LC (2017) SPOT-VGT https://cds.climate.copernicus.eu (last access:
Discrete LULC using LCCS as PC PROBA-V 31 May 2021)

GFW (v1.6) Landsat and MODIS  30m Global, gridded, possibility to reconstruct annual up-

Hansen et al. (2013)
Continuous TC field

dates (2000-2019) based on the three datasets provided:
(1) TC for 2000; (ii) cumulative TC gain for 2000—
2012; (iii) tree loss for every year between 2001 and
2019. https://earthenginepartners.appspot.com (last ac-
cess: 31 May 2021)

Table 2. Land cover maps considered in this study, including their labels and the datasets on which they are based (described in Table 1).

The target period of this study is 2001-2016.

Short name of land cover maps used in this study

Original satellite-based products

CLM

ESA
MODIS
GFWMOD

CLM4 PFT

ESA CCI-LC

MODIS PFT (MCD12Q1)

TC from Hansen et al. (2013) and MODIS PFT

Table 3. Global TC areas (in 10 km?) in the year 2001 and trends
(in % yr~! and in km? yr—!) over 2001-2016 based on FAOSTAT,
the static land cover map (CLM), and the satellite products (ESA,
MODIS, and GFWMOD).

Area in 2001 Trends
(10°km?)  (%yr~l) (kmZyr1)
FAOSTAT 415 —0.12 —49727
CLM 38.5 - -
ESA 30.6 —0.05 —13968
MODIS 52.6 0.03 18184
GFWMOD 322 —0.26 —83336

tributions of biomes from the original classification of Poul-
ter et al. (2011) and the modified version thereof are listed
in Table S2 in the Supplement and displayed in Fig. S2 in
the Supplement. We use the 0.5° x 0.5° resolution, global
Koppen—Geiger present-day (1980-2016) climate classifica-
tion map from Beck et al. (2018), developed at 1 km resolu-
tion. The Koppen—Geiger maps are available at http://www.
gloh2o.org/koppen (last access: 31 May 2021).
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2.2.2 ESA-CCILC: land cover map

The ESA CCI-LC product supplies global annual land
cover maps at 300 m resolution (ESA-CCI-LC, 2017). Maps
were generated by combining the global daily surface re-
flectance of five different observation systems: Advanced
Very High Resolution Radiometer (AVHRR), Satellite Pour
I’Observation de la Terre — Vegetation (SPOT-VGT), PRoject
for On-Board Autonomy — Vegetation (PROBA-V), and
Medium Resolution Imaging Spectrometer (MERIS) full and
reduced resolutions (FR and RR).

The original product has 37 classes from the United Na-
tions LCCS (UN-LCCS). The cross-walking table for their
conversion to PFTs is taken from Li et al. (2018) based on
Poulter et al. (2015). The PFT mapping and the aggregation
into 0.5° x 0.5° were performed using the ESA CCI-LC user
tool (version 4.3) available at https://maps.elie.ucl.ac.be (last
access: 31 May 2021). The mapping to climate zones and
photosynthetic paths is applied as described above. The final
land cover map will be referred to as ESA.

2.2.3 MODIS PFT: land cover map
The collection 6 of the MODIS Land Cover Type Prod-
uct (MCD12Q1; Friedl and Sulla-Menashe, 2019) provides
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a global land cover product at 500 m resolution at yearly
intervals from 2001 to the present. The product is derived
from the reflectance data of the Terra and Aqua missions.
We use here the MODIS LC product available with the PFT
legend. Unlike in collection 5, where 17 IGBP (Interna-
tional Geosphere—Biosphere Programme) classes were cross-
walked to create annual maps for the PFT scheme, the UN-
LCCS (United Nations Land Cover Classification System; Di
Gregorio, 2005) scheme provides the primary layer for the
sixth collection. Note however that the corresponding cross-
walking table is not released. The maps are aggregated to
0.5° x 0.5°, on which further subdivisions of climate zones
and photosynthetic paths are applied following the method-
ology described above.

2.2.4 GFW: tree cover map

Unlike the discrete LC maps of MODIS PFT and ESA CCI-
LC, the Global Forest Watch dataset (Hansen et al. 2013)
is a continuous field of tree cover (TC) coverage, available
at a global scale with approximately 30 m resolution. In re-
cent years, it has become a reference for monitoring forests
through the online platform Global Forest Watch (https:/
www.globalforestwatch.org, last access: 31 May 2021). It
is generated by combining data from the multispectral sen-
sors Landsat 5 and 7 for 2000-2012 and Landsat 8 for
2013 onward. The resulting images are normalized by us-
ing MODIS surface reflectance (Hansen et al., 2008; Potapov
et al., 2012). The version 1.6 used in this study covers all
years from 2000 to 2018 and provides tree losses on an an-
nual basis over 2000-2018 and a cumulative tree gain dis-
tribution over 2000-2012. We reconstructed annual steps of
the TC at pixel level (30 m) by accounting for the TC losses
since 2000 and, by implementing the 12-year cumulative tree
cover gain at 0.5° resolution assuming a linear increase over
the period, extended until 2018. The land cover distribution
GFWMOD (Table 2) is obtained by modifying the MODIS
PFT dataset in order to match the reconstructed yearly TC
distribution based on the GFW dataset.

2.3 Forest Resources Assessment (FRA) database —
Food and Agriculture Organization (FAOSTAT)

The standard reference on global forest resources is the
United Nations FAO FRA published every 5 to 10 years since
1948. It provides the global database of the reported statistics
from national reports on forest properties. The latest recom-
mendations are outlined in the FRA 2020 (http://www.fao.
org/3/I8661EN/i8661en.pdf, last access: 31 May 2021). Here
we use the latest published datasets (updated in July 2020
at the time of drafting), retrieved from http://www.fao.org/
faostat (last access: 24 August 2020), and hereafter referred
to as FAOSTAT.
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2.4 Formaldehyde observations from OMI

Tropospheric HCHO columns are acquired from satellite-
based OMI observations on board the NASA AURA space-
craft launched in 2004 (Levelt et al., 2006). OMI is a nadir-
viewing imaging spectrometer observing Earth’s global so-
lar backscatter radiation in the ultraviolet—visible spectral
window at a spectral resolution of about 0.5nm. It has
an early afternoon overpass time (13:30LT) and provides
global observation on a daily basis at a spatial resolution of
13 km x 24 km at nadir.

The OMI HCHO product used in this study was developed
in the framework of the EU FP7 project QA4ECV (Qual-
ity Assurance for Essential Climate Variables; http://www.
qadecv.eu, last access: 31 May 2021) and is documented in
De Smedt et al. (2015, 2017, 2018). The retrieval approach
consists of three steps. Firstly, the HCHO slant columns are
retrieved in the 328.5-359 nm spectral window using up-to-
date differential optical absorption spectroscopy (DOAS) al-
gorithms (De Smedt et al., 2018) with the HCHO absorption
cross section from Meller and Moortgat (2000). Secondly, for
weak absorbers such as HCHO, the background normaliza-
tion of the slant columns using the equatorial Pacific Ocean
as the reference sector is applied in order to compensate for
possible systematic latitude-dependent offsets in spectral fit-
ting. Eventually, the conversion into a vertical column is per-
formed with the air mass factor (AMF) assuming an optically
thin approximation. The latter is obtained from an altitude-
resolved AMF look-up table derived at 340 nm from the VLI-
DORTV2.6 radiative transfer model (Spurr, 2008) and the
daily a priori vertical profile shape of the HCHO distribution
calculated with the TM5-MP chemical transport model (Hui-
jnen et al., 2010; Williams et al., 2017). The scattering due
to clouds is corrected using the independent pixel approxi-
mation (Martin et al., 2002), whereas an implicit correction
for the effects of aerosols is accounted for through the cloud
correction scheme.

2.5 The IMAGESv2 CTM

Simulations of the atmospheric composition are performed
using IMAGESv2 (Intermediate Model of the Global and
Annual Evolution of Species), a global three-dimensional
CTM of the troposphere (Miiller and Stavrakou, 2005;
Bauwens et al., 2016; Stavrakou et al., 2016, 2018). The
model calculates the concentrations of 170 compounds in the
global troposphere with a spin-up time of 6 months. The hor-
izontal resolution of the model is 2° x 2.5°, while the verti-
cal coordinate is a hybrid sigma-pressure system resolved in
40 unevenly spaced levels extending from the surface to the
lower stratosphere (44 hPa). The model is driven by ERA-
Interim meteorological fields (Dee et al., 2011). The chem-
ical degradation mechanism is described in Bauwens et al.
(2016) and Stavrakou et al. (2018).
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The bottom-up fluxes of HCHO precursors are prescribed
as follows. The biomass burning inventory is provided by
the Global Fire Emissions Database version 4s (GFED4s;
van der Werf et al., 2017) on a daily basis and a global
spatial resolution of 0.25° x 0.25° (https://globalfiredata.org,
last access: 31 May 2021). The anthropogenic sources of
non-methane VOC (NMVOC) species are taken from the
EDGARv4.3.2 (Emission Database for Global Atmospheric
Research; Huang et al., 2017), and the anthropogenic NO,,
CO, SO;, and NHj3 are obtained from the HTAPv2 (Hemi-
spheric Transport of Air Pollution; Janssens-Maenhout et al.,
2015) database for 2010. Due to their limited availability, the
EDGARvV4.3.2 emissions are set constant at their 2012 val-
ues after this year. Both inventories are available at https:
/ledgar.jrc.ec.europa.eu (last access: 31 May 2021). The bio-
genic emissions of isoprene, monoterpenes, and methyl-
butenol are estimated as described in Sect. 2.1. The biogenic
emissions of acetaldehyde and ethanol are parameterized fol-
lowing Millet et al. (2010). Biogenic CO emissions and CO
deposition are accounted for following Miiller and Stavrakou
(2005). Finally, the biogenic methanol emissions are pro-
vided by an inverse modelling study constrained by space-
borne methanol data (Stavrakou et al., 2011).

3 Comparison of satellite-based tree cover datasets

The LULC datasets shown in Table 2 are compared in detail
below over the 2001-2016 period, namely MODIS, GFW-
MOD, and ESA. In this study, the tree cover refers to the
aggregation of the eight PFTs corresponding to trees from
the CLM4 PFT classification scheme (Table S1).

3.1 Global TC areas, spatial distributions, and trends

The global TC distributions for the year 2001 are depicted in
Fig. 1. The global TC areas provided therein and listed in Ta-
ble 3 range from 30.6 x 10 km? for ESA to 52.6 x 10° km?
for MODIS, with the TC areas of GFWMOD and CLM
falling in between with 32.2 and 38.5 x 10° km?, respectively.
MODIS TC stands out as it exhibits extensive patches of high
TC densities (> 90 %) in all major forested regions. In con-
trast, GFWMOD and ESA exhibit lower densities (40 %—
80 %) in the Northern Hemisphere. The ESA cover density
reaches 90 % in the tropical forests of Central Africa, the
Amazon, Southeast Asia, and Oceania. The lowest densities
are found in the ESA dataset, e.g. in the eastern US, the West
African coast and Indonesia.

Table 3 compares the global satellite-based TC with fig-
ures from FAOSTAT based on national reporting. According
to FAOSTAT, the global forest area reached 41.5 x 10° km?
in 2001, which lies well within the satellite-based TC areas.

Time series of global TC areas normalized to the 2001
values are displayed in Fig. 2a, and total global trends
are shown in Fig. 2b and Table S2 for 2001-2016. Of all

Atmos. Chem. Phys., 21, 8413-8436, 2021

B. Opacka et al.: Impacts of land cover changes on isoprene emissions

datasets, GFWMOD exhibits the strongest negative trend,
equal to —0.26 % yr~' (ca. —83500km?yr~!), which is
about 3-5 times as fast as the FAOSTAT and ESA trends
(Table 3). The ESA dataset shows the lowest variation (ca.
—14000km?yr~—1), with a stable phase between 2004 and
2009. While net deforestation is found in both GFWMOD
and ESA datasets, the MODIS dataset exhibits a small posi-
tive linear trend of ~0.03 % yr~—!. The MODIS TC declines
in 2001-2003 and after 2014 are more than compensated for
by the slow increase in 2003-2014 (Fig. 2a).

Of all biomes, tropical trees experienced the greatest net
losses according to GFWMOD and ESA datasets. This loss
is 3.5 times greater in GFWMOD than in ESA (Fig. 2b and
Table S3 in the Supplement). MODIS also presents a net de-
cline in tropical trees (— 14 600 km? yr—!), almost entirely lo-
cated in South America (Fig. 3) with little net changes over
Africa and Southeast Asia, but it is offset by positive trends
in the boreal and especially in the temperate domain. Un-
like GFWMOD, which features a net loss in all domains,
MODIS demonstrates net gains at middle and high latitudes
of the Northern Hemisphere, with the biggest changes en-
countered in temperate forests (18400km”yr—!). As a re-
sult, these biomes, with strong trends and covering together
roughly 60 % of the total TC area, drive the global net in-
crease found in the MODIS dataset. Compared to the other
two datasets, the MODIS distribution shows significant im-
pacts over much larger areas, mainly in the periphery of
major forests of South America, Africa, and the southeast-
ern US. In contrast, GFWMOD displays large net changes
within higher-density forest canopies like those in the trop-
ics, the southeastern US, China, and Scandinavia. In the ESA
dataset, the net TC changes are sparse and weak, about 1 or-
der of magnitude lower than in the two other satellite-based
products, and show the highest values in boreal and temper-
ate regions (Fig. 3).

3.2 National and regional distributions of trends in
large forested countries

The satellite-based TC trends are compared against national
inventories collected through FRA national reports for sev-
eral large countries in Fig. 4 and Tables S4 and S5 in the
Supplement. Overall, large discrepancies are found across
the different estimates with respect to both the magnitude
and the sign of trends. The regional differences are further
discussed based on Fig. 3.

3.2.1 United States of America

The US FRA report indicates a positive trend of
4500km?yr~—! over the period considered (2001-2016),
whereas the satellite-based records suggest a net declining
TC area. According to GFWMOD, eastern US forests experi-
ence a net deforestation, except in parts of Louisiana, Missis-
sippi, and Florida (Fig. 3). Both MODIS and ESA show little
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Figure 1. Spatial distribution of the TC for (a) the static land cover map CLM (for the present day) and for the satellite-based datasets
((b) ESA, (¢) GFWMOD, and (d) MODIS) for the year 2001. The corresponding global TC areas are provided inset.

net changes in the eastern US, except in the Mississippi Al-
luvial Plain. In the northwest, forests undergo deforestation
according to all datasets. In Alaska, GFWMOD indicates a
clear net loss over the Yukon River Basin, also seen in the
ESA dataset although at lower rates. Overall, MODIS shows
strong positive trends in areas of low TC densities.

3.2.2 Brazil and Indonesia

There is qualitative agreement among all datasets regard-
ing the TC trends in Brazil and Indonesia even though
there are large differences in absolute terms. Over Indone-
sia, the FAOSTAT trend (—4000 km? yr_l) lies within the
estimates based on ESA (—2550km?yr—!) and GFWMOD
(=7250km?yr~1), whereas very little changes are sug-
gested by the MODIS dataset (—830km?yr~!). In Brazil,
all satellite-based estimates underestimate the national inven-
tory (—32200 km? yr—1), by factors of about 2-3 in the cases
of GFWMOD (—16900) and MODIS (—10 600), while ESA
differs from the other satellite-based products with very low
and sparse net total loss (—930km?yr—!). GFWMOD ex-
hibits deforestation across the Cerrado and Caatinga regions,
with the border regions of the Amazon forest and Cerrado ex-
periencing the largest net losses. In MODIS, strong positive
and negative trends are found in areas of low TC density con-
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tiguous to Paraguay and Caatinga, respectively (Fig. 1). The
southern part of the Atlantic Forest along the eastern coast of
Brazil experiences net TC increases according to GFWMOD
and ESA but not MODIS.

3.2.3 China

The strong positive trend in forest cover (~ 22 000 km? yr—")
reported by FAOSTAT in China is not supported by any
space-based estimate. MODIS indicates a positive but much
smaller trend (48800 km? yr‘l), whereas both the GFW-
MOD and ESA datasets exhibit a small net loss of about
—2500 and —350 km? yr—!, respectively. The spatial TC dis-
tributions reveal trends mostly in the southern part of the
country. In the Yunnan—Guizhou Plateau, MODIS exhibits
net positive trends, unlike ESA and GFWMOD that show
null net trends. Guangdong also experiences a net increase
in TC according to MODIS, whereas both GFWMOD and
ESA indicate significant declines in southeastern China in
line with the strong deforestation found in these datasets.

3.2.4 Russia

Over Russia, FAOSTAT and MODIS record total net increas-
ing trends of 4000 and 9300 km? yr~!, respectively, while the
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Figure 2. TC trends over 2001-2016. (a) Time series of the global net changes in TC areas (normalized to 2001 values) from FAOSTAT,
MODIS, ESA, and GFWMOD datasets and (b) total net TC trends at global scale and per climate zone (as defined in Sect. 2 in the Supplement
and depicted in Fig. S2b). For the FAOSTAT dataset, TC trends per climate zone are not available.

trend is negligible for ESA, and GFWMOD presents a net
negative trend, ca. —7700 km? yr~!. All satellite-based trend
distributions (Fig. 3) exhibit net positive trends in a large
zone around 55° N between Belarus and the West Siberian
Plains. In the Central Siberian Plateau, the strongest net pos-
itive and net negative trends of GFWMOD are respectively
located north and east of Lake Baikal. GFWMOD differs
from the other datasets in that the trend patterns are uni-
formly distributed across the forested regions, whereas trends
found in ESA and MODIS lie mainly on the outskirts thereof.
Over northeastern Siberia, MODIS shows a net increase in
the forested area, located close to the Kamchatka Peninsula
(Fig. 1), in contrast to the negative tendencies found with the
ESA and GFWMOD products over the same region.

3.3 Reasons for disparities in tree cover areas and
trends

The paramount difference between all products is the defi-
nition of the tree or forest cover. A height threshold allows
us to separate a tree from a shrub. Usually, woody plants
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higher than 5m are classified as trees. A forest cover is de-
rived from the tree cover by applying a minimum threshold
for the canopy cover and integrating over entire pixel areas
where the condition is met. Table 4 summarizes the criteria
of height and canopy density defining the TC or FC of all
datasets of the study.

As a first instance, the disparities in TC or FC be-
tween Earth observation-derived products and the FAOSTAT
database can, to a large degree, be attributed to differences in
the definitions used. According to the FRA report, a forest is
defined by a minimum threshold of 5 m height, a canopy clo-
sure of minimum 10 %, and a minimum area cover of 0.5 ha,
which is a parcel of ca. 71 m x 71 m which includes trees
able to reach these thresholds (FRA 2020 “Terms and Defini-
tions”, http://www.fao.org/3/18661EN/i8661en.pdf, last ac-
cess: 31 May 2021). This definition is tailored to a forest land
use description but is ill-suited from a biophysical perspec-
tive. As long as they meet the biophysical criteria with re-
spect to canopy density and/or height, human-managed lands
such as rubber plantations and agroforestry are construed as
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Table 4. Criteria for the classification of tree PFTs as inherited from the different LULC datasets (Table 1).

PFT TC definition ‘ Spatial resolution (m)
TC Heights (m)  Canopy density (%)
FAOSTAT > 54 > 102 7128
(OFFICIAL)
MODIS >2 > 10 500
ESA > 5b > 15 300
GFWMOD >5 n/a® 30

4 Note that the FAOSTAT definition is based on the FRA 2020 recommendations but is not consistently
applied in national reports. b This general rule is subject to an exception and accounts for trees with
height > 3 m if a clear physiognomic aspect of trees is detected. © No threshold is assumed for GFW. n/a:

not applicable.

trees in the satellite imagery data, whereas the FRA excludes
land use covers with extended human interference such as
agricultural and urban land use. Besides, the national re-
ports often rely on methodologies which are not in accor-
dance with FRA recommendations. The plurality of defini-
tions in use and the associated issue of directly evaluating a
satellite-based dataset against FAOSTAT database have been
pinpointed in previous research (Hansen et al., 2013; GFW
article, 2016; Li et al., 2018; Nomura et al., 2019).

The FAOSTAT numbers for US, China, and Russia rely on
field work inventories. For the US, the official reporting is
provided by the Forest Inventory and Analysis Program of
the US Forest Service that classifies clear cut forest, as well
as seedling and young trees, as forest (FRA national report
2020: http://www.fao.org/3/cb0086en/cb0086en.pdf, last ac-
cess: 31 May 2021). National reports of China are based on
a definition of forest cover that accounts for a great variety
of vegetation falling in the forest class, which is defined as
an area spanning more than 0.0667 ha with a canopy den-
sity above 20 % (FRA national report: http://www.fao.org/3/
ca9980en/ca9980en.pdf, last access: 31 May 2021). Nursery
land and clear cut or burnt areas that do not meet the bio-
physical requirements stated by the FAO user guide are in-
cluded, as well as economic and bamboo forests. The inclu-
sion of seedling and young trees could be swelling the posi-
tive trends of US and China reports. The 2020 FRA report of
the Russian Federation is based on the State Forest Inventory
provided by the Russian Research Institute for Silviculture
and Mechanization of Forestry in Moscow. According to the
FRA report for Russia (FRA national report: http://www.fao.
org/3/cb0053en/cb0053en.pdf, last access: 31 May 2021), al-
most 80 % of the total land area on which forests are located
is in “hard-to-reach” places beyond the 60th parallel (Alek-
seev et al., 2019). Since most of the deforestation caused by
wildfires takes place in those regions (Curtis et al., 2018),
inventories could present large underestimations of the re-
ported losses. Unlike other countries, both Brazil and In-
donesia use Landsat imagery to estimate the forest changes
provided in the FRA reports, which could explain the bet-
ter qualitative match between the satellite-based trends and
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the FRA figures, whereas discrepancies in their magnitude
might be due to differences in classifying forest and non-
forest (FRA national report of Brazil: http://www.fao.org/3/
ca9976en/ca9976en.pdf, last access: 31 May 2021; and In-
donesia: http://www.fao.org/3/cb0007en/cb0007en.pdf, last
access: 31 May 2021).

The comparison of the three satellite-derived products
has also shown great discrepancies in their spatial distribu-
tions, areas, and trends. Those differences stem from vari-
ous factors leading to uncertainties and inconsistencies: ac-
quisition methods (e.g. missions and sensors; Table 1), map-
ping methodology (classification algorithms of spectral re-
flectance into LC classes), original classification definition
related to height and canopy thresholds, and the conversion
of the original LC into PFT distribution (Congalton et al.,
2014), as well as the spatial resolution.

Although all datasets were mapped to the 16 CLM4 PFTs
required for MEGAN-MOHYCAN (Table S1), it is impor-
tant to stress that the definitions of LC classes differ among
the datasets. In particular, the criteria defining the tree PFTs
(Tables S1 and 4) are critical. On one hand, the tree PFTs
in discrete LULC products (MODIS and ESA) are defined
by a minimal threshold of canopy cover and hence repre-
sent a forest cover instead of a tree cover. On the other hand,
the GFW dataset provides continuous TC fields without in-
volving any a priori threshold on canopy density. This dif-
ference might account for a part of the differences between
the MODIS- and ESA-based estimates (Fig. 3) with respect
to GFWMOD since there can be a substantial change in tree
density without implying a change in FC. The threshold on
canopy cover affects considerably the areal tree cover and
net trends. For instance, the GFW-based TC area in 2000
would amount to ca. 40 x 10°km? if the canopy density
threshold of > 25 % were applied at the Landsat pixel scale
(30m x 30m) (Hansen et al., 2013). Here, we do not ap-
ply any threshold and simply average the TC densities from
GFW onto 0.5° x 0.5° grid cells. For this reason, the TC ar-
eas reported for the GFWMOD dataset differ from studies
that used the minimum threshold of 25 % (Li et al., 2018;
Hansen et al., 2013). The global net trends from GFWMOD
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Figure 3. Spatial distribution of the linear net trend (change in
cover fraction per year) in TC for 2001-2016 in the (a) MODIS,
(b) ESA, and (¢) GFWMOD datasets. The fraction change per year
is calculated by dividing the TC trends in each grid cell (expressed
in km? yr_l) by the corresponding grid area.

are the largest among all datasets. Since it is the actual TC
that matters in the biosphere—atmosphere exchanges of bio-
genic VOCs, the calculation of tree cover losses at pixel level
should account for the actual percentage changes in a given
pixel. This differs from the approach of Hansen et al. (2013)
according to which the forest losses are calculated based on
the entire area of pixels reported as lost.

Furthermore, part of the bias in the magnitude and trends
of the MODIS- and ESA-based estimates with respect to
GFWMOD stems from the PFT mapping. The often vague or
inadequate definition of LC classes in the original products

Atmos. Chem. Phys., 21, 8413-8436, 2021

results in much arbitrariness in the cross-walking tables ap-
plied to map those land cover products onto the CLM4 PFTs.
As seen in Fig. 1, MODIS shows large areas of canopies with
very high densities (> 90 %) which are due to the mapping
of the MODIS classes “sparse forest” (defined at 10 %—30 %
canopy closure) and “open forest” (defined at 10 %—60 %
canopy closure) onto the tree cover PFTs (Sulla-Menashe
et al., 2019). Li et al. (2018) adopted a less radical redis-
tribution of the ESA LC classes, leading to generally lower
densities.

The spatial resolution also plays a role in the magnitude of
changes since finer resolutions can capture disturbances oc-
curring at finer scales. GFWMOD based on 30 m pixels ex-
hibits stronger net changes in the forested areas, whereas in
lower resolution datasets, ESA (300 m) and MODIS (500 m),
the trends are representative of dominant land cover changes
that are mainly seen at the outskirts of the forested regions, in
particular in South America. The ESA dataset shows the low-
est net changes because the LC changes were first detected
at 1 km resolution and then delineated to a higher resolution
of 300m (ESA-CCI-LC, 2017). The fine resolution of the
Hansen et al. (2013) database is a unique asset for tracking
land cover changes and trends. However, GFWMOD comes
with its own shortcomings. It inherits uncertainty and in-
consistencies in the trend due to the changes in the map-
ping methodology of TC losses from year 2011 onwards in
the Hansen et al. (2013) dataset. The global forest losses of
2011-2018 used an updated processing for detection, and, at
the time of drafting, the dataset was not yet reprocessed prior
to 2011.

4 Comparison of isoprene emissions for different
satellite-based LC products

We investigate the effects of LULC variations on global bio-
genic isoprene emissions using results from three simula-
tions: CTRL, using the static CLM map; ISOPMOD, using
the MODIS dataset; and the ISOPGFW, using the GFWMOD
dataset. Given the very low net changes and variability seen
in the ESA dataset, the latter was discarded from further anal-
ysis. The three simulations account for the same meteorology
but differ in the input of the vegetation maps. The influence
of soil moisture stress and CO; inhibition are neglected here,
that is, ysm = 1 and yco, =1 (Sect. 2.1), unless stated oth-
erwise. The MEGAN-MOHYCAN model does not represent
the interplay between the vegetation land cover map and me-
teorological conditions as is the case in dynamic ecosystem
models. The effects of climate and vegetation are decoupled,
and only direct impacts thereof are considered. The inter-
annual variability in meteorological conditions is considered
through ERA-Interim reanalyses, allowing a validation with
atmospheric formaldehyde to be performed in the following
section.
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Figure 4. Net total TC trends (in km? yrfl) in five large countries according to MODIS, ESA, GFWMOD, and FAOSTAT datasets for

2001-2016.

Table S. Global mean annual isoprene emissions (in Tg), trend
(Yoyr— 1 ), and maximum interannual variability (IAV, defined as dif-
ference between global maximum and global minimum, in %) for
the 2001-2016 period in CTRL, ISOPMOD, and ISOPGFW simu-
lations.

Mean (in Tg) Trend (% yrfl) max IAV (%)
CTRL 418 0.94 20
ISOPMOD 520 0.90 19.5
ISOPGFW 354 0.61 18

4.1 Global and total emissions, distributions, and
trends

The average annual global isoprene emission is estimated at
ca. 420 Tg for the 2001-2016 period in the CTRL simula-
tion (Table 5), whereas it is 24 % higher in the ISOPMOD
run and 15 % lower in the ISOPGFW simulation. These fig-
ures remain in the range (350-800 Tgyr~!) found in previous
estimations with MEGANv2 using various drivers (Guen-
ther et al., 2012). By comparison, bottom-up inventories
such as CAMS-GLOB-BIOv1.1 (Granier et al., 2019; Sinde-
larova et al., 2014), its predecessor MEGAN-MACC (Sinde-
larova et al., 2014), and the Royal Belgian Institute for Space
Aeronomy (BIRA-TASB) inventory (Stavrakou et al., 2018;
https://emissions.aeronomie.be, last access: 31 May 2021)
estimate the mean global annual total of emitted isoprene in
the range of 380-590 Tg. The effects of CO; inhibition and
soil moisture were neglected in those inventories except for
MEGAN-MACC, which accounted for CO, inhibition (Sin-
delarova et al., 2014). The inclusion of the CQO, inhibition
effect according to the parameterization of Possell and He-
witt (2011) in our study would lead to an annual emission
decrease of the order of 3 % (Table S5). Including the soil
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moisture stress effect (ysp) based on ERA-Interim soil mois-
ture data would lead to a further decrease of the order of
10 % (Table S5). Disparities among the inventories are pri-
marily attributed to differences in meteorological fields and
emission potential distributions (Arneth et al., 2011), with
additional possible contributions of differences in the canopy
environment models and in the LAI datasets.

The distribution of isoprene emissions in the three simu-
lations (Fig. 5) shows that the highest values are found over
Amazonia, the Yucatan Peninsula, West and Central Africa,
and Southeast Asia, in particular Borneo. These spatial pat-
terns reflect the warm temperature, high radiation fluxes, and
high isoprene emission factors generally found in the trop-
ics. Secondary maxima are found at temperate latitudes dur-
ing summertime, in particular over the southeastern US and
southern China. ISOPMOD predicts higher emissions than
the other two simulations over many regions as a conse-
quence of its higher tree cover (Figs. 5 and S3 in the Sup-
plement), in particular over northeastern Brazil, large parts
of Africa, South China, and the eastern US. Regional dissim-
ilarities between the datasets (Fig. S3) are mainly located in
isoprene-rich areas and stem from differences in the canopy
coverage. In some regions (e.g. northwest Australia), both
ISOPMOD and ISOPGFW exhibit higher emissions com-
pared to CTRL due to their higher shrub extent, with shrubs
being relatively high emitters. Since the GFWMOD dataset
inherited PFTs (besides the total tree cover) from the MODIS
PFT dataset, the spatial patterns of ISOPGFW and ISOP-
MOD are similar in low-TC areas.

The trend of the global annual isoprene emissions in the
CTRL run is estimated at 0.94 % yr~! (Fig. 6). Since the PFT
distribution and therefore the isoprene emission factors were
held constant in this simulation, the interannual variability
in emissions in this simulation is essentially due to the in-
terannual variability in meteorological parameters, primar-
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Figure 5. Distribution of isoprene emissions (in mg m~2d~1) for (a) June—July—August (JJA) and (b) December—January—February (DJF)
in 2001 in simulation CTRL, and emission differences of ISOPMOD-CTRL in (¢) JJA and (d) DJF and of ISOPGFW-CTRL in (e) JJA and

(f) DIF.

ily temperature and visible radiation fluxes. Accounting for
LULC changes with the MODIS and GFWMOD land cover
maps results in a cutback of the global isoprene emission
trends by 0.04 and 0.33 % yr~!, respectively. In ISOPMOD,
the deceleration in the global trends pertains to a negative
trend of tropical tree cover in MODIS (Fig. 2) which more
than compensates for the increasing coverage of temperate
and boreal trees given the large share of the tropics (80 %)
in the global emissions. In ISOPGFW, the significant de-
cline in tree cover in all climate zones explains the strong
drop in the global isoprene emission trend, from 0.94 % to
0.61 % yr_l. Note that the CO; inhibition effect, not consid-
ered in those simulations, would further offset global trends
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by about 0.5%yr~! according to the parameterization of
Possell and Hewitt (2011), whereas the soil moisture stress
has little impact on trends (Table S6 and Sect. S6 in the Sup-
plement). The effect of LAI trends on global emission trends
is very small: a positive increment of +0.06 % yr~! was cal-
culated based on an additional sensitivity simulation in which
LAI interannual variability was omitted.

The interannual variability (IAV) in isoprene emissions is
mainly driven by meteorology and is positively correlated
with the Oceanic Nifio Index (ONI) (Naik et al., 2004; Lath-
iere et al., 2006; Miiller et al., 2008; Stavrakou et al., 2014).
Maxima in isoprene emissions correlate with El Nifio events
(2002/2003, 2004/2005, 2009/2010, and the 2014-2016),
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Figure 6. Time series of global annual isoprene emissions from the CTRL, ISOPMOD, and ISOPGFW simulations.

and minima with La Nifia episodes in 2007-2009 (NOAA
ONI v5, https://origin.cpc.ncep.noaa.gov, last access: 24 Au-
gust 2020). This variability is only weakly dependent on the
choice of land cover dataset. Besides the differences between
long-term trends of the emissions from the three simulations,
the year-to-year relative changes in emissions are very sim-
ilar (Fig. 6). The global minimum and maximum occur in
all datasets respectively in 2008 and 2015, whereas the max-
imum TAV, defined as difference between global maximum
and global minimum (in %), amounts to 20 %, 19.5 %, and
18 % in simulations CTRL, ISOPMOD, and ISOPGFW, re-
spectively (Table 5). The impact of interannual variability in
LALI on the variability in isoprene emissions is considered to
be either minor (Miiller et al., 2008; Stavrakou et al., 2014)
or uncertain because of the large disparities in the long-term
evolution of LAI products (Jiang et al., 2017).

The isoprene emission trends of the CTRL run illus-
trated in Fig. 7 reflect the temperature and solar radiation
trends (Figs. S4 and S5 in the Supplement). The ability
of MEGAN-MOHYCAN to reproduce the response of bio-
genic emissions to short-term climate variability over veg-
etated areas was demonstrated in Stavrakou et al. (2018)
using spaceborne formaldehyde observations. The simula-
tions ISOPMOD and ISOPGFW account for the impact of
both climate variability and LULC changes. The effect of
LULC changes on emission trends can be estimated from
the differences in trends between those simulations and the
CTRL run. The differences, namely ISOPMOD-CTRL and
ISOPGFW-CTRL, are shown in the middle and bottom pan-
els of Fig. 7, respectively. In isoprene-rich areas, the trend
pattern of ISOPMOD-CTRL and ISOPGFW-CTRL largely
reflect trends in tree coverage (Fig. 3). This is because high-
emitting broadleaf trees are generally dominant in those ar-
eas. In less forested regions (low TC), the spatial distribu-
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tion of trends of ISOPGFW and ISOPMOD is similar since
non-tree PFTs in GFWMOD and MODIS are similar. The
decreasing trends in grass and especially shrub cover in low-
emission areas of, for instance, central US, southeast Aus-
tralia, and western India are responsible for the significant
relative decreases in isoprene emissions in those areas (left
panels in Fig. 7).

Of the largely forested countries shown in Table 6, Brazil
and Indonesia have the highest emissions, of the order of 80
and 30 Tgyr~!, respectively. Emissions from Russia are low
mainly because of the unfavourable climatic conditions and
prevalence of low-emitting PFTs (Table S1). China and the
US show large discrepancies between estimates using differ-
ent LULC databases; e.g. emissions from China vary from
9.5 Tg in ISOPGFW to 23 Tg with ISOPMOD, in the range
of reported values from previous studies (Stavrakou et al.,
2014; Li et al., 2013). The national emission estimates for
China and Indonesia were significantly lower in the study of
Stavrakou et al. (2014) also using MEGAN-MOHYCAN, 7
and 8 Tgyr~! over 2005-2012. This difference is largely due
to reduced basal emission rates adopted in that study for trop-
ical forests over Asia (Stavrakou et al., 2014), based on flux
measurements in the rainforest of Borneo (Langford et al.,
2010).

Meteorology induces positive trends in all countries, of
the order of 0.5%yr '-1.5%yr~! in the CTRL run (Ta-
ble 6), and is the main driver of the overall trends, except
in Russia for which the positive trend induced by LULC
changes according to MODIS (0.76 % yr~!) and exceeds the
meteorological effect (0.57 % yr~—!). LULC changes lead to
a reduction in the trends in the US, Brazil, and Indonesia.
This reduction is most significant for ISOPGFW over Brazil
(—0.53 %yr~!) and Indonesia (—0.7 %yr‘l). The emission
trends over southern China are of opposite sign in [ISOPMOD
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Difference in relative trends (% yr'l) Difference in absolute trends (mg m2h?t yr'l)
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Figure 7. Global distribution of annual isoprene emission trends for the 2001-2016 period. Panel (a) displays the relative trend (% yr_l) in
the CTRL run. The relative trend differences between the runs are shown in (b) ISOPMOD-CTRL and (d) ISOPGFW-CTRL. The absolute
trend differences (in mg m2h~! yr_l) are shown in (¢) ISOPMOD-CTRL and (e¢) ISOPGFW-CTRL.

Table 6. Annual isoprene emission estimates (in Tg) averaged over 2001-2016 in largely forested countries and isoprene trends over 2001—
2016 (in %yr_l). In the CTRL study, isoprene trends pertain to changes in meteorological conditions. The combined effect accounting for
both meteorological and LULC trends is given for ISOPMOD and ISOPGFW, while the effect from LULC changes is provided in brackets.

Annual trends (in % yr_l)

CTRL ISOPMOD ISOPGFW ‘ CTRL ISOPMOD ISOPGFW

Annual emissions (in Tg)

[N 14.5 24 16 1.53  1.51(=0.02) 1.27(-0.26)
Brazil 82 106.5 79.5 099 0.68 (—=0.31) 0.46 (—0.53)
China 12 23 9.5 0.74 1.06 (+0.32) 0.31(-0.43)
Indonesia 30.5 32 24.5 1.19  1.07(=0.12)  0.50 (—0.70)
Russia 6 8 7 0.57 1.33(+0.76) 0.91 (+0.34)
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and ISOPGFW, consistent with the increasing TC trend in
MODIS and decreasing trend in GFWMOD shown in Fig. 3.

It is important to emphasize that the LULC-induced trend
estimates given above are based on simulations assuming that
the basal emission factor of each PFT remains constant. This
assumption is not always verified as, for example, the pro-
portion of high isoprene emitters might change over time,
leading to significant variations in the basal emission rate.
Note also that the spatial patterns of the emissions differ from
those of inventories such as CAMS-GLOB-BIOv1.1 and the
BIRA-IASB dataset since they used the gridded emission
factor distributions instead of a PFT-specific approach. In
particular, the gridded distribution of the emission factor
gives rise to two hotspots not present in the inventories pre-
sented here; one is located in the South Amazon Basin and
the other in northern Australia (Sindelarova et al., 2014). The
conversion of primary forests to tree plantations or secondary
forest regrowth may tend to increase the isoprene emission
factor (Harley et al., 1999; Geron et al., 2000, 2006). As a
result, an increase in the isoprene emitting fraction of trees
could easily compensate for the decrease in the total number
of trees. For instance, the rapid land use change and forest
plantation establishment in South Asia enhance the propor-
tion of high-isoprene-emitting species (Misztal et al., 2011).

4.2 Comparison to previous studies

At the global scale, only one study was conducted to assess
isoprene emission responses to changes in TC by means of
satellite land cover datasets. Using the MEGANV2.1 with the
Landsat tree cover continuous fields of Sexton et al. (2013)
and fixed meteorological fields, Chen et al. (2018) estimated
global isoprene emissions at around 480 Tgyr~! in 2000.
This estimate is higher than our estimate (350 Tgyr~! in
2001; cf. Table 5) based on Landsat TC data from Hansen
et al. (2013). This disparity is owed to differences in mod-
elling settings and drivers. In particular, Chen et al. (2018)
used the coupled MEGAN2.1-CLM4.5 along with satellite
vegetation data instead of the modelled land cover from
CLM4.5, the canopy environmental model from Guenther
et al. (2012) instead of the MOHYCAN model, and emis-
sion factors calculated using three vegetation categories,
namely the broad- and needle-leaved trees and non-trees in-
stead of the PFT-dependent emission factors. The decreasing
emission trend induced by LULC evaluated for ISOPGFW
amounted to 0.33 % (Table 5), which is more than thrice
the decreasing trend of 0.1 % yr~!' over 2000-2015 in the
study of Chen et al. (2018), with significant regional varia-
tions. The tree cover trends in Chen et al. (2018) and GFW-
MOD are of opposite signs over West Africa (Gabon and
Cameroon), India, the Yucatan Peninsula, and the southeast-
ern US, whereas a qualitative agreement is found regarding
the positive trends seen over Europe and the Atlantic Forest
in Brazil and the negative trends in Southeast Asia.
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While the present study showed that meteorology is the
main driver of emission trends at the global scale and in
most forested countries, a converse conclusion was drawn
by Wang et al. (2020) who estimated that land cover changes
caused a significant emission trend over China during 2001-
2016 (1.35 % yr~"), which dominates largely over the slight
negative trend due to meteorology. Wang et al. (2020) used
the MODIS PFT dataset as in the present study but with
a different approach for the conversion to MEGAN PFTs.
Furthermore, their estimation accounts for changes in the
soil moisture stress factor and in the CO; inhibition ef-
fect. The annual isoprene emission for China amounted to
7.56 Tg of isoprene (average over 2001-2016), a factor of 3
lower than the 23 Tgyr~! estimated in ISOPMOD. In a pre-
vious study using both satellite retrieval and land use survey,
Fu and Liao (2014) estimated the emissions from China at
14.5Tgyr~! in the mid-2000s and evaluated the LULC im-
pact at —0.175 % yr~! from the late 1980s to the mid-2000s,
well below the trend due to meteorology (4+0.85 % yr—1).

5 Evaluation with OMI HCHO observations

Three global simulations with the IMAGESv?2 model are per-
formed over 2005-2016. The period is selected so as to coin-
cide with HCHO data availability from the OMI satellite. The
biogenic isoprene emissions used in those runs are described
in the previous section, except that the inhibition effect of
CO; parameterized following Possell and Hewitt (2011) is
now taken into account. Although very uncertain, its inclu-
sion is motivated by its substantial effect on isoprene trends
(discussed and quantified in Sect. S6), which improves the
agreement with OMI HCHO trends. The three runs are as
follows: run A, using the CTRL emissions; run B, using the
ISOPMOD emissions; and run C, using the ISOPGFW emis-
sions.

The interannual variability in seasonally averaged mod-
elled HCHO columns correlates very well with the OMI data,
as shown in Fig. 8 which displays the global distribution of
the correlation coefficient of observed and calculated (run A)
seasonally averaged HCHO columns. In tropical regions,
the averages are taken over June-July—August (JJA) for
the northern tropics (0-30° N) and February—March—April
(FMA) for the 0-30° S band, corresponding to months with
usually minimal biomass burning activity (Figs. S6 and S7
in the Supplement). At extra-tropical latitudes, the seasonal
averages are calculated over the summer months, when bio-
genic emissions and HCHO columns are the highest. High
and statistically significant correlation coefficients are found
over most vegetated areas where BVOC emissions are the
dominant source of HCHO. This result essentially validates
the modelled response of BVOC emissions to short-term me-
teorological variability (Stavrakou et al., 2018). Whereas the
impact of biomass burning on the correlation was mitigated
in tropical areas due to the choice of the averaging period
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Figure 8. Pearson’s coefficient of correlation between the observed evolution of seasonally averaged HCHO columns during 2005-2016
and the model-calculated values (run A). The seasonal averages are calculated over the months of June—August in the Northern Hemisphere
(> 0° N), February—April in the 0-30° S latitudinal band, and December—February below the 30th parallel. The stippling represents the

statistically significant correlation coefficient (p < 0.05).

(Figs. S6 and S7), the high correlation of modelled and OMI
columns in the boreal regions of Canada and Siberia is partly
due to the impact of fire activity on HCHO (Fig. S7). Nev-
ertheless, even at those latitudes, the interannual variability
in biogenic emissions contributes substantially to the corre-
lation with OMI data (Stavrakou et al., 2018).

Certain forested regions exhibit positive but relatively low
correlations, such as Ivory Coast, South China, and New
Guinea, for unclear reasons. Negative or very low coeffi-
cients are found in arid and semi-arid regions such as north-
ern Africa, the Middle East, South Africa, Texas, Arizona,
northern Mexico, and western Australia. Although this poor
agreement might be partly due to a relatively low HCHO sig-
nal and low biogenic emissions (e.g. over Sahara), the omis-
sion of a soil water stress factor in the parameterization of
biogenic isoprene emissions likely contributes much to the
discrepancy. The effect of LULC changes has little impact
on correlations, with changes within the £ 0.1 range (Fig. S8
in the Supplement), indicating that interannual variability in
isoprene and HCHO is dominated by meteorological vari-
ability, whereas LULCCs play only a minor role.

The interannual evolution of normalized seasonally aver-
aged datasets over five selected regions (Fig. S9 in the Sup-
plement) is shown in Fig. 9. Over the southeastern US and
South China, the relatively high HCHO columns of run B
(Fig. S10 in the Supplement) lead to greater fluctuations,
e.g. in 2011 and 2013 over the southeastern US, that are
not found in the observations, as seen from the higher root-
mean-square deviation (RMSD) for this simulation. Despite
the inclusion of the inhibition effect due to CO,, the sim-
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ulations show stronger positive trends than the OMI obser-
vations in all five regions. Over Mato Grosso and South
China, the positive trends in tree cover from the MODIS
PFT dataset enhance the positive HCHO trends and there-
fore worsen the agreement with OMI. On the other hand, the
larger TC negative trends of the GFWMOD-based simula-
tion (run C) lead to a better agreement with trends from OMI
data in all regions, especially in Mato Grosso, South China,
and Indonesia. In particular, the overestimation by 0.4 % yr~!
found in the control simulation over Indonesia and Mato
Grosso is greatly improved due to an important offset by 0.3
and 0.2 %yr~!, respectively. The overestimation of 1 % yr~!
in modelled HCHO trends over equatorial Africa is largely
due to abnormally low modelled columns between 2006 and
2009 for unclear reasons. Nevertheless, interannual variabil-
ity still shows a high correlation (> 0.8). The effect of LULC
changes in this area does not bring a significant improvement
on trends.

6 Summary and conclusions

In this study, the tree cover distribution and trends from three
global satellite-based LC products were intercompared for
the period 2001-2016 and put in perspective with national
estimates from the FRA compilation. Two global isoprene
emission inventories, ISOPMOD and ISOPGFW, were de-
veloped using the MEGAN-MOHY CAN model, with annual
PFT distributions derived from satellite-based LC products
for the 2001-2016 period. The impact of LULCC on emis-
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Figure 9. Interannual variability in seasonally averaged HCHO columns normalized by their 2005-2016 average over selected regions:
(a) southeastern US, (b) Mato Grosso, (c¢) equatorial Africa, and (d) South China as defined in Fig. S9. The seasonal averages are cal-
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HCHO columns are represented by symbols with their 1o uncertainty bars; model results are shown as solid lines: runs A (red), B (blue),
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uncertainty estimates are given inset.
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sions was estimated for both inventories. Finally, the interan-
nual variability in isoprene emissions was evaluated through
comparisons of modelled HCHO columns using the global
CTM IMAGESv2 with spaceborne OMI HCHO observations
over 2005-2016. The main findings of this study are pre-
sented below.

— The global total TC area differs by more than 60 % be-
tween the datasets, with 30.6 x 10° km? (ESA), 32.2 x
10°km? (GFWMOD), and 52.6 x 10°km? (MODIS).
Higher canopy densities and extent contributed to the
large figure found with MODIS. Great disparities were
also seen in global TC trends. Negative trends are found
in the ESA dataset (—0.05 % yr_l) due to overall weak
and sparse net changes and in the GFWMOD dataset
(—0.26 % yr—!) mostly due to net losses in high density
forest canopies. A slightly net positive trend is derived
from MODIS (0.03 % yr~!) due to the increase in areal
coverage of temperate and boreal trees. Over the US,
the reported positive trends in forest cover are contra-
dicted by all remotely sensed datasets. Over China and
Russia as well, the positive trends from national esti-
mates are at odds with the GFWMOD dataset, whereas
an overall consistency between the national reports and
the satellite-based estimates is found over Brazil and In-
donesia.

— The global isoprene emissions estimated using the
MEGAN-MOHYCAN model amount to 354, 418, and
520 Tgyr~! for ISOPGFW, CTRL, and ISOPMOD av-
eraged over 2001-2016, respectively. Strong dissimi-
larities are found in isoprene-rich areas (northeastern
Brazil, South China, eastern US, and equatorial Africa)
and stem from differences in tree coverage.

— The global impact of LULCCs is a mitigating ef-
fect on the strong positive trends (0.94 % yr~!) of iso-
prene emissions driven by meteorological parameters,
primarily temperature and solar radiation. The cut-
backs were estimated at 0.04 %yr~! for ISOPMOD
and 0.33 %yr~! for ISOPGFW due to the decreasing
trends in tree coverage, in particular for broadleaf trees
in tropical regions. Despite the slightly positive trend
(4+0.03 % yr~!) in global TC area in MODIS, decreases
in tropical broadleaf tree cover led to a decline in global
isoprene emissions owing to the dominance of tropical
forests to the global total. LULCCs have little impact on
the interannual variability in isoprene emissions.

— The interannual wvariability in seasonally averaged
HCHO columns calculated by IMAGESvV2 correlates
very well with the OMI data. High and statistically
significant correlation coefficients (R > 0.9) are found
over most forested areas, where BVOC emissions are
the dominant source of HCHO. The model performance
worsens over arid and semi-arid areas likely due to the
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neglect of soil moisture stress effects in the MEGAN
model set-up used in this study. The effect of LULC
changes has little impact on correlations, with changes
within the +0.1 range; the interannual variability is
dominated by meteorological variability. Although the
three model simulations show similar results, the larger
TC negative trends of the GFWMOD-based simulation
(run C) lead to a better agreement with trends from OMI
data in all five regions and in particular over Indonesia
and Mato Grosso.

Although remote sensing is a tool of choice for con-
straining LULC in biogenic emission models, the present
study casts light on the high uncertainties in the calcula-
tion of isoprene emissions associated with the representation
of PFTs from satellite-based LC products. The coarse res-
olution, the use of a discrete approach in the classification
and the cross-walking process constitute notable limitations
of satellite-based LULC maps underscored in this study. In
the remote sensing community, the accurate identification of
LULC maps is a widely researched topic, and future devel-
opments of LULC maps could provide the modelling com-
munity with a more accurate mapping of PFTs that could
contribute to improved estimation of isoprene emissions. Re-
motely sensed PFTs would solve the problem of arbitrariness
in the cross-walking into biome-based PFTs (Sun and Liang,
2008; Ustin and Gamon, 2010). But, to our knowledge, only
a few attempts were made to mitigate the issue (Oleson and
Bonan, 2000; Bonan et al., 2002), and no such maps have
been made publicly available at a global and long-term scale.
Also, the current approach based on discrete classification
could be replaced by continuous fields products designed
to overcome the spurious abrupt distinctions between land
cover classes. Bonan et al. (2002) argued for the necessity of
remotely sensed, spatially continuous distributions of coex-
istent vegetation. Such maps would reduce model sensitivity
to resolution and solve the problem of the arbitrariness of
biome-based PFTs. For now, the integrated use of the contin-
uous tree cover fields available at very high resolution from
the Global Forest Watch database and the discrete LULC
maps from MODIS PFT seems to be a reasonable trade-off.
These maps could be improved when the announced updated
version of the GFW dataset will become available that solves
the current inconsistencies in the mapped interannual loss or
when tree cover maps including net changes could be made
available so that the assumption of linear gains would not
be needed. Despite those limitations, we recommend the in-
tegrated use of continuous fine-resolution tree cover fields,
like those provided by the GFW database, in the modelling
of biogenic emissions and their trends.

Code availability. The biogenic emission MEGAN model is
publicly available at https://bai.ess.uci.edu/megan (last access:
31 May 2020).

https://doi.org/10.5194/acp-21-8413-2021


https://bai.ess.uci.edu/megan

B. Opacka et al.: Impacts of land cover changes on isoprene emissions 8431

Data availability. The ESA CCI-LC maps can be viewed on-
line and downloaded from https://maps.elie.ucl.ac.be (last access:
31 May 2021) (ESA-CCI-LC, 2017) and are also available at
https://cds.climate.copernicus.eu (last access: 31 May 2021). The
MODIS Land Cover Type Product MCD12Q1 is available at https:
/Mlpdaac.usgs.gov (last access: 31 May 2021) (Friedl and Sulla-
Menashe, 2019). The GFW dataset can be viewed online at https:
/Iwww.globalforestwatch.org (last access: 31 May 2021) and is
available for download at http://earthenginepartners.appspot.com
(last access: 31 May 2021) (Hansen et al., 2013). The FAOSTAT
datasets are available at http://www.fao.org/faostat (last access:
24 August 2020). The OMI HCHO column data are publicly acces-
sible at https://h2co.aeronomie.be (last access: 31 May 2021) and
http://qadecv.eu (last access: 31 May 2021) (De Smedt et al. 2015,
2017, 2018). The ALBERI inventory, GFWMOD-based isoprene
emissions, is available at https://repository.aeronomie.be/ (last ac-
cess: 31 May 2021) (Opacka and Miiller, 2021). The MEGAN-
MOHYCAN isoprene emission inventories for CLM and MODIS
are publicly accessible at the BIRA-IASB emission portal https:
/lemissions.aeronomie.be (last access: 31 May 2021).
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line at: https://doi.org/10.5194/acp-21-8413-2021-supplement.
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