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This document contains Supplementary Methods (i) describing an analysis of possible systematic errors
in the attribution of the global dust cycle to the different source regions, (ii) describing how results of the
seasonal dust emission, loading, and DAOD per source region were obtained from AeroCom Phase I
simulations, and (iii) describing how the size-resolved attribution of the global dust cycle to the different
dust source regions was obtained. In addition, this document contains a number of Supplementary
Figures, which are summarized below:

e Figures S1-S4. Fractional contribution of each source region to the global dust cycle in
respectively boreal Winter (DJF), Spring (MAM), Summer (JJA), and Fall (SON).

e Figure S5. Annual size-resolved lifetime of dust emitted from each of the nine source regions, as
simulated by the six models in the model ensemble.

o Figures S6-S9. Size-resolved lifetime of dust emitted from each of the nine source regions in
respectively Winter, Spring, Summer, and Fall.

e Figure S10. The column-integrated bulk mass extinction efficiency (m?/g) due to dust from all
source regions.

e Figure S11. Attribution of the annually averaged PM20 dust loading to the world’s main source
regions.

e Figures S12-S15. Attribution of the 2D dust aerosol optical depth in respectively boreal Winter
(DJF), Spring (MAM), Summer (JJA), and Fall (SON) to the world’s main source regions.

e Figures S16-S19. Attribution of the 2D dust column loading in respectively boreal Winter (DJF),
Spring (MAM), Summer (JJA), and Fall (SON) to the world’s main source regions.

e Figures S20-S23. Attribution of the zonally averaged dust concentration to the world’s main
source regions in respectively boreal Winter (DJF), Spring (MAM), Summer (JJA), and Fall
(SON).

e Figure S24. Map of regions to which deposition fluxes are quantified in the main text.

e Figure S25-28. Attribution to the world’s main source regions of the seasonally-averaged PM20
dust deposition flux in respectively boreal Winter (DJF) , Spring (MAM), Summer (JJA), and
Fall (SON).

e Figure S29. Correction factors needed per source region to optimize agreement against
compilations of surface concentration and deposition flux measurements.

Supplementary Methods

Analysis of seasonal dust cycle in AeroCom simulations

We obtain estimates of the seasonally-averaged dust loading (L2¢") and DAOD (£2¢") for each of the
models in the AeroCom Phase I ensemble by following the procedure in Section 2.2 of the main text.
That is,

TAer _ fiAerfAer Trs

Lrs = K5 Taion —Tgmb, and (5.1)
~Aer _ Zl},gr ~Aer Ers_ (S 2)
s AEarth glob églob’

where Tr, s and &, ¢ are respectively the bulk lifetime for source region r and season s, obtained from our
analysis.



Size-resolved attribution of the global dust cycle to the different dust source regions

Following Egs. (1)-(4) in the main text, the size-resolved fractional contributions of each source region to
DAOD ( frmk), dust column loading (flmk), dust concentration (fcr,s,k)’ and dust deposition flux ( fDmk)

are
Nsreg

frrsk = Trskl Z Tr sk (S.3)
r=1

h —_ 3 Nsreg ¥

flr,s,k - lrIS,k/Zr=1 lr,s,k; (S4)
Nsreg

fcr,s,k = CT,S.k/ Z CT.S,k' (SS)
r=1
Nsreg

fDr,s,k = Drsi/ z Dy sk (S.6)
r=1

where T, ¢ g, Zns’k, Cvr,slk, and Er,s,k are the contributions of each source region 7 to respectively the
DAOD, loading, concentration, and total (dry and wet) deposition flux in season s for different particle
size bins (subscript k) spanning 0.2 — 0.5, 0.5-1.0, 1.0 -2.5,2.5-5.0, 5.0 — 10, and 10 — 20 pum particle
bin & (see Kok et al. (2021) for the exact methodology).

Realism of errors in the fractional contributions of different source regions to the global
dust cycle

In our companion article we showed that the errors on the inverse model results summed over all source
regions are consistent within the uncertainties with independent measurements of surface concentration
and deposition flux (see Figs. 7 and 10 in Kok et al., 2021). Here, we inform whether our errors on the
contribution per source region are realistic by determining the optimal correction factor per source region
that minimizes the disagreement against the independent data sets of surface concentration and deposition
flux. Specifically, we obtained the values of the source region-specific correction factors ¥, that
minimizes the cost function of the squared deviation (y?) between the inverse model results and the
measurements,

Nj Nsreg!
x* = EMi - Z frivrM; (8.7)
i=1 r=1

where A is the number of observational data in either the annual surface concentration or deposition flux
data set, M, is the ith measured value in the data sets of either annual surface concentration or deposition
flux used in Kok et al. (2021), M; is the corresponding inverse model result for the same location, and fr,i

is the fractional contribution to M; of each source region r. In minimizing the cost function y?, we
grouped both the North African source regions (western North Africa, eastern North Africa, and the
Sahel) and the Asian source regions (Middle East & Central Asia), as for instance the absence of
concentration stations near the eastern North Africa and Middle East & Central Asia source regions (Fig.
2c¢ in Kok et al., in review) otherwise causes overfitting. We furthermore set the correction factor y;. for
North America equal to 1 to avoid overfitting as none of the concentration stations are dominated by this



source region. The number of source regions Nsreg' used in Eq. (S.7) therefore equals 5. The fractional
contribution of each dust source region to global dust loading then equals

Nsreg!

fLr = Vrzr/ 2 VTZT (5.8)
r=1

where L, is the annual global loading per source region that produces optimal results against DAOD
constraints as obtained by the inverse model (see Kok et al., 2021). Similar results can be obtained for the
fractional contribution of each source region to global dust emissions and global DAOD, which are not
shown here because these results are nearly identical to those obtained from Eq. (S.8).

This analysis yields a few insights (Figs. 9 and S29). First, the relative contribution of North African and
Asian source regions is consistent with surface concentration data as the probability distributions of the
optimal values of the correction factors y, are centered around 1. However, the correction factor for Asian
source regions that maximizes agreement against deposition data is larger than 1, such that a larger
fractional contribution of Asian source regions is needed to maximize agreement with deposition flux
measurements. This might suggest that inverse model results underestimate Asian dust, which we already
find is more abundant than accounted for in most models (see section 3.1). Furthermore, correction
factors for the Southern Hemisphere source regions are slightly smaller than 1 with respect to
concentration data and larger than 1 with respect to deposition data. This inconsistency between
comparisons against SH surface concentration and deposition flux measurements was already noted in
Kok et al. (2021).

Supplementary Figures
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Figure S1. Fractional contribution of each source region to the global dust cycle in boreal Winter (DJF). Shown are
the fractional contributions to the global dust emission (and deposition) flux (a), the global dust loading (b), and the
global dust aerosol optical depth (¢). Box boundaries approximately denote the one standard error range (i.e.,
contains 9 out of 13 AeroCom simulations, 4 out of 6 model ensemble members, and 68% probability range for the
inverse model’s results), gray circles denote the individual simulation results outside of this range, whiskers denote
the 95% confidence interval for the inverse model’s results, horizontal solid lines denote the median result, and
stars denote the mean result.
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Figure S2. As in Figure S1, but for the fractional contribution of each source region to the global dust cycle in

boreal Spring (DJF).
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Figure S3. As in Figure S1, but for the fractional contribution of each source region to the global dust cycle in

boreal Summer (JJA).
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Figure S4. As in Figure S1, but for the fractional contribution of each source region to the global dust cycle in

boreal Fall (SON).
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Figure S5. Annual size-resolved lifetime of dust emitted from each of the nine source regions, as simulated by the
six models in the model ensemble (CESM = blue squares; IMPACT = green circles; GISS = red triangles; GOCART
= purple crosses; MONARCH = cyan hexagons; INCA = yellow diamonds). Also shown are the Maximum
Likelihood Estimates (MLE) of the best fit for each region (black lines), which uses data from all the models and
were obtained as described in the Supplement to Kok et al. (2017). To facilitate comparisons between source
regions, panel (j) shows the MLEs of the size-resolved lifetime for the nine regions.
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Figure S6. Size-resolved lifetime of dust emitted from each of the nine source regions in Winter (December —
February for Northern Hemisphere sources; June — August for Southern Hemisphere sources), as simulated by the
six models in the model ensemble (CESM = blue squares; IMPACT = green circles; GISS = red triangles; GOCART



= purple crosses; MONARCH = cyan hexagons; INCA = yellow diamonds). Also shown are the Maximum
Likelihood Estimates (MLE) of the best fit for each region (black lines), which uses data from all the models and
were obtained as described in the Supplement to Kok et al. (2017). To facilitate comparisons between source
regions, panel (j) shows the MLEs of the size-resolved lifetime for the nine regions.
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Figure S7. As in Figure S6, but for the size-resolved dust lifetime in Spring (March — May for Northern Hemisphere
sources; September — November for Southern Hemisphere sources).
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Figure S8. As in Figure S6, but for the size-resolved dust lifetime in Spring (March — May for Northern Hemisphere
sources; September — November for Southern Hemisphere sources).
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Figure S9. As in Figure S6, but for the size-resolved dust lifetime in Spring (March — May for Northern Hemisphere
sources; September — November for Southern Hemisphere sources).
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Figure S10. The column-integrated bulk mass extinction efficiency (m?/g) due to dust from all source regions.
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Figure S11. Attribution of the annually averaged PM» dust loading to the world’s main source regions. Panel
ordering is identical to Figure 5 and the seasonally resolved attribution of dust loading is shown in Figures S15-S18.
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Figure S12. Attribution of the 2D dust aerosol optical depth in boreal winter (DJF) to the world’s main source
regions. Shown first is the seasonally-averaged DAOD produced from all source regions combined (a), followed by



the fraction of DAOD that is due to Northern Hemisphere (b) and North African (c) sources. The fraction of DAOD
due to each of the three North African source regions are shown in panels (d)-(f), and the fraction of DAOD due to
the other three Northern Hemisphere source regions of Middle East & Central Asia, East Asia, and North America
are showns in panels (g)-(i). Finally, the fraction of 2D DAOD due to the three Southern Hemisphere source regions
of Australia, South America, and South Africa are shown in panels (j)-(1).
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Figure S13. As in Figure S12, but for the attribution of the 2D dust aerosol optical depth in boreal Spring (MAM).
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Figure S14. As in Figure S12, but for the attribution of the 2D dust aerosol optical depth in boreal Summer (JJA).
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Figure S15. As in Figure S12, but for the attribution of the 2D dust aerosol optical depth in boreal Fall (SON).
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Figure S16. Attribution of the seasonally-averaged PM» dust loading to the world’s main source regions in boreal
Winter (DJF). Panel ordering is identical to Figures S12-S15.

Sg%asonally averaged dust loading (g/m?) in MAM

-90
-180 -135 -80 45 0 45 80
gFlgactian of loading due to Western North Africa

135 180

0
-180 135 -80 -45 0 45 90 135 180

——

1000

750

500

250

Frag%tion of loading due to Middle East & Central Asia 4

135 90 45 0 45 90 135 180
Fraction of loading due to Australia

0
-180

90

135 90 45 0 45 90 135 180

Frgoction of loading due to all North African sources i

0.75
0.50
0.25
-90 0
-180 -135 -80 45 0 45 80 135 180
gForaczt:ion of loading due to Eastern North Africa i
0.75
0.50
0.25
0 0
-180 -135 90 45 0 45 90 135 180
Fraction of loading due to East Asia
90 : e 1
80
0.75
30
0 0.50
-30
L [ 0.25
sy
-90 0
-180 -135 90 -45 0 45 90 135 180
B Fraction of loading due to South America !
60
075
30
0 0.50
-30
0.25
60 [ o
0

-90 *
-180 135 -80 45 0 45 90 135 180

: Fraction of loading due to all SH sources

-90
-180 135 90 45 0 45 90 135 180

Fraction of loading due to Sahel

0
-180 -135 90 45 0 45 90 135 180
Fraction of loading due to North America

90

0
-180 -135 -90 -45 0 45 90 135 180
Fraction of loading due to South Africa

=B

90

-

-90
-180

-135 90 45 0 45 90

0.75

0.50

0.25

0.756

0.50

0.25

0.75

0.50

025



Figure S17. As in Figure S16, but for the attribution of the PM»o dust loading in boreal Spring (MAM).
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Figure S18. As in Figure S16, but for the attribution of the PM»o dust loading in boreal Summer (JJA).
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Figure S19. As in Figure S16, but for the attribution of the PM»y dust loading in boreal Fall (SON).
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Figure S20. Attribution of the zonally averaged PM»y dust concentration to the world’s main source regions in
boreal Winter (DJF). Panel (a) shows the dust mixing ratio (dust concentration normalized by air density) as a



function of latitude (horizontal axis) and pressure in hPa (vertical axis). Panels (b)-(1) show the partition of the dust
concentration per source region, with panel ordering identical to Figures S12-S19.
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Figure S21. As in Figure S20, but for the attribution of the zonally-averaged PM; concentration in boreal Spring
(MAM).
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Figure S22. As in Figure S20, but for the attribution of the zonally-averaged PM» concentration in boreal Summer
(JJA).
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Figure S23. As in Figure S20, but for the attribution of the zonally-averaged PM, concentration in boreal Fall
(SON).
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Figure S24. Map of regions to which deposition fluxes are quantified in the main text (Tables 2 and 3), which

include the world’s ocean basins, as well as terrestrial regions for which dust deposition is particularly important,
namely the Amazon rainforest, Greenland, Antarctica, and the Tibetan Plateau. The median estimate of the annual

deposition flux to each region is also noted.
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Figure S25. Attribution to the world’s main source regions of the seasonally-averaged PM20 dust deposition flux in
boreal Winter (DJF). Panel ordering is identical to Figures S12-S23.
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Figure S26. As in Figure S25, but for the attribution of the PM»o dust deposition flux in boreal Spring (MAM).
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Figure S27. As in Figure S25, but for the attribution of the PMyo dust deposition flux in boreal Summer (JJA).
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Figure S28. As in Figure S25, but for the attribution of the PMo dust deposition flux in boreal Fall (SON).
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Figure S29. Correction factors needed per source region to optimize agreement against compilations of surface
concentration (dark yellow bars) and deposition flux measurement (pink bars), calculated using Eq. (S.7). Box
boundaries and whiskers respectively denote the 68% and 95% probability range, and horizontal solid lines denote

the median result.
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