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S1. Additional detail on the regression and inverse model (GIM) using OCO-2 observations 

S1.1 Specific inverse model setup  25 

We estimate both the fluxes (s, where 𝒔 = 𝐗𝜷 + 𝜻) and the drift coefficients (𝜷) by minimizing 

the GIM cost function (e.g., Kitanidis and Vomvoris, 1983; Kitanidis, 1995; Michalak et al., 

2004): 

𝐿𝑠,𝛽 =
1

2
(𝒛 − ℎ(𝒔))𝑻𝐑−𝟏(𝒛 − ℎ(𝒔)) +

1

2
(𝒔 − 𝐗𝜷)𝑻𝐐−𝟏(𝒔 − 𝐗𝜷)    (S1) 

where s (dimensions m × 1) is a vector of unknown fluxes and 𝒛 (dimensions n × 1) the 30 

observations. We pass the fluxes (s) through an atmospheric model (ℎ()) to simulate atmospheric 

CO2 (ℎ(𝒔)).  In this study, X (dimensions m × p) is a matrix of environmental drivers, and 𝜷 

(dimensions p × 1) are unknown drift coefficients that scale the individual columns in X to best 

match the observations (𝒛). Collectively, 𝐗𝜷 is referred to as the deterministic model. 

Furthermore, 𝒔 − 𝐗𝜷 represents spatiotemporal patterns in CO2 fluxes (𝒔) that are implied by the 35 

atmospheric observations (𝒛) but not captured by the deterministic model (𝐗𝜷). In the 

manuscript, we refer to this component as the stochastic component ().  

The inverse model includes two covariance matrices; R (dimensions n × n) and Q (dimensions m 

× m). The covariance matrix R describes 𝒛 − ℎ(𝒔), referred to here as the model-data mismatch 

errors. These errors include errors from the atmospheric measurements and from the transport 40 

model; in brief, the measurement errors are computed as the variances for 10-s averages by 

summing the inverse variances of all the soundings within the span of that 10-s average (e.g., 

Crowell et al., 2019), and the model errors consider errors from the model transport and 

representativeness (e.g., Basu et al., 2018); the model-data mismatch errors are the quadrature 

sum of the measurement errors and model errors. The covariance matrix Q prescribes the 45 

variances and spatiotemporal covariances of the stochastic component () and includes both 

diagonal and off-diagonal elements. Specifically, we use Restricted Maximum Likelihood 

(RML; e.g., Kitanidis, 1997; Gourdji et al., 2012; Miller et al., 2016) to estimate the covariance 

parameters for Q, including the variance of Q (referred to as 𝜎𝑄
 2), the decorrelation length (l), 

and the decorrelation time (t). We iteratively optimize these covariance parameters using flux 50 

estimates for years 2015 to 2018 from CarbonTracker (CT2019; Peters et al., 2007, Jacobson et 

al., 2020; https://www.esrl.noaa.gov/gmd/ccgg/carbontracker/). In this study we assume that the 

spatiotemporal properties of CO2 fluxes from CT2019 are a reasonable proxy for the covariance 

https://www.esrl.noaa.gov/gmd/ccgg/carbontracker/)
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parameters that are used in the GIM. Refer to Mueller et al. (2008) and Gourdji et al. (2008, 

2010, 2012) for more detail on this proxy approach to estimating covariance parameters in the 55 

inverse model setup. We re-grid the flux estimates from CT2019 to daily, 4o (latitude) by 5o
 

(longitude) resolutions, consistent with the GEOS-Chem model grid and the temporal resolution 

of the stochastic component () of the GIM. We optimize these covariance parameters using an 

exponential covariance model (e.g., Mueller et al., 2008; Gourdji et al., 2008, 2010, 2012) for 

land and ocean, respectively. We specifically estimate a variance of 0.31 (mol m-2 s-1)2 for 60 

terrestrial regions and 0.014 (mol m-2 s-1) for the ocean. We further estimate a decorrelation 

length parameter of 1460 km for land and 4678 km for ocean and a correlation time parameter of 

5.1 days for land and 8.6 days for the ocean. These values have a similar magnitude to an 

existing global GIM study (Gourdji et al., 2008). 

 65 

After estimating the covariance matrix parameters, we then estimate the CO2 fluxes by iteratively 

minimizing Eq. S1 using the Limited-memory Broyden-Fletcher-Goldfarb-Shanno algorithm (L-

BFGS, Liu and Nocedal, 1989). Miller et al (2020) provides detail on this iterative approach to 

minimize Eq. S1. 

 70 

S1.2 Initial condition of atmospheric CO2 and model spin-up 

We first create an initial condition of atmospheric CO2 mole fractions for 1 Sept., 2012 based on 

NOAA’s Carbon Tracker (CT) product, and use CO2 fluxes from CT to run GEOS-Chem 

forward for two years until 1 Sept., 2014 when the inverse modeling begins; we run the CT 

fluxes through GEOS-Chem for two years to ensure that the CO2 mixing ratios are consistent 75 

with the GEOS-Chem model grid, and therefore to minimize potential spin-up artifacts due to 

model transport. We then run the inverse model starting from 1 Sept., 2014, but we consider the 

result from 2014 as part of an initial model spin-up period and do not use it for analysis. This 

setup for the initial condition and spin-up is identical to that used in Miller et al. (2018). 

 80 

S2. Additional detail on the setup of anthropogenic emissions, ocean fluxes, and biomass 

burning  

We combine fossil fuel emissions from ODIAC, biomass burning fluxes from GFED, and 

oceanic fluxes from ECCO-Darwin in a single column of X and estimate a single coefficient () 
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for all three sources in all regions of the globe. This column of combined fluxes is selected using 85 

the BIC and is included within the inverse model. Furthermore, we estimate a coefficient () of 

0.97 to 1.05 (depending on the year and simulation) for this column of X. A scaling factor near 

one indicates that the overall, cumulative magnitude of these sources is consistent with OCO-2 

observations. 

We do not estimate separate coefficients () for fossil fuel emissions from ODIAC, biomass 90 

burning fluxes from GFED, and oceanic fluxes from ECCO-Darwin separately because current 

OCO-2 observations have limited ability to constrain patterns in these different source types. We 

conduct a sensitivity test in which we use three individual columns in X to represent ODIAC, 

GFED, and ECCO-Darwin, respectively; we then re-run model selection using this setup for X. 

We select ODIAC but not GFED or ECCO-Darwin in this sensitivity test. This result suggests 95 

that ODIAC helps describe enough variability in atmospheric observations to be selected using 

BIC; by contrast, GFED or ECCO-Darwin alone do not help reproduce OCO-2 observations 

more than the penalty term (Eq. 2) in the BIC and therefore are not selected. The average 

atmospheric XCO2 enhancement due to GFED emissions and ECCO-Darwin fluxes are 0.19 and 

-0.31ppm, respectively. These enhancements are small relative to emissions from ODIAC (2.70 100 

ppm), a possible explanation of why ocean and biomass burning fluxes are not selected in this 

sensitivity test. 

S3. Scaled temperature function  

Most terrestrial biosphere models (TBMs) estimate CO2 fluxes as a nonlinear or piecewise 

function of temperature (e.g., Heskel et al., 2016; Dayalu et al., 2018). In this study, we use a 105 

scaled function of temperature from the Vegetation Photosynthesis and Respiration Model 

(VPRM, Mahadevan et al., 2008; Dayalu et al., 2018) as an environmental driver in the inverse 

model (in X, Eq. 1). This function peaks at the optimal temperature for photosynthesis and 

declines at higher and lower temperatures: 

𝑻𝒔𝒄𝒂𝒍𝒆 =
(𝑻𝒂𝒊𝒓−𝑻𝒎𝒊𝒏)(𝑻𝒂𝒊𝒓−𝑻𝒎𝒂𝒙)

(𝑻𝒂𝒊𝒓−𝑻𝒎𝒊𝒏)(𝑻𝒂𝒊𝒓−𝑻𝒎𝒂𝒙)−(𝑻𝒂𝒊𝒓−𝑻𝒐𝒑𝒕)
𝟐                                                               (S2) 110 

The scaled temperature (Tscale) is calculated based on a minimum (Tmin = 0 oC) and maximum 

(Tmax = 40 oC) temperature threshold and an optimal temperature (Topt) for photosynthesis which 

is set for each biome. In this study, we follow existing literature (Mahadevan et al., 2008; Luus 

et al., 2017; Dayalu et al., 2018) and set an optimal temperature of 15 oC for tundra and boreal 
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biomes, and 20 oC for temperate, tropical, and desert/shrubland biomes. An example of scaled 115 

temperature as a function of air temperature over the temperate forest biome is illustrated in Fig. 

S1.  

 

S4. Comparisons against XCO2 observations, against aircraft-based measurements, and 

against TCCON measurements  120 

S4.1 Comparisons against XCO2 observations 

We simulate posterior atmospheric CO2 concentrations for years 2015 through 2018 by passing 

the posterior CO2 fluxes (�̂�) through the atmospheric transport model (ℎ(�̂�)).; we then compare 

the modeled XCO2 against observed XCO2. Fig. S2 displays the model-data XCO2 comparisons 

for years 2015 through 2018. Across the study years, the model-data biases are small and range 125 

from -0.15 to -0.08 ppm. Furthermore, the root mean squared error (RMSE) ranges from 1.03 to 

1.16 ppm, depending upon the year. These errors are similar to the model-data mismatch errors 

specified in the inverse model (0.98 ± 0.31 ppm), indicating that the covariance matrix R is a 

reasonable estimate of the actual residuals. In addition, the model-data fit is consistent among all 

years of the inverse modeling results; the model-data residuals are similar from one year to 130 

another and do not display any trend.   

S4.2 Comparisons against aircraft-based measurements 

We evaluate the inverse model estimates against aircraft-based measurements included in the 

NOAA ObsPack (version 2.0, NOAA Carbon Cycle Group Obspack team, 2018; Masarie et al., 

2014). These measurements include vertical profiles collected from NOAA regular aircraft sites 135 

(Sweeney et al., 2015), from the National Institute for Space Research (INPE), and from the 

Atmospheric Tomography Mission campaign (ATom, Wofsy et al., 2018). Table S2 displays a 

full list of the aircraft sites and campaign used in this study. Note that we remove a few outlier 

data points from this comparison, defined as differences between posterior CO2 and aircraft 

measurements that are larger than 30 ppm; these outliers may indicate very heavy local influence 140 

(e.g., Chevallier et al., 2019). 

Figs. S3-S6 displays site-level comparisons against aircraft measurements collected from NOAA 

aircraft sites and from INPE sites. We find that from one year to another, the model-data biases 

and the RMSEs show similar magnitudes and patterns. The model-data differences over middle 

latitudes are generally small and become larger across high latitudes. There are few OCO-2 145 
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observations in high latitude regions, a possible reason why the error statistics are larger in high 

latitude regions like Alaska. Furthermore, the resolution of the global GOES-Chem model (4o 

latitude × 5o longitude) may introduce additional uncertainties in comparisons with aircraft point 

data that show substantial spatial heterogeneity (e.g, Crowell et al., 2019). With that said, these 

site-level comparisons are broadly consistent with previous studies (Chevallier et al. 2019; Liu et 150 

al., 2020) in which the authors used aircraft measurements to evaluate inverse model estimates 

from GOSAT and OCO-2 satellites. Note that the sites available for comparison differs slightly 

from one year to another; for example, there are not any available aircraft measurements at RBA-

B and ALF sites over South America for year 2018 (Fig. S6).  

Furthermore, Fig. S7 shows grid-scale (4o latitude × 5o longitude) comparisons against the ATom 155 

airborne campaigns. ATom aircraft measurements were collected from August 2016 to May 

2018 over Pacific and Atlantic oceans. Within each grid box, we average available aircraft 

measurements for comparison. We find that over most of the grid boxes the residuals between 

modeled and observed CO2 are within 1.0 ppm; these residuals are similar in magnitude to the 

model-data mismatch errors specified in the inverse model, further indicating a good match 160 

between the R covariance matrix and actual model-data residuals. In addition, the model-data 

residuals are smallest over ocean and are larger over land. These patterns in the residuals are 

broadly consistent with a recent study that employed GOSAT and OCO-2 satellite observations 

(Liu et al., 2020).  

Overall, the agreement between posterior CO2 and various aircraft measurements confirms the 165 

conclusion that there are no major biases in the GIM flux estimates using OCO-2.  

S.4.3 Comparisons against TCCON measurements  

We sample the posterior atmospheric CO2 concentrations to the times and locations of the 

TCCON retrievals. TCCON is a network of ground-based Fourier transform spectrometers (FTS) 

that retrieve the column-average dry air mole faction of trace gases (e.g., CO2 and CH4; Wunch 170 

et al., 2011).We obtain the TCCON measurements from the TCCON Data Archive 

(http://tccondata.org/), and the TCCON retrievals are averaged to create 30-min average XCO2 

(e.g., Crowell et al., 2019).  

Figs. S8-S12 depicts the biases and the RMSE between posterior XCO2 and TCCON 

measurements across an array of sites; sites included in this study (Table S3) are similar to that 175 

in the OCO-2 inverse model inter-comparison (MIP) study (Crowell et al., 2019). Fig. S8 shows 

http://tccondata.org/
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the comparisons across the entire study period, and Figs. S9-S12 each further show the 

comparisons for different seasons of the year. The biases are generally small across most of the 

sites (Fig. S8a) and are consistent across different seasons (Figs. S9 - S12), indicating an absence 

of any major seasonal biases in the inverse model estimates using OCO-2. With that said, the 180 

CalTech site exhibits higher biases than the other TCCON sites. The CalTech site is in the 

densely populated Los Angeles basin, a region that also has complex topography. We are 

unlikely to reproduce heterogeneous urban CO2 signals given the spatial resolution of this global 

inverse model. Furthermore, the Eureka and Sodankyla sites exhibit higher biases than other 

TCCON sites. These sites are located at high latitudes where there are few observations from 185 

OCO-2 to constrain fluxes and posterior atmospheric CO2 mixing ratios. The RMSE (Figs. S8-

S12) ranges from 0.33 to 2.23 ppm at the different TCCON sites, which indicates that we can 

reproduce TCCON XCO2 to within the range of uncertainties as described in the R covariance 

matrix (Sect. S1). 

 190 

S5. Sensitivity tests for the estimated coefficients 

We run the simulations with environmental driver datasets from two different meteorological 

products (CRUJRA and MERR-2) and two different formulations of the covariance matrix Ψ -- 

to test the sensitivity of the estimated coefficients to the choice of meteorology and statistical 

setup (Figs. S14 – S16). In Fig. S14, we compare estimated coefficients for the TBMs using 195 

environmental driver datasets from CRUJRA and MERRA-2 meteorology. The two sets of 

results look similar. In addition, Fig. S15 compares the coefficients estimated for OCO-2 

observations using environmental driver datasets CRUJRA versus MERRA-2, and Fig. S16 

compares coefficients estimated using different setups for the covariance matrix Ψ. Note that the 

results in Figs. S15 and S16 are also shown in Figs. 3 and 4 of the main article, but the figures 200 

included here make the differences more visually apparent.  

 

 

 

 205 
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 450 

Figure S1. Scaled air temperature function for photosynthesis. This figure displays the function 

used for the temperate forest biome; the function has different optimal temperatures in different 

biomes. 
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Figure S2.  Comparisons against XCO2 observations for years 2015 to 2018. Yellow and green 

colors indicate a high density of points while blue colors indicate a low density of data points. 
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Figure S3. Site-level comparisons against measurements collected from NOAA regular sites and 510 

INPE sites (year 2015). 
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Figure S4. Site-level comparisons against measurements collected from NOAA regular sites and 

INPE sites (year 2016). 535 
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Figure S5. Site-level comparisons against measurements collected from NOAA regular sites and 550 

INPE sites (year 2017). 
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Figure S6. Site-level comparisons against measurements collected from NOAA regular sites and 

INPE sites (year 2018). 575 
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Figure S7. Grid-scale differences between the posterior CO2 estimate and ATom aircraft 

measurements (model minus measurements). 
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 Figure S8. Comparisons between the posterior XCO2 estimate and TCCON observations across 

years 2015-2018. We order these sites from Northern Hemisphere to Southern Hemisphere.  
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Figure S9. Comparisons between the posterior XCO2 estimate and TCCON observations for 

March, April, and May (MAM) across the four-year study period.  660 
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Figure S10. Comparisons between the posterior XCO2 estimate and TCCON observations for 

June, July, and August (JJA) across the four-year study period.  675 
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Figure S11. Comparisons between the posterior XCO2 estimate and TCCON observations for 

September, October, and November (SON) across the four-year study period. Note the blank 

color indicates there are no available TCCON observations during SON over the individual sites. 690 

Also note that the model-data bias over Bremen and Lauder sites in panel (a) are small (0.005 

and -0.004 ppm, respectively) but not blank.  
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       705 

Figure S12. Comparisons between the posterior XCO2 estimate and TCCON observations for 

December, January, and February (DJF) across the four-year study period. Note the blank color 

indicates there are not any available TCCON observations during DJF for the site in question. 
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Figure S13. Comparison between modeled XCO2 using the output of the regression analysis 

(Xβ; Sect. 2) and XCO2 observations for years 2015 to 2018. The biases (model minus 

observation) across years 2015-2018 are small (-0.12 to -0.08 ppm). The model-data residues are 740 

also within the range of uncertainties as described in the R covariance matrix (0.98 ± 0.31 ppm; 

see Sect. S1). In addition, the model-data residuals are similar from one year to another and do 

not display any trend.  
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Figure S14. In the analysis using TBMs, we run simulations using CRUJRA (blue) and using 

MERRA-2 (red), respectively. The estimated coefficients between the two simulations are 

similar across different environmental drivers and across different biomes.  750 
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Figure S15. In the analysis using OCO-2, we run the simulations using environmental driver 

datasets from MERRA-2 (red) and from CRUJRA (blue). The vertical bars denote the range of 

coefficient estimates across four years and the dots denote the mean values. The estimated 755 

coefficients between the two simulations are similar for most environmental driver variables.  

 

 

 

 760 



29 

 

 

Figure S16. Comparison between the coefficients estimated using a simple, diagonal 

formulation of Ψ (red) and using a more complex and complete formulation of Ψ (blue). The 

vertical bars denote the range of coefficient estimates across four years and the dots denote the 

mean values.  765 
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Figure S17. Four-year averaged CO2 fluxes estimated from a suite of 15 TBMs (blue) and from 

the ensemble mean (black) for temperate forests. TBM disagree on the seasonality and the 780 

magnitude. These large differences of CO2 fluxes over temperate forests likely help explain the 

large spread of coefficient estimates for PAR (Figs. 3a and 4).   
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Table S1. A full list of TBMs participating in TRENDY. 795 

TRENDY models Original spatial 

resolution 

Reference 

CABLE-POP 1°×1° Haverd et al., 2018 

CLASS-CTEM 2.8125°×2.8125° Melton and Arora, 2016 

CLM5.0 1.25°×0.9424° Oleson et al., 2013 

DLEM 0.5°×0.5° Tian et al., 2015 

ISAM 0.5°×0.5° Meiyappan et al., 2015 

JSBACH 1.875°×1.875° Mauritsen et al., 2019 

JULES 1.875°×1.25° Clark et al., 2011 

LPJ 0.5°×0.5° Poulter et al., 2011 

LPX-Bern 0.5°×0.5° Lienert and Joos, 2018 

OCN 1°×1° Zaehle and Friend, 2010 

ORCHIDEE 2°×2° Krinner et al., 2005 

ORCHIDEE-CNP 2°×2° Goll et al., 2017 

SDGVM 1°×1° Walker et al., 2017 

ISBA-CTRIP 1°×1° Joetzjer et al., 2015 

VISIT 0.5°×0.5° Kato et al., 2013 
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Table S2. Aircraft measurements from NOAA regular sites, INPE sites, and ATom campaign.  

site or program code Site or program name Network 

ACG Alaska Coast Guard, USA NOAA/ESRL Global 

Greenhouse Gas Reference 

Network (e.g., Sweeny et al., 

2015) 

 

CAR Briggsdale, Colorado, USA 

CMA Offshore Cape May, New 

Jersey, USA 

CRV CARVE 

DND Dahlen, North Dakota, USA 

ESP Estevan Point, British Columbia, 

Canada 

ETL East Trout Lake, Saskatchewan, 

Canada 

HIL Homer, Illinois, USA 

LEF Park Falls, Wisconsin, USA 

MRC Marcellus, Pennsylvania, USA 

NHA Offshore Portsmouth, New 

Hampshire, USA 

PFA Poker Flat, Alaska, USA 

RTA Rarotonga, Cook Islands 

SCA Offshore Charleston, South 

Carolina, USA 

SGP Southern Great Plains, 

Oklahoma, USA 

TGC Offshore Corpus Christi, Texas, 

USA 

THD Trinidad Head, California, USA 

WBI West Branch, Iowa, USA 

RBA_B Rio Branco, Brazil INPE 

ALF Alta Floresta, Brazil 

TOM ATom, Atmospheric 

Tomography Mission 

NASA Airborne Science (Wofsy 

et al., 2018) 
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Table S3. TCCON sites used in this study. 
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 830 

 

Site name Reference 

Park Falls, Wisconsin, USA Wennberg et al. (2014) 

Lamont, Oklahoma, USA Wennberg et al. (2014) 

Bialystok, Poland Deutscher et al. (2015) 

Orleans, France Warneke et al. (2014) 

Karlsuhe, Germany Hase et al. (2015) 

Tsukuba, Japan Morino et al. (2016) 

Lauder, New Zealand Sherlock et al (2014) 

Darwin, Australia Griffith et al (2014a) 

Wollongong, Australia Griffith et al (2014b) 

Bremen, Germany Notholt et al (2014) 

Eureka, Canada Strong et al (2016) 

Sodankyla, Finland Kivi and Heikkinen (2016) 

Reunion Island, France De Maziere et al (2014) 

Ascension Island, UK Feist et al (2014) 

Saga, Japan Kawakami et al (2014) 

Manaus, Brazil Dubey et al (2014) 

Caltech, California, USA Wennberg et al (2015) 

Edwards, California, USA Iraci et al (2016) 
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Table S4. Estimated regression coefficients for the analysis using the TBMs and OCO-2 

observations. In each box, we show the range of the coefficients, with the top and bottom values 

indicating the minimum and maximum coefficients, respectively, across years 2015 to 2018. 

Blank boxes indicate that the specific drivers are not selected in the individual TBMs. The 835 

environmental driver datasets shown in this table are those selected using real OCO-2 

observations (as in Figs. 3-4). Note that for many TBMs, we also select additional environmental 

driver datasets that were not selected using real OCO-2 observations, and we do not list all of 

those coefficients in the table below for the sake of brevity.  

 840 
TBMs or 

OCO-2 

observations 

Scaled temperature Precipitation PAR 

Temp. 

grass. 

Trop. 

Grass. 

Trop. 

forest 

Desert 

shrub 

Temp. 

forest 

Trop. 

Grass. 

Trop. 

forest 

Desert 

shrub 

Boreal 

forest 

Temp. 

forest 

ISBA-CTRIP  -0.12, -0.50,  -0.26, -0.86, -0.21,   -0.84, 

 0.16 -0.17  0 -0.54 0.030   -0.32 

DLEM 0.02,      -0.01, 0.19,   

0.11      0.28 0.68   

LPX-Bern -0.21, -0.29,    -1.32, -0.69, 0.23,  -1.97, 

0.07 0.05    -0.91 -0.06 0.42  -1.48 

VISIT 0.09, -0.44, -0.18,   0.44, 0.14, 0.32, -0.60, 0.22, 

0.15 -0.080 0.10   0.84 0.52 0.47 -0.10 0.50 

CABLE-POP   -0.33,    0.02,    

  -0.08    0.26    

CLASS-

CTEM 

   -0.15,  -0.45, -0.44,   -0.68, 

   -0.06  -0.080 -0.060   -0.34 

JSBACH  -0.43, -0.56,  -0.25, -0.36, -0.07,   -2.08, 

 0.060 0.28  0.32 0.72 0.80   -0.97 

CLM5 -0.29,    -0.41, -0.32,    -2.28, 

-0.10    0.22 0.52    -0.99 

JULES  -0.35, -0.32,   0.68, 0.64,   -0.72, 

 -0.080 -0.08   0.88 1.25   -0.58 

OCN  -0.70, -0.37,   0.17,    -0.57, 

 -0.14 -0.21   0.56    -0.44 

LPJ  -0.14, -0.20   0.14, 0.54,    

 0.060 0   0.52 0.64    

SDGVM -0.09,    -0.78, -0.99, -0.98,  -2.62 -1.92, 

0.04    -0.23 -0.69 -0.73  -1.47 -1.15 

ISAM   -0.39,   -0.76, -0.24,   -0.90, 

  -0.13   -0.21 0.02   -0.29 

OECHIDEE-

CNP 

-0.19, -0.19,         

-0.16 0.010         

ORCHIDEE  -0.28, -0.41,   -0.80, -0.42,   -1.11, 

 0.020 -0.12   -0.44 -0.16   -0.78 

OCO-2 -0.28, -0.31, -0.69, -0.04, -0.61, -0.54, -0.73, -0.14, -1.02, -1.28, 

-0.14 0 -0.13 0.07 -0.36 -0.23 -0.43 0.34 -0.82 -0.75 
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