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1. GEOS-Chem setup and RAA treatment 

BC and primary organic aerosols (POA) were calculated according to Park et al. (2003). SOAs were parameterized by 

using the scheme of Pye et al. (2010), while dry deposition was simulated with a resistance-in-series model (Zhang et al., 

2001). Finally, the wet deposition processes were parameterized through the scheme from Liu et al. (2001) and included 

the both the below-cloud washout from large-scale and convective precipitation, and in cloud removal for stratiform 

clouds and convective updrafts.   

Primary anthropogenic emissions of BC and POA were taken from Bond et al. (2007) inventory. Global anthropogenic 

emissions of CO, NOx, and SOx were taken from Emissions Database for Global Atmospheric Research (EDGAR) v4.2 

(1° × 1°) (Olivier & Berdowski, 2001). The volatile organic carbon (VOC) emissions were from the REanalysis of the 

TROposhperic chemical composition (RETRO) (0.5° × 0.5°) inventory (Schultz et al., 2007). Regional inventories were 

used to replace EDGAR and RETRO, such as: EMEP (50 km × 50 km) (Vestreng et al., 2007) for Europe, NEI2011 (12 

km × 12 km) ((http://www.epa.gov/ttnchie1/net/2005inventory.html) for the United States, BRAVO (0.1° × 0.1°) (Kuhns 

et al., 2005) for Mexico, CAC (0.1° × 0.1°) (http://www.ec.gc.ca/inrp-npri/) for Canada, and Streets et al. (2003) data (1 

km × 1 km) for Asia.   

The biomass burning emissions of BC and POA followed the year-specific daily mean GFED4s (Global Fire Emissions 

Database with small fires) inventory (van der Werf et al., 2010; Giglio et al., 2013), while the biogenic emissions were 

calculated interactively within GEOS‐Chem, with the Model of Emissions of Gases and Aerosols from Nature (MEGAN) 

(Guenther et al., 2006). Dust emission flux was simulated through the Dust Entrainment And Deposition (DEAD) scheme 

(Zender et al., 2003), and the dust source function taken from the Goddard Chemistry Aerosol Radiation and Transport 

(GOCART) model (Ginoux et al., 2001; Chin et al., 2004).  

We used a modified version of GEOS-Chem which included a specific treatment for RAAs, following our previous work 

(Tuccella et al., 2020). BC emissions and ageing were considered as source-dependent as in Wang et al. (2014, 2018) and 

hydrophobic and hydrophilic BC were tracked for FF, BF, and BB sources. According to Wang et al. (2014), 80% of BC 

from FF sources was emitted as hydrophobic and converted to hydrophilic with an ageing rate depending on sulphate 

dioxide and hydroxyl radical levels in the atmosphere (Liu et al., 2011). By contrast, BC from BF and BB sources was 

assumed to be emitted as 70% hydrophilic and 30% as hydrophobic with an ageing e-folding time from hydrophobic to 

hydrophilic of 4 hours.   

As in Wang et al. (2014), BrC emissions were inferred from POA emissions, assuming 50% and 25% of POA from BF 

and BB emission as primary BrC. Moreover, we have assumed that half of emitted BrC is hydrophobic, with a conversion 

time of hydrophobic BrC to hydrophilic of 1.15 days. 

BrC SOA is produced by many sources. Some studies showed as absorbing SOA is contained in aromatic compounds 

(Lambe et al., 2013), however, it may also derive from browning of some anthropogenic and biogenic SOA by reaction 

with ammonium, from photooxidation of α-pinene and toluene in the presence of NOx and from the reaction of limonene 

with O3 (Bones et al., 2010; Updyke et al., 2012). Other sources of BrC are aliphatic compounds (Laskin et al., 2015; 

Guang-Ming et al., 2016) and aqueous-phase chemical reactions in clouds (Zhang et al., 2017). The fraction of absorbing 

SOA in atmosphere is not well constrained, thus we assumed that all SOAs simulated by GEOS-Chem are BrC, following 

Lin et al. (2014). These, include: compounds from photooxidation of light aromatics, aerosol formed from photooxidation, 



ozonolysis, nitrate radical oxidation of monoterpenes and sesquiterpenes and products of isoprene oxidation (Pye et al., 

2010). 

Dust mass was simulated with four dimensional bins, with the following diameter boundaries: 0.2–2.0, 2.0–3.6, 3.6–6.0 

and 6.0–12.0 µm. Emitted dust was distributed among these bins following Kok (2011). Dust emission was adjusted to 

give a global mean burden of 20 Tg which is the central estimate reported by Kok et al. (2017), calculated from 

observational constraints. Further details are provided in Tuccella et al. (2020). 

2. BrC mass absorption efficiency  

MACBrC has been inferred starting from the MAC of BF and BB absorbing OA reported by Wang et al. (2018). MACOA 

at 440 nm used for the BF was 0.76 m2/g. For freshly emitted (hydrophobic) BB, MACOA at 440 nm was 0.77 m2/g.  

According to Wang et al. (2018), we applied a reduced MACOA for aged (hydrophilic) OA of 0.23 m2/g. We have used 

two different MACOA for freshly emitted and aged BB OA in order to take into account the whitening of BB plumes  

(Forrister et al., 2015).   

Following again Wang et al. (2018), MACOA was translated to MACBrC using the relationship: 

𝑀𝐴𝐶𝑂𝐴 ∗ 𝑀𝑎𝑠𝑠𝑂𝐴 = 𝑀𝐴𝐶𝐵𝑟𝐶 ∗ 𝑓 ∗ 𝑀𝐴𝐶𝑂𝐴 

where f is the assumed BrC fraction of OA mass. In our work, BrC was set to 50% and 25% for BF and BB OA, 

respectively. The resulting MACBrC values at 440 nm were 1.56, 3.08, and 0.92 m2/g for BF, fresh and aged BB, 

respectively. 
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Table S1. Summary of the MACs in NIR band used in the experiments. The units are in m2/g. 

Experiment MAC adopted for each radiation-absorbing aerosol species 

 Fresh FF BC Aged FF BC Fresh BF/BB BC Aged BF/BB BC 

CTRL 3.2 4.8 3.5 5.3 

BC-H 3.2 6.1 3.5 6.7 

BC-L 3.2 3.5 3.5 3.9 

 Fresh BF BrC Aged BF BrC Fresh BB BrC Aged BB BrC 

CTRL 0.15 0.15 0.15 0.15 

BrC-H 0.15 0.15 0.15 0.15 

BrC-L 0.15 0.15 0.15 0.15 

 Dust 0.36–0.6 Dust 2.6–3.6 Dust 4.4–6.0 Dust 7.0–12.0 

CTRL 0.025 0.034 0.029 0.025 

DUST-H 0.031 0.040 0.034 0.029 

DUST-L 0.014 0.020 0.018 0.016 

 

  



Table S2. Comparison of measured and modelled BC and BCE median mixing ratio in surface snow. The units 

are in ng/g. 

Region Period BC Observed BC 

Modelled 

BCE 

Observed 

BCE 

Modelled 

Arctic1 

Arctic Ocean, spring 2005-2008 7±3 9 12±5 16 

Arctic Ocean, summer 2005-2008 8±8 7 14±15 11 

Canadian and Alaskan 

Arctic 

Apr.-May 2007-

2009 

8±3 7 14±7 11 

Canadian sub-Arctic Mar.-Apr. 2009 14±9 8 20±12 12 

Greenland, spring Apr. 2009 4±2 6 7±3 8 

Greenland, summer 2006-2008 1±1 7 3±3 11 

Western Russia Mar.-May 2007 27* (12-48)** 18 34* (15-60)** 32 

Eastern Russia Mar.-May 2008 34±46 11 48±90 20 

Svalbard Mar.-Apr. 2007, 

2009 

13±9 11 18±12 15 

Tromso, Norway May 2008 21±12 17 29±16 25 

Antarctica 

Vostok2 Dec. 1990-Feb. 

1991 

0.60* 0.61 - - 

Simple Dome3 1982-1985 2.5 (2.3-2.9)** 0.38 - - 

South Pole4 Jan.-Feb. 1996 0.23* (0.10-

0.34)** 

0.37 - - 

Sea Ice5 Sep.-Nov. 2012 0.30±0.20 0.53 0.40±0.30 0.80 

North America6 

Pacific Northwest Jan.-Mar. 2013 22±44 13 29±52 15 

Intramountain Northwest Jan.-Mar. 2013 24±34 28 37±93 35 

North U.S. Plains Jan.-Mar. 2013 30±54 37 78±245 39 

Canada Jan.-Mar. 2013 15±13 15 25±45 18 

Northwest China7 

Northern Xinjiang Jan.-Feb. 2012 73 ± 120 61 - - 

Northeast China8 

Qilian Mountains Jan.-Feb. 2010 - - 1550* (426-

3042)** 

493 

Inner Mongolia Jan.-Feb. 2010 340±910 338 820±3060 1057 

Northeast border Jan.-Feb. 2010 135* (68-295)** 68 190* (100-374)** 98 

Industrial Northeast Jan.-Feb. 2010 1220±600 436 1720±840 556 

Himalayas and Tibet Plateau9 

Hilamalayas, summer 2000-2001 21* (0.3-43)** 48 - - 

Tibet Plateau, summer 2001 45* (18-446)** 26 - - 

 

1Doherty et al. (2010)                                               

2Grenfell et al. (1994)                                                      

3Chylek et al. (1987)                                                                    

4Warren and Clark (1990) 



5Zatko and Warren (2015) 

6Doherty et al. (2014) 

7Ye et al. (2012) 

8Wang et al. (2013)       

9Kopacz et al. (2011)           

*Average                       

** The standard deviations are not available. The values in the brackets represent the low-high range measured in the region. 

  



 

Figure S1. All-sky annual mean (2010–2014) black carbon snow RF divided by source (FF=fossil fuel, BF=biofuel, BB=biomass 

burning).  

 

Figure S2. Same as Figure S1, but for brown carbon. 

 

  



 

Figure S3. All-sky annual mean (2010–2014) of seasonal BrC-BF snow RF. 



 

Figure S4. All-sky annual mean (2010–2014) of seasonal BrC-BB snow RF. 



 

Figure S5. All-sky annual mean (2010–2014) of seasonal BrC-SOA snow RF. 

 



 

Figure S6. All-sky annual mean (2010–2014) of seasonal soil dust snow RF. 

 


