

Supplement of

Highly time-resolved measurements of element concentrations in PM_{10} and $PM_{2.5}$: comparison of Delhi, Beijing, London, and Krakow

Pragati Rai et al.

Correspondence to: Markus Furger (markus.furger@psi.ch), André S. H. Prévôt (andre.prevot@psi.ch), Sachchida N. Tripathi (snt@iitk.ac.in), Junji Cao (cao@loess.llqg.ac.cn), and Jaroslaw Necki (necki@agh.edu.pl)

The copyright of individual parts of the supplement might differ from the CC BY 4.0 License.

Figure S1: Comparison of Xact PM_{2.5} sulfate (3×S, assuming that all S occurred in the form of sulfate.) vs. AMS sulfate (left) and Xact PM_{2.5} Cl vs. AMS chloride (right) at Delhi (red; AMS PM₁) and Beijing (black; AMS PM_{2.5}) sites.

Figure S2: (a) Box-Whisker plots (top to bottom: maximum-p90-p75-p50-p25-p10-minimum) of total PM_{10el} and PM_{2.5el} concentrations and (b) Time series of hourly PM_{10el} and PM_{2.5el} at Delhi, Beijing, Krakow, and London.

Figure S3: Time series of PM_{2.5} total mass concentration in Beijing measured at the nearest national monitoring network station in Haidian District (2.5 km away from the Xact sampling site). The periods highlighted with a blue background relate to the non-heating period, while the rest belongs to the heating period. The red background colors represent haze events based on PM_{2.5} concentrations \geq 150 µg m⁻³ with a dashed red line, whereas the remaining periods are called non-haze.

Figure S4: Box-whisker plots of the measured elemental PM_{2.5}/PM₁₀ ratios at all four sites. Box: First to third quartile range, -: median line, +: mean, whiskers: 10-90% percentiles. Note that Rb, As and Se were not measured in London. London measurements should be interpreted with caution due to uncertainties in the low size cut-off of the RDI, as discussed in Section 2.2.

5

Figure S5: Enrichment factors (EF) vs PM_{2.5}/PM₁₀ ratios at all four sites. The upper graph is for PM_{10el} EF vs PM_{2.5}/PM₁₀ and the lower graph is for PM_{2.5el} EF vs PM_{2.5}/PM₁₀. Note that Rb, As and Se were not measured in London. London measurements should
be interpreted with caution (especially with respect to the PM_{2.5}/PM₁₀ ratio) due to uncertainties in the low size cut-off of the RDI, as discussed in Section 2.2.

Delhi Beijing Krakow London

Figure S6: Diurnal patterns (mean) of elements in each group (G1: Group 1, G2: Group 2, G3: Group 3, G4: Group 4, G5: Group 5) in PM_{10} normalized by the mean values of the elements in PM_{10} at Delhi, Beijing, Krakow, and London. Note that due to the time resolution of the original data the London data are 2-hour averages, while the other data are one-hour averages.

Hour of the day (h)

Figure S7: Diurnal patterns (mean) of elements in PM_{2.5} and coarse size fractions (PM₁₀–PM_{2.5}) at Delhi, Beijing, and Krakow, in each group (G1: Group 1, G2: Group 2, G3: Group 3, G4: Group 4, G5: Group 5).

Hour of the day (h)

Figure S8: Diurnal patterns (mean) of elements in PM_{2.5} and coarse size fractions (PM₁₀–PM_{2.5}) at London, in each group (G2: Group 2, G3: Group 3, G4: Group 4, G5: Group 5). Note that Group 1 is absent in London. Note that due to the time resolution of the original data of London, hour of the day on the x-axis represents 2-hour averages. London measurements should be interpreted with caution due to uncertainties in the low size cut-off of the RDI, as discussed in Section 2.2.

5

Figure S9: Time series of Ni in PM₁₀ (black) and PM_{2.5} (red) in Krakow.

5 Figure S10: Correlation (Pearson's *R*) matrix of measured elements in elemental PM₁₀ at all four sites (white color represents gap between each group elements). Elements are sorted by group along each axis. Note that in London, Group 1 (represented as white gap) is absent as well as Rb, As and Se were not measured. London measurements should be interpreted with caution due to uncertainties in the low size cut-off of the RDI, as discussed in Section 2.2.

Figure S11: Time series of PM_{2.5} Cu and Cd in Delhi.

5 Figure S12: Time series of PM_{2.5} Zn and Pb in Krakow.

Element	Xact MDL		Data points below MDL (%)						
	60 min	30 min	Delhi		Beijing		Krakow		
	(ng m ⁻³)	(ng m ⁻³)	PM _{10el}	PM _{2.5el}	PM _{10el}	PM _{2.5el}	PM _{10el}	PM _{2.5el}	
Al	170	500	18.8	61	25	86	87	99	
Si	31	89	0	3.5	0	2.4	12.1	56	
Р	9.0	26	100	100	100	100	100	100	
S	5.5	15.7	0	0	0	0	0	0	
Cl	3.0	8.6	0	0	0	0	0	0	
K	2.0	5.8	0	0	0	0	0	0	
Ca	0.52	1.50	0	0	0	0.24	0	0	
Ti	0.28	0.79	0	0	0	0.24	0.35	7.1	
V	0.21	0.60	4.9	45	12.6	86	85	95	
Cr	0.20	0.58	0	10.8	0.49	16.3	10.6	17.0	
Mn	0.25	0.71	0	0	0	0	5.3	11.0	
Fe	0.30	0.85	0	0	0	0.49	0	0	
Co	0.24	0.68	99	97	93	98	99	100	
Ni	0.17	0.47	3.5	27	5.8	30	39	59	
Cu	0.14	0.39	0	0	0	0	0.35	0.35	
Zn	0.12	0.33	0	0	0	0.24	0	0	
Ga	0.10	0.29	100	100	68	84	100	99	
Ge	0.10	0.28	100	100	82	81	98	98	
As	0.11	0.31	0.20	100	0.73	4.1	6.4	10.3	
Se	0.14	0.40	6.4	7.0	40	45	59	60	
Br	0.18	0.52	0	0	0	0.73	0	0.35	
Rb	0.33	0.95	10.9	58	9.0	47	66	87	
Sr	0.38	1.10	2.9	56	0	43	46	92	
Y	0.48	1.40	95	98	86	99	98	99	
Zr	0.57	1.60	7.0	46	5.6	47	41	72	
Cd	4.4	12.4	93	95	100	99	99	100	
In	5.4	15.4	93	92	97	98	100	99	
Sn	7.1	20	50	54	70	79	65	70	
Sb	9.0	26	75	77	90	95	89	90	
Ba	0.67	1.90	5.1	37	0.50	25	16.0	54	
Hg	0.21	0.60	100	100	100	100	100	100	
Tl	0.20	0.57	95	99	99	99	100	100	
Pb	0.22	0.63	0	0	0	0.49	1.77	0.71	
Bi	0.23	0.64	100	100	94	95	100	100	

Table S1: Xact 625i minimum detection limits (MDL) of elements with 30 min and 60 min time resolution. The percentage of data points below MDL is reported for both sizes in Delhi, Beijing and Krakow.

Element	PM _{10el}			PM2.5el				
	mean	median	q25	q75	mean	median	q25	q75
Delhi			•	•			•	•
Al	3100	2600	920	4600	740	199	BDL	1060
Si	12200	11000	7400	16100	1240	1180	690	1720
S	7700	6400	4200	10300	7100	6100	3900	9400
Cl	20000	13100	5100	26000	19100	12200	4500	25000
K	3100	2600	1810	3800	2100	1740	1100	2700
Ca	5400	4700	3100	7200	490	410	260	640
Ti	260	240	163	340	35	31	20	45
V	5.9	5.1	3.1	8.3	1.29	0.78	BDL	1.96
Cr	17.4	12.2	7.2	24	9.1	3.5	1.42	8.5
Mn	79	64	42	100	32	21	12.6	38
Fe	3300	2900	1990	4300	650	500	360	720
Ni	4.9	3.9	2.4	6.5	2.3	1.12	0.40	2.3
Cu	128	48	25	91	96	27	13.0	54
Zn	780	610	380	1020	580	440	260	760
As	13.6	11.7	7.3	17.1	11.5	10.0	6.1	15.2
Se	3.9	3.0	1.50	4.6	3.5	2.8	1.42	4.2
Br	124	77	39	160	111	66	35	147
Rb	7.2	6.2	2.9	10.2	1.41	0.58	BDL	2.2
Sr	26	23	13.8	35	1.47	0.80	BDL	2.3
Zr	13.5	9.9	5.3	18.1	2.6	1.89	0.57	3.6
Sn	30	20	12.2	35	27	18.0	9.7	32
Sb	24	14.1	3.7	27	18.4	12.8	2.2	25
Ba	59	43	20	78	11.8	4.8	0.16	15.0
Pb	480	220	106	420	420	181	89	360
Beijing								
Al	1520	1160	184	2500	68	BDL	BDL	BDL
Si	6100	5600	2900	7900	510	400	163	650
S	1220	710	440	1350	1080	580	380	1160
Cl	2100	680	200	3100	1840	480	134	2700
K	960	730	320	1530	550	260	100	910
Ca	3600	3200	1500	5200	410	340	174	590
Ti	141	128	68	195	18.8	15.6	7.0	26
V	1.98	1.54	0.65	2.7	0.11	BDL	BDL	BDL
Cr	8.2	7.2	3.1	11.6	2.4	1.73	0.41	3.9
Mn	65	56	25	95	29	20	6.4	44.2
Fe	2200	1950	980	3200	520	390	165	750
Ni	2.4	2.0	0.88	3.4	0.86	0.60	0.10	1.29
Cu	28	22	8.7	43	13.2	9.2	3.2	20
Zn	165	94	36	260	124	69	22	200
As	6.2	2.8	1.22	8.1	5.2	1.90	0.76	7.0
Se	1.7	0.36	BDL	2.5	1.67	0.25	BDL	2.4
Br	14.0	5.1	2.1	21	12.5	5.08	1.62	18.1
Rb	3.2	2.7	1.13	4.8	0.85	0.42	BDL	1.3
Sr	15.1	13.5	6.4	22	1.50	0.64	BDL	2.5
Zr	8.1	6.9	2.5	11.7	1.10	0.66	0.05	1.7
Sn	5.3	4.1	0.83	7.8	4.2	2.8	BDL	6.2
Sb	2.7	0.03	BDL	4.7	1.89	BDL	BDL	2.6
Ba	33	28	10.8	50	6.9	4.0	0.68	11.1
Pb	39	20	7.4	63	33	15.2	5.2	55

Table S2: Means, medians and 25–75th percentiles of PM_{10el} and PM_{2.5el} concentrations (ng m⁻³) in Delhi, Beijing, Krakow and London (*BDL: below detection limit).

Flement	\mathbf{PM}_{10-1}				PM _{2.5-1}				
Element	mean	median	a25	a75	mean	median	a25	a75	
Krakow	mean	median	4 25	475	mean	meanan	425	4/5	
Al	146	BDI	BDI	RDI	28	BDI	BDI	BDI	
Si	1080	1460	380	2000	20	70	14.2	310	
S	1980	1400	360 870	2900	1660	1100	14.2	1820	
	1760	620	200	1930	1000	1100	105	1650	
	650	640	290	880	520	430 510	240	800 720	
K Ca	1460	1060	440	000 1070	220	120	540	720	
Ca T:	1400	1000	400	1970	250	150	0.5	550 12.6	
	44		18.1 DDI	05	8.0	0./ DDI	3.2 DDI	12.0 DDI	
V Cr	0.23		DDL 27	0.17	0.10		5DL	BDL 11.0	
Cr	14.9	1.1	2.7	17.0	14.7	5.8	1.01	11.9	
Mn	28	22	9.6	36.5	15.2	8.1	4.0	17.3	
Fe	1830	1480	/10	2400	720	520	250	880	
N1	1.73	0.73	0.24	1.72	2.1	0.36	BDL	0.94	
Cu	29	22	12.0	41	14.0	10.9	5.9	19.2	
Zn	168	129	77	191	140	91	61	150	
As	3.3	3.1	1.95	4.4	2.8	2.5	1.19	3.6	
Se	0.50	0.23	BDL	0.79	0.50	0.27	BDL	0.74	
Br	12.2	10.6	6.2	15.3	11.7	9.8	5.8	15.0	
Rb	0.79	0.50	BDL	1.30	0.34	BDL	BDL	0.55	
Sr	2.4	1.39	BDL	3.66	0.31	BDL	BDL	0.16	
Zr	4.3	2.3	0.77	5.61	1.04	0.66	BDL	1.71	
Sn	17.4	15.5	7.9	25	14.3	12.1	4.3	23	
Sb	10.8	8.7	1.19	16.7	10.0	6.4	BDL	17.1	
Ba	14.3	10.5	2.1	20	3.4	1.59	BDL	4.9	
Pb	33	31	18.2	42	30	26	15.7	37	
London									
Al	96	82	60	121	46	43	29	55	
Si	174	140	77	220	76	58	36	104	
S	290	210	136	320	230	139	81	260	
Cl	910	630	230	1390	360	162	57	480	
K	52	48	30	69	30	26	15.6	39	
Ca	154	114	72	195	62	46	27	79	
Ti	4.8	3.4	1.87	6.2	2.1	1.52	0.75	2.8	
V	1.18	0.83	0.52	1.42	0.56	0.43	0.25	0.72	
Cr	1.97	1.37	0.72	2.5	0.81	0.62	0.31	1.03	
Mn	4.9	3.8	2.3	5.8	2.5	1.96	0.98	3.0	
Fe	290	220	130	360	129	92	52	161	
Ni	0.62	0.35	0.18	0.70	0.21	0.16	0.08	0.28	
Cu	9.8	7.2	4.0	12.2	49	3.1	1.84	6.0	
Zn	8.2	6.0	2.7	11.3	54	3.5	1.69	79	
Br	3.6	3 2	1 76	49	23	1 73	1.03	2.8	
Sr	0.92	0.75	0.47	1.16	0.42	0.34	0.21	0.53	
7r	0.92	0.75	0.47	1.10	0.42	0.34	0.12	0.53	
Sn 21	1 53	1.07	0.20	1.07	0.44	0.20	0.12	1.04	
Sh	1.55	0.84	0.32	1.07	0.63	0.55	0.27	0.81	
Bo	1.10	0.04 1 0	0.45	1.44 8.6	37	0.42	1.22	1.61	
Da Ph	23	+.7 1 31	2.7 0.63	2.0	1.80	2. 4 1.0	0.45	+.0 2 3	
10	2.5	1.51	0.05	2.0	1.07	1.0	0.45	2.5	

Element	Delhi		Beijing		Krakow		London	
	PM _{10el}	PM _{2.5el}						
Si	23	3.9	36	9.9	22	5.1	9.1	8.4
S	14.2	22	7.3	21	20	39	15.2	25
Cl	38	60	12.5	36	9.8	16	47	40
K	5.7	6.6	5.8	10.6	7.3	12.4	2.7	3.3
Ca	10.0	1.55	22	8.0	16.3	5.4	8.0	6.8
Ti	0.49	0.11	0.85	0.36	0.49	0.20	0.25	0.23
Cr	0.03	0.03	0.05	0.05	0.17	0.34	0.10	0.09
Mn	0.15	0.10	0.39	0.56	0.32	0.35	0.26	0.28
Fe	6.2	2.0	13.2	10.0	21	16.7	15.2	14.1
Ni	0.01	0.01	0.01	0.02	0.02	0.05	0.03	0.02
Cu	0.24	0.30	0.17	0.26	0.33	0.32	0.51	0.53
Zn	1.45	1.81	0.99	2.4	1.88	3.2	0.43	0.59
Br	0.23	0.35	0.08	0.24	0.14	0.27	0.19	0.25
Sr	0.05	0	0.09	0.03	0.03	0.01	0.05	0.05
Zr	0.03	0.01	0.05	0.02	0.05	0.02	0.05	0.05
Sn	0.06	0.08	0.03	0.08	0.19	0.33	0.08	0.09
Ba	0.11	0.04	0.20	0.13	0.16	0.08	0.38	0.40
Pb	0.88	1.32	0.23	0.63	0.36	0.68	0.12	0.21

Table S3: Relative fractions (%) of elements in both sizes for all four sites.