



# Supplement of

# New methodology shows short atmospheric lifetimes of oxidized sulfur and nitrogen due to dry deposition

Katherine Hayden et al.

Correspondence to: Shao-Meng Li (shaomeng.li@pku.edu.cn) and Katherine Hayden (katherine.hayden@canada.ca)

The copyright of individual parts of the supplement might differ from the article licence.

### **17** The Supporting Information contains the following sections:

- 18 Section S1. Supporting Tables S1 S4
- 19 Section S2. Supporting Figures S1 S5
- 20 Section S3. Ground-based SO<sub>2</sub> fluxes
- 21 Section S4. SO<sub>2</sub> chemical losses
- 22 Section S5. Modelled dry deposition fluxes and dry deposition velocities
- 23 Section S6. References

25 Section 1. Supporting Tables S1 to S3.

| Measurement      | Instrument                      | Sampling time<br>resolution (s) | Detection<br>limit       | Manufacturer                                         |
|------------------|---------------------------------|---------------------------------|--------------------------|------------------------------------------------------|
| SO <sub>2</sub>  | Thermo<br>43iTLE                | 1                               | 0.7 ppbv                 | Thermo Fisher<br>Scientific,<br>Franklin, MA,<br>USA |
| NOy              | Thermo<br>42iTL                 | 1                               | 0.09 ppbv                | Thermo Fisher<br>Scientific,<br>Franklin, MA,<br>USA |
| pSO <sub>4</sub> | Aerosol<br>Mass<br>Spectrometer | 10                              | 0.048 ug m <sup>-3</sup> | Aerodyne<br>Research Inc.                            |

## 26 Table S1. Instrumentation and measurement details for SO<sub>2</sub>, NO<sub>y</sub> and pSO<sub>4</sub>.

**Table S2**. Measurement and model-derived estimates of cumulative deposition (%), transport

29 distance (km) and lifetimes (hrs) of TOS and TON for F7, F19 and F20. Geographic foot print

30 areas under the plumes for TOS and TON are also provided.

|                                 | Cumulative deposition<br>(%) |       | e-folding transport distance<br>(d <sub>1/e</sub> ) (km) |            |          | Lifetime ( $\tau = d_{1/e}/u$ )<br>(hrs) |            |            |       |     |     |     |
|---------------------------------|------------------------------|-------|----------------------------------------------------------|------------|----------|------------------------------------------|------------|------------|-------|-----|-----|-----|
| TOS                             | 7                            | 19    | 20                                                       |            | 7        | 19                                       | 20         |            | 7     | 19  | 20  |     |
| Measurements                    | 22±4                         | 74±5  | 45±3                                                     |            | 1230±290 | 71±1                                     | 210±       | 4          | 26    | 2.2 | 6.5 |     |
| Model                           | 7                            | 21    | 8                                                        |            | 4300     | 500                                      | 2800       |            | large | 16  | 91  |     |
| Footprint<br>(km <sup>2</sup> ) | 3500                         | 5700  | 4200                                                     |            |          |                                          |            |            |       |     |     |     |
| TON                             | 7                            | 19    | 20<br>(SP)                                               | 20<br>(NP) | 7        | 19                                       | 20<br>(SP) | 20<br>(NP) | 7     | 19  | 20  |     |
| Measurements                    | 31±11                        | 49±11 | 62±14                                                    | 34±6       | 360±14   | 190±7                                    | 62±1       | 290±30     | 7.6   | 5.6 | 1.9 | 9.0 |
| Model                           | 3                            | 19    | 4                                                        | 2          | 4300     | 650                                      | 2000       | 2400       | 91    | 23  | 63  | 78  |
| Footprint<br>(km <sup>2</sup> ) | 3500                         | 5700  | 4200                                                     | 3100       |          |                                          |            |            |       |     |     |     |

31

- **Table S3**. Equivalent dry deposition velocities  $V_d$  (cm s<sup>-1</sup>) determined from the aircraft
- 34 measurements (AC) and the model.  $SO_2$  and TON mixing ratios were taken from the average of
- the lowest ~40m (interpolated values) across the plume width for two sets of screens. SP=south
- 36 plume, NP=north plume for F20.

| Flight | SO <sub>2</sub> |       | TON           |               |  |
|--------|-----------------|-------|---------------|---------------|--|
|        | AC              | model | AC            | model         |  |
| 7      | 0.9±0.6         | 0.76  | 2.3±0.7       | 1.32          |  |
|        | 1.5±0.3         | 0.67  | 3.2±1.0       | 1.55          |  |
| mean   | 1.2±0.5         | 0.72  | 2.8±0.8       | 1.44          |  |
| 19     | 2.3±0.5         | 0.52  | 1.9±0.6       | 1.10          |  |
|        | 2.8±0.5         | 0.67  | 1.3±0.4       | 1.35          |  |
|        | 2.3±0.4         | 0.70  | 1.5±0.5       | 1.40          |  |
| mean   | 2.4±0.4         | 0.63  | 1.6±0.5       | 1.28          |  |
| 20     | 3.5±0.6         | 0.63  | 6.7±2.0       | 1.06          |  |
|        |                 |       | (SP)          | (SP)          |  |
|        |                 |       | 4.2±1.3       | 0.94          |  |
|        |                 |       | (NP)          | (NP)          |  |
|        | 3.2±0.5         | 0.52  | 2.8±0.8       | 0.77          |  |
|        |                 |       | (SP)          | (SP)          |  |
|        |                 |       | 0.18±0.05     | 0.85          |  |
|        |                 |       | (NP)          | (NP)          |  |
| mean   | 3.4±0.6         | 0.58  | 4.7±0.1.4     | 0.92          |  |
|        |                 |       | ( <b>SP</b> ) | ( <b>SP</b> ) |  |
|        |                 |       | 2.2±0.7       | 0.90          |  |
|        |                 |       | ( <b>NP</b> ) | ( <b>NP</b> ) |  |
|        |                 |       |               |               |  |

- **Table S4**. Prescribed values used in the Monte-Carlo simulations with five different deposition
- 39 algorithms.

| Component                                                                           | Input Range  | Units            | Algorithm                             | Reference                              |
|-------------------------------------------------------------------------------------|--------------|------------------|---------------------------------------|----------------------------------------|
| Friction<br>velocity (U*)                                                           | 0.2 to 0.6   | unitless         | All 5 algorithms                      | Oski-ôtin ground site<br>observations  |
| Obukhov<br>Length (L)                                                               | -200 to -350 | m                | All 5 algorithms                      | Oski-ôtin ground site<br>observations  |
| Reference<br>Height (Z)                                                             | 40 to 45     | m                | All 5 algorithms                      | Estimate of AOSR                       |
| Roughness<br>Length (z0)                                                            | 0.6 to 1     | unitless         | All 5 algorithms                      | Grassi et al., 2013                    |
| Schmidt<br>Number (S <sub>c</sub> )                                                 | 0.8 to 2     | unitless         | All 5 algorithms                      | Oski-ôtin ground site<br>observations  |
| Leaf Area<br>Index (LAI)                                                            | 2 to 5       | unitless         | All 5 algorithms                      | Makar et al., 2018; Brook et al., 1999 |
| Minimum Leaf<br>stomatal<br>resistance for<br>H <sub>2</sub> O (rs <sub>min</sub> ) | 100 to 250   | s/m              | ZHANG, C5DRY,<br>WESLEY,<br>GEM_MACH  | Zhang et al., 2003                     |
| Canopy Height<br>(h <sub>c</sub> )                                                  | 6 to 18      | m                | C5DRY                                 | Estimate of AOSR                       |
| Ground<br>resistance (R <sub>g</sub> )                                              | 100 to 250   | s/m              | All 5 algorithms                      | Wesley et al., 1989                    |
| Solar Radiation<br>(SolarRG)                                                        | 450          | W/m <sup>2</sup> | ZHANG, C5DRY,<br>WESLEY, GEM-<br>MACH | Oski Otin ground site<br>observations  |
| Mesophyll<br>resistance (R <sub>m</sub> )                                           | 0.03 to 0.05 | s/m              | ZHANG, C5DRY,<br>NOAH-GEM             | Makar et al., 2018                     |
| In canopy<br>aerodynamic                                                            | 20 to 60     | s/m              | ZHANG,<br>WESLEY, GEM-                | Zhang et al., 2003                     |

| resistance                                                    |                                      |               | MACH, NOAH-                            |                                                                                      |
|---------------------------------------------------------------|--------------------------------------|---------------|----------------------------------------|--------------------------------------------------------------------------------------|
| reference (R <sub>ac0</sub> )                                 |                                      |               | GEM                                    |                                                                                      |
| Cuticle<br>resistance (R <sub>cut</sub> )                     | 500 to 1000                          | s/m           | C5DRY                                  | Based on calculations of R <sub>cut</sub><br>from the other deposition<br>algorithms |
| Dry cuticle<br>reference<br>(R <sub>cut,d0</sub> )            | 2000                                 | s/m           | ZHANG,<br>WESLEY, NOAH-<br>GEM         | Zhang et al., 2002                                                                   |
| Dry cuticle<br>reference (R <sub>cuti</sub> )                 | 1000                                 | s/m           | GEM-MACH                               | Makar et al., 2018                                                                   |
| Surface<br>Temperature<br>(T <sub>s</sub> )                   | 20 to 25                             | °C            | ZHANG, C5DRY,<br>WESLEY, GEM-<br>MACH  | Aircraft observations                                                                |
| Relative<br>Humidity (RH)                                     | 55 to 70                             | %             | ZHANG, C5DRY,<br>GEM-MACH,<br>NOAH-GEM | Aircraft observations                                                                |
| Solar Zenith<br>Angle (Theta)                                 | 65 to 75                             | unitless      | ZHANG, C5DRY                           | https://www.esrl.noaa.gov/gmd/<br>grad/antuv/SolarCalc.jsp                           |
| Slope gas<br>exchange data<br>(m)                             | 9 to 10                              | unitless      | NOAH-GEM                               | Zhang et al., 2002                                                                   |
| Intercept gas<br>exchange data<br>(b)                         | 0.01 to 0.04                         | unitless      | NOAH-GEM                               | Zhang et al., 2002                                                                   |
| Net CO <sub>2</sub><br>assimilation<br>rate (A <sub>n</sub> ) | 1e <sup>-6</sup> to 4e <sup>-6</sup> | mol<br>C/m²/s | NOAH-GEM                               | Baldocchi et al., 1997                                                               |
| RH fraction at<br>the leaf surface<br>(h <sub>s</sub> )       | 0.5 to 1                             | unitless      | NOAH-GEM                               | Estimated range                                                                      |

| Atmospheric                | 101300   | Pa                 | NOAH-GEM         | Aircraft observations |
|----------------------------|----------|--------------------|------------------|-----------------------|
| pressure (P)               |          |                    |                  |                       |
| CO <sub>2</sub> partial    | 23 to 37 | Pa                 | NOAH-GEM         | Niyogi et al., 2009   |
| pressure at the            |          |                    |                  |                       |
| leaf surface ( $C_s$ )     |          |                    |                  |                       |
| Ambient T at               | 20 to 25 | °C                 | ZHANG, C5DRY,    | Aircraft observations |
| height Z (T <sub>a</sub> ) |          |                    | GEM-MACH         |                       |
| T <sub>min</sub>           | -5 to 0  | °C                 | ZHANG, C5DRY,    | Makar et al., 2018    |
|                            |          |                    | GEM-MACH         |                       |
| T <sub>max</sub>           | 40 to 45 | °C                 | ZHANG, C5DRY,    | Makar et al., 2018    |
|                            |          |                    | GEM-MACH         |                       |
| T <sub>opt</sub>           | 15 to 30 | °C                 | ZHANG, C5DRY,    | Makar et al., 2018    |
|                            |          |                    | GEM-MACH         |                       |
| Molecular                  | 0.1085   | cm <sup>2</sup> /s | All 5 algorithms | Massman et al., 1998  |
| diffusivity of             |          |                    |                  |                       |
| $SO_2(D_c)$                |          |                    |                  |                       |
| Molecular                  | 0.2178   | cm <sup>2</sup> /s | All 5 algorithms | Massman et al., 1998  |
| diffusivity of             |          |                    |                  |                       |
| water (D <sub>H2O</sub> )  |          |                    |                  |                       |
|                            | 1        | 1                  |                  |                       |



#### 42 Section S2. Supporting Figures S1 to S5.



Figure S1. AMS total mass ( $\Sigma$ (p-Organics, pSO<sub>4</sub>, pNO<sub>3</sub>, pNH<sub>4</sub>)) (gray points) compared with mass 44 45 estimated from the UHSAS (black points) and the AMS CE-corrected mass (red points). The 46 particle collection efficiency (CE) of the AMS was investigated by comparing the total AMS-derived 47 mass with the mass estimated from the size distribution measurements of the UHSAS. Number 48 concentrations measured by the UHSAS over a size range of 60 nm to  $1\mu$ m (matching that of the AMS) 49 were converted to volume concentrations using mid-point bin diameters and assuming spherical shapes. Volume concentrations were then converted to mass concentrations using densities weighted by the AMS 50 51 components. A CE of 0.5 was determined for both F7 and F20, and for F19 it was 1.0. Detailed 52 investigations and discussions on the CE of the AMS can be found in the literature (e.g. Middlebrook et al., 2012; Dunlea et al., 2009; Kleinman et al., 2008; Quinn et al, 2006). 53 54



Figure S2. Emissions-normalized deposition fluxes of (a) TOS and (b) TON derived from the aircraft-based measurements (solid symbols and lines) and the GEM-MACH model (open





61 Figure S3. Probability distributions of a) Ra, b) Rb, and c) Rc (s/m) for SO2 derived from Monte Carlo simulations using 5 different deposition algorithms. 62





Figure S4  $R_{cut}$ ,  $R_c$ , (s/m) and  $V_d$  (cm/s) for SO<sub>2</sub> as a function of pH as derived from Monte Carlo simulations with the GEM-MACH deposition algorithm. 65



66

**Figure S5**. A strong diurnal cycle was seen in the  $V_d$  for SO<sub>2</sub> as determined from the vertical

- 68 gradient methodology at the Oski-ôtin site in the AOSR, with a full stability correction (S24).
- 70 the diurnal cycle of eddy diffusivity observed at this site.

71

- 73 Section S3. Ground-based SO<sub>2</sub> fluxes. SO<sub>2</sub> fluxes were estimated using an eddy
- recovariance/vertical gradient method with data collected on a 32m tower at the Oski-ôtin air
- 75 quality station (57.1837 ° N, 111.6395 ° W) in Fort McKay, centrally located in the AOSR. The
- observation method was similar to that reported previously (Wu et al., 2018); ultrasonic
- anemometers (model CSAT-3, Campbell Scientific, USA) were collocated with inlets of <sup>1</sup>/<sub>2</sub>"
- 78 Teflon tubing at 32m, 18m and 8m above ground, drawing sampled air to gas analyzers at the
- <sup>79</sup> base of the tower (Thermo Environmental 43i TCL). Data presented here were collected
- 80 between June 6-8, 2018. Eddy diffusivities were calculated from the difference in wind speed at
- 81 32m and 8m combined with the momentum flux determined through eddy covariance at 18m,
- 82 and stability-corrected following Högström et al. 1996. The determined dry deposition velocities
- for  $SO_2$  are shown in Figure S4. Only daytime data (between 19 and 1 UTC) unaffected by
- 84 structural disturbances (e.g. flow through the tower) were included in the comparison with the
- aircraft results aligning with the typical flight times. Resulting deposition velocities for  $SO_2$  had
- 86 a median of 4.1 cm s<sup>-1</sup> and a trimmed mean of 4.9 cm s<sup>-1</sup> (standard error 1.2 cm s<sup>-1</sup>).

#### 87 Section S4. SO<sub>2</sub> chemical losses

- 88 The most significant oxidant that reacts in the gas phase with  $SO_2$  is the hydroxyl radical, OH, to
- Previous aircraft studies have shown that, in the absence of clouds, SO<sub>2</sub>
- 90 oxidation by OH is the main pathway for SO<sub>2</sub> loss in industrial plumes in summertime (Brock et
- al., 2002; Miyakawa et al., 2007). The transformation flights were all conducted during midday
- 92 under clear sky conditions, hence the contribution of cloud aqueous chemistry towards  $pSO_4$
- 93 production during the study flights is minimal. The potential loss of  $SO_2$  to reactions with
- alkenes to form organosulfates (Shang et al., 2016) and with criegee biradicals to form  $H_2SO_4$
- 95 (Boy et al., 2013; Mauldin et al, 2012; Huang et al., 2015) would not be accounted for in the 96 mass balance of the S mass in SO<sub>2</sub> presented above but would be <1% of the SO<sub>2</sub> conversion.
- Regardless, since sulfates are detected as pSO<sub>4</sub> by the AMS (Farmer et al., 2010), any SO<sub>2</sub>
- 98 chemical loss other than by the reaction with OH would still be captured in the mass balance of
- 99 TOS.
- 100

101 OH concentrations were estimated using ratios of selected volatile organic compounds (VOCs) that react almost exclusively with OH (during the daytime) and a methodology as described 102 103 previously (Kleinman et al., 2003). Lagrangian transport times were determined from the aircraft-based wind speed measurements and the transit time of air between successive screens 104 (Liggio et al., 2016). It is possible that there will be cross plume gradients in  $SO_2$  and VOC 105 concentrations given their different sources from each facility. However, the VOC canisters 106 were not instantaneous, but were  $\sim 30$  s long, representing a spatial grab of  $\sim 2-3$  km at the speed 107 of the aircraft. These VOC's represent the average VOC concentration from numerous sources 108 109 on site, and their spatial footprint overlaps significantly with the SO<sub>2</sub> source footprint in these facilities. The uncertainties ranged from 17 to 58%, which attempts to account for uncertainties 110 associated with the selection of the reference hydrocarbon concentrations, the slope 111 determination, transport times, and reaction rate constants. OH concentrations derived using the 112 ratio of toluene to benzene and plume box modeling for F19 (Liggio et al., 2016) were consistent 113 within the uncertainties. 114

#### 115 Section S5. Modelled dry deposition fluxes and dry deposition velocities

Dry deposition fluxes estimated are compared with those predicted from an air quality model, 116 117 Global Environmental Multiscale - Modelling Air-quality and CHemistry (GEM-MACH). GEM-MACH is a comprehensive on-line chemical reaction transport model (Moran et al., 2010) 118 that has recently been used to estimate acidic deposition downwind of the AOSR (Makar et al., 119 2018) using a 2.5 km grid cell resolution. A detailed description of GEM-MACH appears 120 elsewhere (Makar et al., 2018; Akingunola et al., 2018; Gordon et al., 2018). The model 121 includes parameterizations for gas-phase chemistry, aqueous chemistry and cloud processing of 122 gases and aerosols, inorganic heterogeneous chemistry, secondary organic aerosol formation, and 123 aerosol microphysics. The model version used here employs a 12-bin sectional approach to 124 resolve particle size distribution, and eight aerosol species (sulfate, nitrate, ammonium, 125 secondary organic aerosol, primary organic aerosol, black carbon, sea-salt, and crustal material), 126 and incorporates aerosol direct and indirect feedbacks with the meteorological code's radiative 127 transfer (Makar et al., 2015a; Makar et al., 2015b). Gas phase deposition of N and S compounds 128 is determined through a commonly used resistance methodology with deposition velocities 129 130 calculated using inferential methods (Makar et al., 2018). The deposition fluxes are incorporated into the vertical diffusion operator as a flux boundary condition. Further details on the 131

132 formulation of GEM-MACH are provided elsewhere (Makar et al., 2018 and references therein).

133 The model plume boundaries were determined separately for  $NO_x$  and  $SO_2$  plumes, using the

assumption that the plume edge corresponds to background concentrations, as was the case for

the observed plumes. Model and observed screens did not necessarily spatially coincide due to

differences between the modelled and observed wind fields (Tables 1, 2). However, the same

strategy was used to set up downwind model screen locations as in the observations (specifically,determining the plume center at one hour's advection time downwind from the sources, placing

determining the plume center at one hour's advection time downwind from the sources, placingthe first screen perpendicular to this direction and centred on the plume centreline, calculating a

one-hour forward trajectory for the second screen and repeating the process for the second and

subsequent screens). The intersection of the screen lines with the 0.1 maximum concentration

142 contours for  $SO_2$  and  $NO_x$  respectively, determined the boundaries of the screens for the  $SO_2$  and

143 NO<sub>x</sub> plumes. Boundaries were also adjusted to correspond with the 0.2 and 0.3 maximum

144 concentration contours which resulted in small differences (<5%) in the derived deposition

145 fluxes. In F7, the modelled and actual plume locations were very similar; however, in F19 and

146 F20, the modelled plumes were not exactly in the same geographical location as the observations

147 because of differences in advection direction (Tables 1, 2).

148 The spatially averaged dry deposition velocities for SO<sub>2</sub>, pSO<sub>4</sub> and TON are compared with 149 those obtained using inferential methods from GEM-MACH. The measurement and model

- results for all three flights are listed in Table S2.
- 151
- 152
- 153
- 154

#### 155 Section S6. References

- Akingunola, A., Makar, P.A., Zhang, J., Darlington, A., Li, S.-M., Gordon, M., Moran, M.D.
  and Zheng, Q.: A chemical transport model study of plume-rise and particle size
  distribution for the Athabasca oil sands, Atmos. Chem. Phys., 18, 8667-8688, 2018.
- Baldocchi, D.D., Vogel, C.A. and Hall, B.: Seasonal variation of carbon dioxide exchange
   rates above and below a boreal jack pine forest, Agri, and Forest Meteor., 83, 147-170,
   <u>https://doi.org/10.1016/S0168-1923(96)02335-0</u>, 1997.
- Boy, M., Mogensen, D., Smolander, S., Zhou, L., Nieminen, T., Paasonen, P., Plass-DÜlmer,
  C., Sipilä, M., Petäjä, T., Mauldin, L., Berresheim, H. and Kulmala, M.: Oxidation of
  SO<sub>2</sub> by stabilized criegee intermediate (sCI) radials as a crucial source for atmospheric
  sulfuric acid concentrations, Atmos. Chem. Phys., 13, 3865-3879, doi:10.5194/acp-133865-2013, 2013.
- Brock, C.A., Washenfelder, R.A., Trainer, M., Ryerson, T.B., Wilson, J.C., Reeves, J.M.,
  Huey, L.G., Holloway, J.S., Parrish, D.D., Hübler, G., Fehsenfeld, F.C.:, J. Geophys.
  Res. 107 (D12), 4155, 2002.
- Brook, J.R., Zhang, L., Di-Giovanni, F. and Padro, J.: Description and evaluation of a model
   of deposition velocities for routine estimates of air pollutant dry deposition over North
   America. Part I: model development, Atmos. Environ., 33, 5037-5051,
   <u>https://ui.adsabs.harvard.edu/link\_gateway/1999AtmEn..33.5053B/doi:10.1016/S1352-</u>
   2310(99)00251-4, 1999.
- Dunlea, E.J., DeCarlo, P.F., Aiken, A.C., Kimmel, J.R., Peltier, R.E., Weber, R.J., Tomlinson,
  J., Collins, D.R., Shinozuka, Y., McNaughton, C.S., Howell, S.G., Clarke, A.D.,
  Emmons, L.K., Apel, E.C., Pfister, G.G., van Donkelaar, A., Martin, R.V., Millet,
  D.B., Heald, C.L., Jimenez, J.L., Evolution of Asian aerosols during transpacific
- transport in INTEX-B, Atmos. Chem. Phys., 9, 7257-7287,
- 180 <u>https://doi.org/10.5194/acp-9-7257-2009</u>, 2009.
- Farmer, D.K., Matsunaga, A., Docherty, K.S., Surratt, J.D., Seinfeld, J.H., Ziemann, P.J. and
   Jimenez, J.L.: Response of an aerosol mass spectrometer to organonitrates and
   organosulfates and implications for atmospheric chemistry, PNAS, 107, 6670-6675,
   <u>https://doi.org/10.1073/pnas.0912340107</u>, 2010.
- Gordon, M., Makar, P.A., Staebler, R.M., Zhang, J., Akingunola, A., Gong, W. and Li, S.-M.:
  A comparison of plume rise algorithms to stack plume measurements in the Athabasca
  oil sands, Atmos. Phys. Chem., 18, 14695-14714, https://doi.org/10.5194/acp-1814695-2018, 2018.
- Grassi, S., Junghans, S. and Raubal, M.: Estimating mean annual energy production of
  clustered wind turbines with GIS, Intern. Conf. on Appl. Energy, Paper ID: ICAE2013492, 2013.
- Högström, U.: Review of some basic characteristics of the atmospheric surface layer,
  Boundary-Layer Meteo., 78, 215-246, doi:10.1007/bf00120937, 1996.

- Huang, H.-L., Chao, W. and Jr-Min Lin, J.: Kinetics of a criegee intermediate that would
  survive high humidity and may oxidize atmospheric SO<sub>2</sub>, PNAS, **112** (**35**), 1085710862, <u>https://doi.org/10.1073/pnas.1513149112</u>, 2015.
- Kleinman, L.I., Daum, P.H., Lee, Y.-N., Nunneermacker, L.J., Springston, S.R., WeinsteinLloyd, J., Hyde, P., Doskey, P., Rudolph, J., Fast, J. and Berkowitz, C.: Photochemical
  age determinations in the Phoenix metropolitan area, *J. Geophys. Res.*, 108 (D3), 4096,
  <u>https://doi.org/10.1029/2002JD002621</u>, 2003.
- Kleinman, L.I., Springston, S.R., Daum, P.H., Lee, Y.-N., Nunnermacker, L.J., Senum, G.I.,
  Wang, J., Weinstein-Lloyd, J., Alexander, M.L., Hubbe, J., Ortega, J., Canagaratna,
  M.R., and Jayne, J., The time evolution of aerosol composition over the Mexico City
  plateau, Atmos. Chem. Phys., 8, 1559-1575, <u>https://doi.org/10.5194/acp-8-1559-2008</u>,
  2008.
- Liggio, J., Li, S.-M., Hayden, K., Taha, Y. M., Stroud, C., Darlington, A., Drollette, B.D.,
  Gordon, M., Lee, P., Liu, P., Leithead, A., Moussa, S.G., Wang, D., O'Brien, J.,
  Mittermeier, R.L., Brook, J.R., Lu, G., Staebler, R.M., Han, Y., Tokarek, T.W.,
  Osthoff, H.D., Makar, P.A., Zhang, J., Plata, D.L., Gentner, D.R.: Oil sands operations
  as a large source of secondary organic aerosols, Nature, 534, 91,
  https://doi.org/10.1038/nature17646, 2016.
- Makar, P.A., Gong, W., Milbrandt, J., Hogrefe, C., Zhang, Y., Curci, G., Zabkar, R., Im, U.,
  Balzarini, A., Baró, R., Bianconi, R., Cheung, P., Forkel, R., Gravel, S., Hirtl, M.,
  Honzak, L., Hou, A., Jiménez-Guerrero, P., Langer, M., Moran, M.D., Pabla, B., Pérez,
  J.L., Pirovano, G., San José, R., Tuccella, P., Werhahn, J., Zhang, J. and Galmarini, S.:
  Feedbacks between air pollution and weather, Part 1: Effects on weather, Atmos.
  Environ., 115, 442-469, https://doi.org/10.1016/j.atmosenv.2014.12.003, 2015a.
- Makar, P.A., Gong, W., Hogrefe, C., Zhang, Y., Curci, G., Zabkar, R., Milbrandt, J., Im, U.,
  Balzarini, A., Baró, R., Bianconi, R., Cheung, P., Forkel, R., Gravel, S., Hirtl, M.,
  Honzak, L., Hou, A., Jiménez-Guerrero, P., Langer, J., Moran, M.D., Pabla, B., Pérez,
  J.L., Pirovano, G., San José, R., Tuccella, P., Werhahn, J., Zhang, J. and Galmarini, S.:
  Feedbacks between air pollution and weather, Part 2: Effects on chemistry, Atmos.
  Environ., 115, 499-526, <u>https://doi.org/10.1016/j.atmosenv.2014.10.021</u>, 2015b.
- Makar, P.A., Staebler, R.M., Akingunola, A., Zhang, J., McLinden, C., Kharol, S.K., Pabla,
  B., Cheung, P. and Zheng, Q.: The effects of forest canopy shading and turbulence on
  boundary layer ozone, Nature Com., 8, 15243, <u>https://doi.org/10.1038/ncomms15243</u>,
  2017.
- Makar, P.A., Akingunola, A., Aherne, J., Cole, A.S., Aklilu, Y., Zhang, J., Wong, I., Hayden, K.,
  Li, S.-M., Kirk, J., Scott, K., Moran, M.D., Robichaud, A., Cathcart, H., Baratzedah, P.,
  Pabla, B., Cheung, P., Zheng, Q. and Jeffries, D.S.: Estimates of exceedances of critical
  loads for acidifying deposition in Alberta and Saskatchewan, Atmos. Chem. Phys., 18,
  9897-9927, <u>https://doi.org/10.5194/acp-18-9897-2018</u>, 2018.

| 233<br>234<br>235               | Massman, W.J.: A review of the molecular diffusivities of H <sub>2</sub> O, CO <sub>2</sub> , CH <sub>4</sub> , CO, O <sub>3</sub> , SO <sub>2</sub> , NH <sub>3</sub> , N2O, NO, and NO <sub>2</sub> in air, O <sub>2</sub> and N <sub>2</sub> near STP, <i>Atmos. Environ.</i> , <b>32</b> (6), 1111-1127,<br>https://doi.org/10.1016/s1352-2310(97)00391-9, 1998.                                                             |
|---------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 236                             | Mauldin III, R.L., Berndt, T., Sipilä, M., Paasonen, P., Petäjä, T., Kim, S., Kurté, T.,                                                                                                                                                                                                                                                                                                                                         |
| 237                             | Stratmann, F., Kerminen, VM. and Kulmala, M.: A new atmospherically relevant                                                                                                                                                                                                                                                                                                                                                     |
| 238                             | oxidant of sulphur dioxide, Nature, 488, 193-197, <u>https://doi.org/10.1038/nature11278</u> ,                                                                                                                                                                                                                                                                                                                                   |
| 239                             | 2012.                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 240                             | Middlebrook, A.M., Bahreini, R., Jimenez, J.L., and Canagaratna, M.R., Evaluation of                                                                                                                                                                                                                                                                                                                                             |
| 241                             | composition-dependent collection efficiencies for the Aerodyne Aerosol Mass                                                                                                                                                                                                                                                                                                                                                      |
| 242                             | Spectrometer using field data, Aerosol. Sci. Technol., 46, 258-271, doi:                                                                                                                                                                                                                                                                                                                                                         |
| 243                             | 10.1080/02786826.2011.620041, 2012.                                                                                                                                                                                                                                                                                                                                                                                              |
| 244                             | Miyakawa, T., Takegawa, N. and Kondo Y.: Removal of sulfur dioxide and formation of                                                                                                                                                                                                                                                                                                                                              |
| 245                             | sulfate aerosol in Tokyo, J. Geophys. Res., <b>112</b> , D13209, doi:10.1029/2006JD007896,                                                                                                                                                                                                                                                                                                                                       |
| 246                             | 2007.                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 247<br>248<br>249<br>250<br>251 | <ul> <li>Moran, M.D., Ménard, S., Pavlovic, R., Anselmo, D., Antonopoulos, S., Makar, P.A., Gong, W., Gravel, S., Stroud, C., Zhang, J., Zheng, Q., Robichaud, A., Landry, H., Beaulieu, P.A., Gilbert, S., Chen, J. and Kallaur, A.: Recent Advances in Canada's national operational AQ forecasting system, In: Steyn DG, Rao ST (Eds) Air Pollution Modelling and Its Application, Springer, Dordrecht, 289, 2010.</li> </ul> |
| 252<br>253<br>254<br>255        | Niyogi, D., Alapaty, K., Raman, S. and Chen, F.: Development and evaluation of a coupled photosynthesis-based gas exchange evapotranspiration model (GEM) for mesoscale weather forecasting applications, J. Appl. Meteor. and Climatol., <b>48</b> , 349-368, <u>https://doi.org/10.1175/2008JAMC1662.1</u> , 2009.                                                                                                             |
| 256                             | Quinn, P.K., Bates, T.S., Coffman, D., Onasch, T.B., Worsnop, D., Baynard, T., de Gouw,                                                                                                                                                                                                                                                                                                                                          |
| 257                             | J.A., Goldan, P.D., Kuster, W.C., Williams, E., Roberts, J.M., Lerner, B., Stohl, A.,                                                                                                                                                                                                                                                                                                                                            |
| 258                             | Pettersson, A., and Lovejoy, E.R., Impacts of sources and aging on submicrometer                                                                                                                                                                                                                                                                                                                                                 |
| 259                             | aerosol properties in the marine boundary layer across the Gulf of Maine, J. Geophys.                                                                                                                                                                                                                                                                                                                                            |
| 260                             | Res., 111, D23S36, doi.10.1029/2006JD007582, 2006.                                                                                                                                                                                                                                                                                                                                                                               |
| 261                             | Shang, J., Passanantis, M., Dupart, Y., Ciurarus, R., Tinel, L., Rossignol, S., Perrier, S., Zhu,                                                                                                                                                                                                                                                                                                                                |
| 262                             | T. and George, C.: SO <sub>2</sub> uptake on oleic acid : a new formation pathway of organosulfur                                                                                                                                                                                                                                                                                                                                |
| 263                             | compounds in the atmosphere, Environ. Sci. Technol. Lett. 3, 67-72,                                                                                                                                                                                                                                                                                                                                                              |
| 264                             | <u>https://doi.org/10.1021/acs.estlett.6b00006</u> , 2016.                                                                                                                                                                                                                                                                                                                                                                       |
| 265                             | Wesley, M.L.: Parameterization of surface resistances to gaseous dry deposition in regional-                                                                                                                                                                                                                                                                                                                                     |
| 266                             | scale numerical models, Atmos. Environ., 23, 1293-1304,                                                                                                                                                                                                                                                                                                                                                                          |
| 267                             | <u>https://ui.adsabs.harvard.edu/link_gateway/1989AtmEn23.1293W/doi:10.1016/0004-</u>                                                                                                                                                                                                                                                                                                                                            |
| 268                             | 6981(89)90153-4, 1989.                                                                                                                                                                                                                                                                                                                                                                                                           |
| 269<br>270<br>271<br>272        | <ul> <li>Wu, Z. Schwede, D.B., Vet, R., Walker, J.T., Shaw, M., Staebler, R. and Zhang, L.:</li> <li>Evaluation and intercomparison of five North American dry deposition algorithms at a mixed forest site, J. Adv. Modelling Earth Systems, 10, 1571-1586, , 2018. Zhang, L., Brook, J.R. and Vet, R.: A revised parameterization for gaseous dry deposition in air-</li> </ul>                                                |

- 273
   quality models, Atmos. Chem. Phys. 3, 2067-2082, <a href="https://doi.org/10.5194/acp-3-2067-2003">https://doi.org/10.5194/acp-3-2067-2003</a>, 2003.
- Zhang, L., Moran, M.D., Makar, P.A., Brook, J.R. and Gong, S.: Modelling gaseous dry deposition in AURAMS: a unified regional air-quality modelling system, Atmos.
  Environ., 36, 537-560, <u>https://doi.org/10.1016/S1352-2310(01)00447-2</u>, 2002.