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Abstract. Many methods are currently available for estimat-
ing physicochemical properties of atmospherically relevant
compounds. Though a substantial body of literature has fo-
cused on the development and intercomparison of methods
based on molecular structure, there has been an increasing
focus on methods based only on molecular formula. How-
ever, prior work has not quantified the extent to which iso-
mers of the same formula may differ in their properties or,
relatedly, the extent to which lacking or ignoring molecular
structure degrades estimates of parameters. Such an evalu-
ation is complicated by the fact that structure-based meth-
ods bear significant uncertainty and are typically not well
constrained for atmospherically relevant molecules. Using
species produced in the modeled atmospheric oxidation of
three representative atmospheric hydrocarbons, we demon-
strate here that estimated differences between isomers are
greater than differences between three widely used estima-
tion methods. Specifically, isomers tend to differ in their es-
timated vapor pressures and Henry’s law constants by a half
to a full order of magnitude greater than differences between
estimation methods, and they differ in their rate constant for
reaction with OH radicals (kOH) by a factor of 2. Formula-
based estimation of these parameters, using certain methods,
is shown to agree with structure-based estimates with little
bias and approximately normally distributed error. Specifi-
cally, vapor pressure can be estimated using a combination
of two existing methods, Henry’s law constants can be es-
timated based on vapor pressure, and kOH can be approxi-
mated as a constant for all formulas containing a given set of
elements. Formula-based estimation is, therefore, reasonable
when applied to a mixture of isomers but creates uncertainty
commensurate with the lack of structural information.

1 Introduction

The fate of an organic compound in the atmosphere is dic-
tated by a number of physicochemical properties. Its volatil-
ity controls whether it partitions to suspended particulate
mass or remains in the gas phase, its reactivity controls its
lifetime against degradation by ever-present oxidants, and its
solubility may control its uptake to particles or its deposition
to surfaces (Heald et al., 2020; Jimenez et al., 2009; Knote
et al., 2015; Krieger et al., 2012; Ziemann and Atkinson,
2012). The parameters that describe these properties (e.g.,
vapor pressure) are consequently a critical term in models
describing the physical and chemical transformations of at-
mospheric constituents. In some cases, an exact estimation
of these parameters may not be important; for instance, a
compound will almost certainly condense when given the
opportunity, whether its vapor pressure is extremely low or
merely very low. However, many compounds exist in tran-
sition regimes in environments typical of atmospheric con-
ditions in which they can partition between phases and may
vary in their fates, such as the following: semivolatile com-
pounds that partition between the gas and particle phase
(Donahue et al., 2006); compounds with moderate reactiv-
ity that may last hours or days, depending on oxidant con-
centrations (Price et al., 2019); or compounds with sufficient
solubility to partition to particles with an aqueous phase but
not dry particles (Wania et al., 2015). For these atmospheric
components (which likely account for at least tens of percent
of atmospheric organic carbon; Hunter et al., 2017), an accu-
rate estimate of their physicochemical parameters is critical.

Unfortunately, physicochemical parameters for atmo-
spherically relevant compounds are poorly constrained by
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experimental data. Vapor pressures and Henry’s law con-
stants (HLCs) are known primarily for higher volatility com-
pounds, typically with few (one to three) functional groups
(Compernolle et al., 2011; Raventos-Duran et al., 2010). Lit-
tle observational data exists for, e.g., compounds with va-
por pressures sufficiently low to partition under typical at-
mospheric conditions. In contrast, the atmosphere contains
thousands or tens of thousands of compounds across∼ 15 or-
ders of magnitude in vapor pressure (Jimenez et al., 2009),
wide ranges of oxygenation, volatility and solubility (e.g.,
Donahue et al., 2011; Hodzic et al., 2014; Lannuque et al.,
2018), and several orders of magnitude in reactivities (Lee
et al., 2006), with many multifunctional components (e.g.,
Aumont et al., 2005; Saunders et al., 2003). Most observa-
tional databases are consequently of little direct use, though
there have been some recent efforts to develop data sets
relevant to the ranges of properties observed in the atmo-
sphere (Dang et al., 2019; Krieger et al., 2018). In order
to estimate these parameters beyond the range of obser-
vational constraints, several methods have been developed
that relate physicochemical parameters to structure through
structure–activity relationships (SARs). These typically take
the form of a group contribution, in which a molecular
structure is parsed into component groups (carbonyls, esters,
carbon–carbon double bonds, etc.), with each group assigned
an empirically determined impact on a parameter of inter-
est. Various methods exist to estimate volatility (e.g., Bar-
ley and McFiggans, 2010; Camredon and Aumont, 2006;
Compernolle et al., 2011), HLC (e.g., Meylan and Howard,
1991; Raventos-Duran et al., 2010), and gas-phase reaction
rates (e.g., Vereecken et al., 2018). Though these SARs are
frequently used to estimate physicochemical parameters of
atmospheric constituents, their application to atmospheric
oxidation products often requires extrapolation far beyond
the chemical space (i.e., volatility and chemical function-
ality) used in their development. Furthermore, many of the
molecules present in the atmosphere contain multiple func-
tional groups, and the substituent groups within a complex
molecule may not obviously “map” to the groups used to
define an SAR or may interact with neighboring groups in
ways not captured by an SAR. This need to extrapolate the
volatility and functionality domain of SARs for atmospheric
applications leads to higher uncertainty, and previous work
has demonstrated that SARs’ estimates of vapor pressures,
HLC, and gas-phase reaction rates for atmospheric species
tend to diverge with increasing numbers of organic functional
groups on the carbon backbone (Raventos-Duran et al., 2010;
Valorso et al., 2011).

Earlier work on vapor pressure implemented a two-step
estimation method in which boiling point is estimated us-
ing an SAR, and vapor pressure is estimated from this boil-
ing point using a separate SAR. Widely used boiling point
estimation methods include Stein and Brown (1994), Nan-
noolal et al. (2004), and Joback (1984) and Reid et al. (1987),
while widely used vapor pressure estimation methods in-

clude Nannoolal et al. (2008) and Myrdal and Yalkowsky
(1997). Comparison by Barley and McFiggans (2010) of
these eight possible combinations (and a few less widely
used methods) suggest that the estimation of boiling point,
using the Nannoolal et al. (2004) method, yields the best
agreement with experimental data, in particular when us-
ing the Nannoolal et al. (2008) vapor pressure estimation
method; this combination was similarly found to have the
lowest bias in a later comparison by O’Meara et al. (2014).
Other vapor pressure estimations also perform well when
using the Nannoolal et al. (2004) boiling point estimation,
most notably the Lee–Kesler method (Reid et al., 1987),
which exhibits a similarly low bias method (Barley and Mc-
Figgans, 2010; O’Meara et al., 2014). More recently, va-
por pressure estimation methods have been developed that
use SARs to directly estimate vapor pressure, specifically
SIMPOL (Pankow and Asher, 2008) and EVAPORATION
(Compernolle et al., 2011). These two methods have been
previously shown to agree well with those estimated by the
Nannoolal et al. (2004) method (Compernolle et al., 2011).
Prior work, therefore, suggests that at least three methods
(i.e., SIMPOL, EVAPORATION, and Nannoolal) compara-
bly estimate vapor pressures, and one of these methods (Nan-
noolal) is in reasonable agreement with the experimental
data. However, these experimental data are mostly limited
to vapor pressures greater than 10−8 atm (saturation concen-
tration; c∗ >∼ 101.5 µgm−3), which is at the lower limit of
vapor pressures expected to partition to the particle phase
under typical atmospheric conditions (Donahue et al., 2006).
These three methods consequently represent some of the cur-
rent best SARs for estimating vapor pressure, but they re-
main highly uncertain. None of these methods was found
to be accurate to better than approximately half an order of
magnitude for their best constrained regions, and methods
tend to diverge at lower vapor pressures (Barley and McFig-
gans, 2010; Compernolle et al., 2011; Valorso et al., 2011).
Even relatively accurate estimates can introduce large errors
in transition regimes. An error of half an order of magnitude
in vapor pressure for a compound with an estimated satura-
tion concentration near ambient particulate matter concentra-
tions may “move” a compound from mostly in the gas phase
to mostly in the particle phase (Compernolle et al., 2011).
Furthermore, uncertainty estimates of half an order of mag-
nitude may be optimistic as recent work has found orders-of-
magnitude discrepancies between measured vapor pressures
of low-volatility compounds and those estimated by the Nan-
noolal et al. (2008) method (Dang et al., 2019), but data are
still limited.

For most volatile organic compounds (VOCs), the atmo-
spheric oxidation is mainly driven by the reaction with OH
radical. Various methods, based on SARs, are available in the
literature to estimate VOC and OH gas-phase rate constants,
kOH (Vereecken et al., 2018). A very commonly used SAR
was developed by Kwok and Atkinson (1995), for which a
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few revised and extended versions are now available (e.g.,
Jenkin et al., 2018a, b).

A few methods are available for the estimation of HLC,
which parameterizes the partitioning of gases into a liquid
(typically dilute aqueous) phase. For atmospheric chemistry
applications, most commonly used SARs are HWINb (US
Environment Protection Agency, 2019) and the more re-
cently developed GROMHE (GROup contribution Method
for Henry’s law Estimate; Raventos-Duran et al., 2010), the
latter of which has been shown to be somewhat more accu-
rate. There are, consequently, fewer alternatives around the
selection of a method to estimate these parameters, but there
can nevertheless be large errors in their estimation (e.g., or-
ders of magnitude in HLC estimates).

To avoid the need to extrapolate SARs and the concomitant
uncertainty that arises from this approach, a new generation
of tools allows physicochemical properties to be directly es-
timated using quantum-chemistry-based calculations. These
tools include commercial products that can directly calcu-
late physicochemical properties (e.g., vapor pressure) or can
calculate solvation parameters to estimate partitioning be-
tween phases, for instance, COSMOtherm (available from
Dassault Systèmes, based on COSMO-RS; Klamt, 1995;
Klamt and Eckert, 2000) and SPARC (SPARC Performs Au-
tomated Reasoning in Chemistry; available from ARChem,
LP; based on Hilal et al., 2004). In a related approach, a cali-
brated fit to experimental partitioning data can be developed
based on solvation parameters (a poly-parameter linear free
energy relationship or ppLFER), which can, in turn, be cal-
culated using commercial products like Absolv (ACD/Labs;
Arp et al., 2008a, b; Wania et al., 2014). By calculating pa-
rameters directly from molecular structure, these methods
do not suffer the same degree of uncertainty caused by ex-
trapolation beyond the empirically constrained regions of
SARs and have been shown to handle multifunctional com-
pounds with no bias and modest increases in uncertainty
(Wang et al., 2017). These methods have also been shown
to agree well in their estimations of partitioning between
vapor and condensed phase organics (related to vapor pres-
sure) but still exhibit large differences in estimations of par-
titioning of organics into water (related to HLC; Wang et al.,
2017). Quantum-chemistry-based calculations may therefore
represent a new approach for estimating partitioning in at-
mospheric systems (e.g., Wania et al., 2015), but they have
not yet seen widespread adoption in the atmospheric science
community, and so the work presented here focuses on the
more commonly used SAR-based approach.

In addition to these methods for the estimation of physico-
chemical parameters based on molecular structure, there has
been a recent focus on developing approaches that rely only
on molecular formula. This is largely driven by the rapid
increase in the use of direct mass spectrometry, in partic-
ular direct chemical ionization mass spectrometry (CIMS),
which samples at atmospheric pressure and can, therefore,
detect nearly all gas- and particle-phase atmospheric con-

stituents with minimal pretreatment (Aljawhary et al., 2013;
Huey et al., 1995; Hunter et al., 2017; Isaacman-Vanwertz
et al., 2018). By allowing direct measurement of chemically
and/or thermally labile atmospheric constituents, these in-
struments have profoundly increased understanding of atmo-
spheric chemistry (e.g., Ehn et al., 2014; Lee et al., 2016;
Nguyen et al., 2015). However, direct mass spectrometry
generally lacks any mechanism for the resolution of isomers,
yielding data only on the molecular formula of detected an-
alytes, with little structural information. Some approaches to
CIMS are limited to specific compound classes (e.g., acids),
thus providing some information, but provide no resolution
of isomers within these classes (Thompson et al., 2016). In
order to situate measurements by CIMS and other direct mass
spectrometers in a chemical space useful for modeling or
understanding the atmosphere (e.g., Isaacman-VanWertz et
al., 2017; Mohr et al., 2019), methods have been developed
and applied for estimating physicochemical parameters from
formulas alone. These methods are primarily limited to es-
timation of vapor pressure (Daumit et al., 2013; Donahue
et al., 2011; Li et al., 2016) and kOH (Donahue et al., 2013);
no formula-based methods for estimation of HLC have been
published.

Formula-based estimation of physicochemical parameters
is necessarily less exact than structure-based estimation, as it
has less information available as an input (i.e., lack of struc-
ture). To some extent, isomers are known to differ in their
physicochemical properties. Different functional groups con-
taining the same atoms vary in their SAR group contributions
(e.g., carboxylic acid vs. ester), and prior work has demon-
strated that even positional isomers may differ in their va-
por pressures (Dang et al., 2019). However, the extent to
which a lack of structural information degrades parameter
estimation has not been previously shown. If, for example,
the uncertainty in parameter estimation is significantly larger
than differences caused by structure, there would be no sig-
nificant loss in accuracy caused by not knowing the struc-
ture. It is, therefore, an important, but unanswered, question
to determine to what extent isomers differ in their parame-
ters and how this compares to precision in parameter estima-
tion. Addressing this issue would provide an understanding
of the degree to which it is relevant to know the structure of a
molecule when estimating a given parameter. It is important
to note that application of SARs frequently includes extrap-
olation beyond well-constrained laboratory data, which may
decrease their accuracy. Formula-based estimations are typi-
cally built off these existing SARs, inherently including their
limitations and biases. It is consequently less informative to
discuss the accuracy of a formula-based estimation, which is
largely driven by the underlying SAR(s) and for which exper-
imental data are limited, so we rather discuss the precision of
such a method, i.e., the ability to recreate a structure-based
estimate using only its molecular formula.

Given the large number of available methods, selection of
a method for the estimation of a physicochemical parame-
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ter is nontrivial, and researchers are left navigating a com-
plex issue without obvious best practices. Selection of one
method over another is frequently an issue of convenience or
familiarity, often with little consideration of the accuracy of
a method, which may itself be poorly constrained due to a
lack of experimental data for atmospherically relevant com-
pounds. The range of choices is further complicated by the
fact that many methods have multiple publicly available im-
plementations (e.g., online interfaces), which, we show in
this work, may disagree for a significant fraction of com-
pounds. In an effort to understand the current landscape, we
examine here some widely used methods for the estimation
of three critical physicochemical parameters, namely vapor
pressure, Henry’s law constant (HLC), and kOH. We com-
bine widely used methods for estimation of these parameters
to answer the following questions:

1. How different are the various methods available for both
structure-based and formula-based estimations of vapor
pressure, Henry’s law constants, and gas-phase OH re-
action rates?

2. Does knowing the structure of a molecule improve the
estimation of its physicochemical parameters? That is,
are differences in physicochemical parameters between
isomers sufficiently large to outweigh uncertainty in
their estimation?

3. How much additional uncertainty is introduced in pa-
rameter estimation when structural information is un-
available?

2 Methods

To answer the questions posed above, physicochemical pa-
rameters were estimated for approximately 38 000 atmo-
spherically relevant species representing approximately 1200
formulas. Parameters were estimated using a large num-
ber of methods currently in widespread use by the atmo-
spheric chemistry scientific community. Differences between
structure-based estimation methods for an individual com-
pound were compared to differences between isomers of a
formula for a given method. These were further compared
to parameters estimated using formula-based methods. De-
tails of species generation and parameter estimation are pro-
vided below. A critical issue to consider throughout this work
is that extending results beyond the training data may sig-
nificantly increase uncertainty. The results herein are most
reasonably applied to products of gas-phase atmospheric ox-
idation, with heavy representation by compounds that are
highly oxygenated, are multi-functional, and/or contain ni-
trate groups.

Throughout the paper, the notation used to describe de-
rived quantities about a property, x, estimated by a structure-
based estimation method (i.e., SAR), m, include the follow-
ing:

– 1x is the difference in x between two isomers;

– 〈1x〉formula is the average difference in x between all
isomer pairs for a given formula;

– 1mx is the difference in x for a given species as esti-
mated by two different SARs;

– 〈1mx〉 is the average difference in x between all SAR
pairs for a given species;

– x is the average x of a species, estimated using all
SARs; and

– xformula is the average x of a formula, estimated using
all SARs for all isomers.

Properties studied include the following: pure component
subcooled liquid vapor pressure, p, in units of log(atm);
Henry’s law constant, HLC or H , in units of log(Matm−1);
and gas-phase OH reaction rate constant, kOH or k, in units
of cm3 molec−1 s−1.

2.1 Generation of atmospherically relevant molecular
structures

Atmospherically relevant species were generated using the
simulated oxidation of precursor hydrocarbons. A total
of three hydrocarbons – α-pinene, decane, and toluene –
were selected to represent different chemical classes com-
mon in the atmosphere (cyclic alkene, saturated alkane,
and aromatic, respectively) and different expected emissions
sources. The gas-phase oxidation mechanism for these hy-
drocarbons was generated using the Generator of Explicit
Chemistry and Kinetics of Organics in the Atmosphere
(GECKO-A). GECKO-A is a computer program designed
to automatically generate the complete mechanism involved
in the oxidation of a broad range of atmospherically im-
portant hydrocarbons. The tool generates chemical mecha-
nisms according to a prescribed protocol, providing reaction
rates based on experimental and theoretical data and SARs.
The protocol implemented in GECKO-A is described by Au-
mont et al. (2005), with chemistry updates given in Lannuque
et al. (2018). With the purpose of the study being to explore
the properties of isomer distributions, oxidation was explic-
itly considered up to the fifth generation, and no lumping was
performed using surrogate species during the generation pro-
cess. To limit the size of the mechanism, gas-phase chemistry
for species having a vapor pressure below 10−13 atm was
not generated, as those species are expected to partition al-
most exclusively to the condensed phase under typical atmo-
spheric conditions (e.g., Valorso et al., 2011). The numbers
of species generated are 2.0× 105, 5.5× 105, and 7.5× 105

for the decane, toluene, and α-pinene mechanisms, respec-
tively. Nonradical species are considered in both the gas and
particle phase. Condensed phase reactions are not considered
in this model configuration.
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Simulations are performed in a box model using condi-
tions roughly representative of average continental atmo-
spheric conditions (Lannuque et al., 2018). In these runs,
temperature is fixed at 298 K, photolysis frequencies are
computed for midlatitude and for a solar zenith angle of 45◦

using the Tropospheric Ultraviolet and Visible (TUV) model
(Madronich and Flocke, 1999), and the relative humidity
is set to 70 %. Mixing ratios are prescribed for methane
(1750 ppb – parts per billion), CO (120 ppb), HCHO (2 ppb),
NOx (500 ppt – parts per trillion), O3 (40 ppb). Furthermore,
a proxy species is introduced to include the influence of non-
methane volatile organic compound oxidation on the HOx
and NOx cycles. A first-order loss rate of OH, with respect to
that proxy, is set to 6 s−1 and leads to the formation of a sur-
rogate peroxy radical, with a chemistry assumed to be similar
to CH3O2. To allow gas and/or particle partitioning, a preex-
isting mass concentration of organic particle is assumed and
set to 10 µgm−3. This condensed phase is assumed to behave
as a well-mixed ideal organic phase made of nonvolatile or-
ganic matter. Finally, the parent hydrocarbon initial mixing
ratio is set to an arbitrary value of 10 ppt carbon, a value low
enough to not substantially modify the prescribed buffered
conditions. Time integration of the mechanisms is performed
for 5 d. These simulations served primarily to generate var-
ious species representative of the molecular structures ex-
pected in typical ambient atmospheres under both high- and
low-NOx conditions. The analysis performed in this study is
not sensitive to the exact oxidation conditions, as described
below.

The number of species considered in the GECKO-A mech-
anisms is excessively large, and a threshold was set in this
work to perform the analysis. The species representing the
(approximately) 200 most abundant molecular formulas in
each the gas and particle phase were analyzed for each oxida-
tion system. “Abundance” is considered here as the summed
concentration across the modeled period. Separately consid-
ering the abundance of gas- and particle-phase compounds
ensures a data set spanning the atmospherically relevant
range of properties. Some of the same formulas may be abun-
dant in both the gas- and particle-phase components of a
given oxidation system, but a given formula may be com-
prised of a different set of isomers or the same isomers in
different proportions. A total of 1193 formulas, comprised
of roughly 182 000 unique compounds, were consequently
included in this analysis, roughly evenly split between the
three oxidation systems and between gas- and particle-phase
components. Roughly two-thirds of these formulas contain
nitrogen, in most cases in the form of organonitrates.

For each formula, isomers were included in this analysis if
they accounted for at least 0.1 % of the abundance of each
formula. This threshold was selected to maximize statisti-
cal robustness by providing a large data set, while minimiz-
ing the impact of species expected to be produced at neg-
ligibly small concentrations. Selection of higher thresholds
(e.g. 1 %, 10 %) were investigated but not observed to sig-

nificantly change the results of this work. In order to prevent
this analysis from being too strongly impacted by the specific
chemistry of the model, isomers were not weighted by their
abundance in any of the analyses below; instead, isomers
were included with equal weight as long as they exceeded the
0.1 % threshold. A total of 38 594 species exceeded the 0.1 %
threshold in at least one oxidation system and phase. Each
formula may include a variable number of isomers, so com-
pounds are not equally distributed between oxidation sys-
tems, i.e., 5 % α-pinene gas-phase components, 6 % decane
gas, 10 % toluene gas, 20 % α-pinene particle, 16 % decane
particle, and 43 % toluene particle. From this distribution,
it is apparent that, in general, the model predicts particle-
phase formulas to contain 3 to 4 times as many isomers as
gas-phase formulas, and toluene oxidation produces twice as
many isomers per formulas as the other two systems studied.
Due to these differences, the six data sets are discussed sep-
arately, where relevant, throughout this work. Furthermore,
species that have both a gas- and particle-phase component
exceeding the 0.1 % threshold (N is equal to 3241 species)
are included in both systems when gas- and particle-phase
compounds are analyzed or discussed separately.

Each compound is described by a SMILES string from
which the physicochemical properties could be estimated
computationally. Most structure-based estimation methods
involve a two-step process in which the SMILES notation
is parsed into the chemical functional groups relevant to the
method, and then the impact of each group is combined. All
structure-based estimation in this work was executed through
publicly available online tools that performed both the pars-
ing of the SMILES string and the computation of the proper-
ties, as described below. SMILES strings and estimated pa-
rameters are provided in the Supplement for all compounds
used in this work (all ∼ 182000 compounds provided, with
the most relevant 38 594 denoted).

2.2 Structure-based estimation of vapor pressure

2.2.1 SIMPOL

SIMPOL is a structure–activity relationship in which the
subcooled liquid vapor pressure contributions of individual
chemical functional groups are summed to generate a sub-
cooled pure liquid vapor pressure (Pankow and Asher, 2008).
No second-order interaction terms are included to account
for neighboring functional groups. There are two implemen-
tations of SIMPOL publicly available, namely the GECKO-
A online interface (http://geckoa.lisa.u-pec.fr/, last access:
20 April 2021) and the Python package APRL Substructure
Search Program, developed and made publicly available by
Satoshi Takahama (Ruggeri and Takahama, 2016). At the
time of publication, the GECKO-A online interface does not
accept standard SMILES strings, requiring instead a mod-
ified notation that uses explicit hydrogens and a few other
differences, making its widespread use somewhat more dif-
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ficult. Both implementations of SIMPOL were compared as
part of this work. While small differences are expected due
to uncertainty in parsing SMILES notation and ambiguity in
chemical functional group assignment, vapor pressures es-
timated by SIMPOL should ideally be nearly identical be-
tween implementations. In the case of decane and α-pinene
oxidation products, these implementations were in excellent
agreement (Fig. S1 in the Supplement). However, significant
differences were observed in their estimations of toluene ox-
idation products with complex molecular structures. To un-
derstand the differences observed for toluene oxidation prod-
ucts, SIMPOL was implemented manually for a random set
of compounds that were observed to not agree, with results
shown in Table S1 in the Supplement. While some differ-
ences may be attributable to real errors in implementations,
a larger uncertainty appears to be associated with needing
to extrapolate beyond the functional groups identified within
the SIMPOL SAR. For example, SIMPOL does not include
the α-carbonyl peroxide (-C(=O)-O-O-R) functional group;
while a peroxide group is included, carbonyls are included
only as ketones and aldehydes, neither of which is an ac-
curate description of this case. APRL treats this group as
a peroxide, with no contribution from the carbonyl group,
while GECKO-A treats this group as an ester ether; little or
no data exist to determine which approach is more accurate.
This example points to a systematic limitation of SARs, and
the inherent potential differences between implementations
for complex atmospheric oxidation products.

In the case of SIMPOL, manual investigation suggests that
most differences between implementations could be traced to
differences in the interpretation or extrapolation of the SAR
for functional groups outside the prescribed bounds. Nei-
ther implementation was found to be clearly more suitable
or faithful to the published SAR. The GECKO-A implemen-
tation of SIMPOL was used in this work because the online
interface of GECKO-A provides a logistical benefit by im-
plementing this method alongside multiple other structure-
based parameter estimations. Results in this work are found
to be relatively insensitive to the choice of implementation as
they are nearly identical for decane and α-pinene oxidation
products.

2.2.2 EVAPORATION

EVAPORATION is a structure–activity relationship for the
estimation of subcooled liquid vapor pressure that includes
vapor pressure contributions of individual chemical func-
tional groups and terms to account for interactions be-
tween neighboring groups (Compernolle et al., 2011). Cur-
rently, this method lacks terms to describe several less
abundant but nevertheless atmospherically relevant func-
tional groups, including -NO2 and -C(=O)ONO2. For the
purpose of this analysis, these groups were replaced by
-ONO2 and -C(=O)OONO2 respectively, which are pre-
dicted to have similar impacts on vapor pressure based on

SIMPOL (Sect. 2.2.1) and the Estimation Programs Inter-
face (EPI) Suite (Sect. 2.2.5). EVAPORATION currently also
lacks a treatment of aromaticity, but this limitation has little
impact on this data set. Though toluene is aromatic, oxidation
quickly breaks its aromaticity, and fewer than 200 oxidation
products contained aromatic carbon; aromatic carbons were
replaced with aliphatic carbons for these compounds, which
is expected to introduce bias of approximately half an order
of magnitude for this small subset of compounds.

At the time of publication, two implementations of the
EVAPORATION method are publicly available as online re-
sources. A direct online interface is available through the
Royal Belgian Institute for Space Aeronomy (hereafter re-
ferred to as IASB; https://tropo.aeronomie.be, last access:
20 April 2021), the institution at which the SAR was devel-
oped. A separate implementation is available as part of the
UManSysProp package for the estimation of a wide range
of physicochemical and system parameters, developed and
published by researchers at the University of Manchester
(Topping et al., 2016). UManSysProp is available both as a
stand-alone Python package and an online interface at http:
//umansysprop.seaes.manchester.ac.uk (last access: 20 April
2021).

Both the IASB and UManSysProp implementations of
EVAPORATION were compared as part of this work in or-
der to ensure that inclusion of this estimation method in
this work is as faithful as possible to the published SAR.
Though the comparison of these implementations, shown in
Fig. S2, fell generally along a one-to-one line as expected,
some significant differences were observed. Vapor pressures
estimated for decane oxidation products were almost always
nearly identical, but oxidation products of α-pinene differed
by approximately an order of magnitude for a large frac-
tion of the tested compounds, and toluene oxidation prod-
ucts differed significantly and variably for a substantial ma-
jority of compounds. To assess these differences, the EVAP-
ORATION SAR was tested manually for a small set of com-
pounds that differed between implementations. Values man-
ually computed were found, in most cases, to be in reason-
able agreement with the IASB implementation but frequently
differed from the UManSysProp implementation (Table S2).
Not all differences in methods could be obviously explained
by extrapolation beyond prescribed functional groups, but
these differences nevertheless highlight the difficulties en-
countered in implementing a given SAR for a highly diverse
and complex molecular structure. This work relies on the
IASB implementation for the estimation of vapor pressures
by the EVAPORATION method, based on its agreement with
manual implementation and the fact that this implementa-
tion is provided by the institution at which the SAR was de-
veloped. We note that the open-source nature of the UMan-
SysProp package allows a user to understand and/or modify
its source code, so future updates may impact these compar-
isons, but no attempt was made in this work to reconcile the
two methods.
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2.2.3 Nannoolal

Nannoolal and co-workers (2008) developed a group con-
tribution method for the prediction of vapor pressure, given
the structure and boiling point of a molecule. This method
includes a substantially larger number of groups than ei-
ther SIMPOL or EVAPORATION, encompassing a broader
range of compounds including inorganic groups, and in-
cludes second-order terms to account for interactions be-
tween neighboring groups. Boiling point can, in turn, be
estimated from molecular structure using a group contri-
bution method developed by Nannoolal and co-workers
(2004). “Nannoolal” in this work refers to the estimation
method using both the vapor pressure and boiling point
group contribution methods developed by Nannoolal et al.
(2004, 2008). There are two implementations of Nannoolal
available through online interfaces, specifically using the
GECKO-A interface and the UManSysProp package. Some
differences were observed between these implementations
(Fig. S3), similar in scope and scale to the EVAPORA-
TION comparison above. It is clear from the comparisons
of Nannoolal and EVAPORATION implementations that the
estimation of vapor pressures for toluene oxidation prod-
ucts poses unique complexities. Due to the general similar-
ity between implementations for the nonaromatic precursors
and the use of the Nannoolal SAR as the default estimation
method in the GECKO-A model itself, no further examina-
tion of the implementation in the two tools was undertaken.
In this work, Nannoolal refers to the GECKO-A implemen-
tation of this method.

2.2.4 Myrdal and Yalkowsky

The vapor pressure estimation method developed by Myrdal
and Yalkowsky consists of a group contribution correction
to a previous semiempirical estimation method that relied
only on boiling and melting points and on estimations of
the entropy of boiling, entropy of melting, and heat capacity
change upon boiling (Myrdal and Yalkowsky, 1997). In this
modification, a small number of groups (fewer than a dozen)
and molecular properties (e.g., rotational symmetry) are con-
sidered for their impacts to these three estimated physico-
chemical properties. For calculation of subcooled liquid va-
por pressures, the terms considering temperatures and en-
tropies of melting can be ignored. Consequently, vapor pres-
sure estimation by the Myrdal and Yalkowsky method for
this work depends only on molecular structure and boiling
points.

This work relies on the UManSysProp implementation of
the Myrdal and Yalkowsky method, which allows estimation
of the boiling point by any one of several methods. Where the
Myrdal and Yalkowsky method are considered in this work,
boiling points were estimated using the Nannoolal estima-
tion technique (Nannoolal et al., 2004). Another implemen-
tation is available through the GECKO-A interface using the

Joback and Reid boiling point group contribution estimation
technique (Joback, 1984; Reid et al., 1987), with some modi-
fications as described by Camredon and Aumont (2006). The
Myrdal and Yalkowsky SAR has been shown previously to be
comparable to, but somewhat less accurate and more biased
than, the Nannoolal SAR when the Nannoolal boiling point
estimation technique (Nannoolal et al., 2004) is used and to
be substantially biased when Joback and Reid is used (Bar-
ley and McFiggans, 2010; O’Meara et al., 2014). The Myrdal
and Yalkowsky method is, therefore, not included in most of
the analyses in this work, and the GECKO-A and UMan-
SysProp implementations of this SAR are, consequently, not
compared in detailed.

2.2.5 EPI

The U.S. Environmental Protection Agency makes the EPI
Suite™ available for the estimation of environmentally rele-
vant parameters (US Environment Protection Agency, 2019),
which include a module (MPBPVP) for the estimation of
vapor pressures and subcooled liquid vapor pressures, us-
ing SMILES strings as inputs. This module uses the mod-
ified Grain method, which estimates vapor pressure based
on a near-unity structural factor and an estimated boiling
point. Boiling point is, in turn, estimated using the Stein and
Brown (1994) group contribution method, an extension of the
Joback and Reid method (Joback, 1984; Reid et al., 1987).
This approach includes group contributions for a wide vari-
ety of molecular structures, including a wide range of inor-
ganic components. Estimation of vapor pressures by the EPI
Suite is perhaps most common for estimating small numbers
of vapor pressures due to its readily available implementa-
tion, though it has higher error than some other methods (e.g.,
Nannoolal) when compared against experimental data (Bar-
ley and McFiggans, 2010, wherein the method referred to as
SB/BK closely approximates the EPI method).

2.3 Structure-based estimation of Henry’s law constant

A total of two structure-based methods were considered
in this work for the estimation of Henry’s law constants
(HLCs). The first method used here is HWINb, the bond con-
tribution method implemented by the HENRYWIN module
of the EPI Suite (US Environment Protection Agency, 2019).
This method is similar to a group contribution method, but in-
stead of using groups, individual bonds are considered with
correction factors for different chemical classes (Hine and
Mookerjee, 1975; Meylan and Howard, 1991). The second
method used here is GROMHE, a group contribution method
that also includes a group contribution term for the effect
of hydration of carbonyls (Raventos-Duran et al., 2010).
GROMHE is the HLC estimation method used by GECKO-
A, which is the implementation used in this work. Previ-
ous work has suggested GROMHE to be more accurate than
HWINb, but this conclusion was based on a relatively small
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amount of experimental data (< 500 compounds) with rela-
tively low HLCs (Raventos-Duran et al., 2010). We, conse-
quently, do not assume the accuracy of one method over an-
other and, instead, assume that the variability between meth-
ods is due to uncertainty in the structure-based estimation of
HLC.

2.4 Structure-based estimation of kOH

A total of two structure-based methods were considered
in this work for the estimation of kOH. Perhaps the most
common method is that developed by Kwok and Atkinson
(1995), a group contribution method that includes additive
terms for hydrogen abstraction from or radical addition to
individual atoms or bonds. An additional second-order term
accounts for substituent effects on each atom. The imple-
mentation of this method is the AOPWIN module of the EPI
Suite (Meylan and Howard, 1993; US Environment Protec-
tion Agency, 2019). The other method used here is the group
contribution method of Jenkin et al., which functions simi-
larly to the Kwok and Atkinson (1995) approach but with up-
dated and extended coefficients (Jenkin et al., 2018). Jenkin
et al. (2018) is the kOH estimation method used by GECKO-
A, which is the implementation used in this work and which
is available through the GECKO-A online interface.

2.5 Formula-based estimation of vapor pressure

2.5.1 Daumit et al. (2013)

Daumit and co-workers (2013) use a basic set of assump-
tions about the structures of atmospheric components to ap-
ply the SIMPOL estimation method in the absence of molec-
ular structure. Essentially, all oxygen atoms in a molecule are
apportioned between hydroxyl and carbonyl groups based on
the degree of unsaturation calculated from the H/C and O/C
ratios. To accurately calculate degrees of unsaturation, an as-
sumption must be made about the number of rings present in
the molecule. We assume there are no rings, as this is consis-
tent with the majority of compounds in this data set, but the
need to make this assumption represents a general source of
uncertainty in the Daumit et al. (2013) method. While Dau-
mit et al. (2013) do not explicitly treat nitrogen, they note
that the nitrate group is expected, in SIMPOL, to have a
similar impact to the hydroxyl group. The carbonylperox-
ynitrate group, another major form of organic nitrogen in
the atmosphere (e.g., peroxyacetyl nitrate – PAN), similarly
has an impact comparable as its hydroxyl analog, the car-
bonyl peroxyacid group. To explicitly extend this method to
nitrogen, we make the assumption that nitrogen is predom-
inantly present as nitrate groups, and each nitrate group is
treated as being equivalent to a hydroxyl group; this assump-
tion is reasonable for a system dominated by products of gas-
phase oxidation, in which R-ONO2 compounds and perox-
ynitrates are the dominant source of organic nitrogen (Beaver

et al., 2012; Lee et al., 2016), but it should be applied only
cautiously to other systems. For every three oxygen atoms
present in the formula, two oxygen atoms and one nitrogen
atom is removed until all nitrogen has been removed. The re-
sulting formula, in which all possible NO3 groups have been
formulaically converted to OH, are treated as per Daumit
et al. (2013). As an example, the formula C8H15O6N, inter-
preted as containing one nitrate group, one carbonyl, and two
hydroxyl groups would be treated as C8H16O4, interpreted
as containing one carbonyl, and three hydroxyl groups. In
environments in which nitrogen is present in forms other
than nitrate, Daumit et al. (2013) lack an explicit mechanism
for considering nitrogen. An additional limitation of this ap-
proach is that while certain groups can be approximated as a
combination of carbonyl and hydroxyl oxygens, others may
be poorly described in this way. For example, the vapor pres-
sure contribution of a carboxylic acid is estimated to be sim-
ilar to that of a ketone or an aldehyde plus a hydroxyl group,
but a hydroperoxide has a substantially lower impact than
that of two hydroxyl groups.

2.5.2 Modified Li et al. (2016; molecular corridors)

The formula-based approach for the estimation of vapor pres-
sures developed by Li et al. (2016) as part of their work on
“molecular corridors” uses empirical coefficients to quantify
the impact of each atom on vapor pressure, with a minor term
for interactions between carbon and oxygen (Li et al., 2016;
Shiraiwa et al., 2014). Formulas are first categorized by their
component elements, with a separate set of coefficients for,
e.g., CHO formulas vs. CHON formulas. This method was
developed by multilinear regressions against a training set
of vapor pressures estimated by the EPI Suite. As with any
empirical method, it is, to some extent, limited to the com-
pound classes on which it was trained and can only be as
accurate as the SAR estimation method with which it was de-
veloped (EPI). Most notably, despite the relative prevalence
of organic nitrates (R-ONO2) in the atmosphere (Lee et al.,
2016), few such compounds exist in the CHON training set
used by Li et al. (2016). Of the 13 628 CHON compounds
used to build the relationship, only nine (0.07 %) are organic
nitrates and 750 (5.5 %) are organic nitro compounds, which
have a similar impact on vapor pressure; all other included
compounds represent amines, amides, amino acids, and other
groups that contain C−N bonds, which are expected to have
a very different impact on vapor pressure. Consequently, ap-
plication of the Li et al. (2016) formula-based estimation
technique to compounds containing nitrates is expected to
be significantly biased. We test this hypothesis here in order
to apply this method more accurately to the data set.

Comparison of vapor pressures estimated by Li
et al. (2016) to vapor pressures estimated for the same
compound using structure-based methods (Fig. S4) demon-
strates significant biases that increase with the number of
nitrogen atoms, which, in this data set, are almost wholly
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contained in nitrate, nitro, and peroxynitrate groups. To ad-
dress this bias, we propose two similar possible approaches
based on the observation that a nitrate group (NO3) has a
similar impact on vapor pressure to a hydroxyl group (OH),
and thus, each nitrogen has the effect of canceling the effect
of two oxygen atoms. Either the nitrogen coefficient for
CHON formulas can be forced to equal to twice the negative
of the oxygen atom (bN =−2× bO), or the formula used
to estimate vapor pressure can be amended to convert all
potential nitrate groups into hydroxyl groups, as described in
the implementation of Daumit et al. (2013). Both approaches
are shown in Fig. S4 to similarly remove the nitrogen-
dependent bias and are generally equivalent in this data
set. In mixed environments in which functionalized amines
and organonitrates may coexist, formulaically converting
nitrate groups to hydroxyl groups may be preferred in order
to more accurately treat nitrogen in excess of potential
nitrate groups (i.e., in cases where the number of nitrogen is
greater than the number of sets of three oxygens). However,
given the nitrate-dominated nature of this data set, for
simplicity we use a modified Li et al. (2016) method in
which bN =−2× bO.

2.5.3 Donahue et al. (2011)

A relatively simple, formula-based estimation method is pro-
vided by Donahue et al. (2011) that relies only on carbon
and oxygen number. This method represents a general rela-
tionship based on average expected trends in the structures
of atmospheric components. It cannot be easily extended
to nitrogen-containing formulas, so they are excluded from
analyses using this approach in the present work.

2.6 Formula-based estimation of Henry’s law constant

To the best of our knowledge, no explicit method for a
formula-based estimation of Henry’s law constant (HLC) has
been published. However, explicit modeling of gas-phase ox-
idation has previously shown a relationship between HLC
and vapor pressure for organic species of atmospheric in-
terest (Hodzic et al., 2014; Lannuque et al., 2018). Given
the previously demonstrated feasibility of formula-based es-
timation of vapor pressure, this suggests that a formula-based
estimation of HLC is possible, at least for compounds with
shared characteristics (e.g., multifunctional atmospheric oxi-
dation products).

2.7 Formula-based estimation of kOH

In a separate work from their formula-based vapor pres-
sure estimation, Donahue and co-workers (2013) have de-
veloped a formula-based approach for the estimation of gas-
phase OH reaction rates (kOH). The equation they provide
is roughly based on the observations that as carbon number
increases, available hydrogens for OH abstraction also in-
crease, and as oxygen number increases, hydrogens become

easier to abstract, but there is a decrease in the number of ab-
stractable hydrogens. Donahue et al.(2013) recognize it only
as a rough approximation and not a particularly robust esti-
mation method, a conclusion consistent with results in this
work.

2.8 Summary

Given the large number of methods employed in this work,
we summarize them below alongside the notation used here-
after in this work.

2.8.1 Structure-based estimation of vapor pressure

– SIMPOL – calculated from SIMPOL as implemented
by GECKO-A;

– EVAPORATION – calculated from EVAPORATION as
implemented by the Royal Belgian Institute for Space
Aeronomy (IASB);

– Nannoolal – calculated based on Nannoolal et al. (2008)
using boiling points estimated by Nannoolal
et al. (2004), as implemented by GECKO-A;

– Myrdal and Yalkowsky – calculated based on Myrdal
and Yalkowsky (1997) using boiling points estimated by
Nannoolal et al. (2004), as implemented by the UMan-
SysProp Python package;

– EPI – calculated by the EPI Suite, an implementation
of the modified Grain method using boiling points esti-
mated by Stein and Brown (1994).

2.8.2 Structure-based estimation of Henry’s law
constant

– HWINb – calculated by the EPI Suite, using the bond
contribution method of the HENRYWIN module;

– GROMHE – calculated with the GROMHE group con-
tribution method, as implemented by GECKO-A.

2.8.3 Structure-based estimation of kOH

– Kwok and Atkinson – calculated based on Kwok and
Atkinson (1995) method, as implemented by the AOP-
WIN module of the EPI suite;

– Jenkin – calculated based on Jenkin et al. (2018a, b), as
implemented by GECKO-A.

2.8.4 Formula-based estimation of vapor pressure

– Daumit – calculated based on Daumit et al. (2013), with
consideration for nitrates;

– Modified Li – calculated based on Li et al. (2016), with
modified nitrogen coefficient;

– Donahue – calculated based on Donahue et al. (2011),
not used for nitrogen-containing formulas.
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2.8.5 Formula-based estimation of Henry’s law
constant

– None previously published.

2.8.6 Formula-based estimation of kOH

– Donahue – calculated based on Donahue et al. (2013),
not used for nitrogen-containing formulas.

3 Results

3.1 Isomer differences for vapor pressures

A primary objective of this work is to understand typical
differences in estimated vapor pressures between isomers.
We evaluate these differences here by calculating the aver-
age difference in the vapor pressure of any two isomers of a
given formula estimated by a given structure-based method.
For each formula containing n isomers, (n× (n− 1)/2) dis-
tinct pairs of isomers can be counted. For each possible pair
of isomers i and j , the absolute difference in the estimated
log vapor pressure is computed as1p = | log(pi)− log(pj )|.
The average difference in vapor pressure among isomers of
a given formula (hereafter denoted as 〈1p〉formula) is then
computed as the average of the 1p obtained for all pairs
of a given formula. For all five structure-based vapor pres-
sure estimation methods included in this work, 〈1p〉formula
is relatively evenly distributed between 0 and 2 log units
(Fig. 1a). The overall average of 〈1p〉formula is between 0.8
and 1.0 log units across all five estimation methods, indi-
cating that the central tendency is for two isomers to differ
by approximately 1 log unit in vapor pressure. The distribu-
tion of 〈1p〉formula depends on the oxidation system studied,
as is clear from the breakdown of distributions by precursor
and phase shown for Nannoolal in Fig. 1b; the trends ob-
served for Nannoolal are generally representative of the other
four methods, shown in Figs. S6 and S7. Estimated vapor
pressures of isomers are more similar for decane oxidation
products (〈1p〉formula ≈ 0.5 log units) and less similar for
toluene oxidation products (〈1p〉formula ∼ 1.5 log unit), with
α-pinene oxidation products in between (〈1p〉formula ≈ 1 log
unit). Phase of the compound also has some impact, with
somewhat higher 〈1p〉formula for formulas abundant in the
particle phase. Note that the components are distinguished
as gas- and particle-phase based on their abundance in either
phase – a minor fraction of species is represented in both data
sets. This phase dependence in the estimated differences in
isomer vapor pressures is likely influenced by the following
two complementary issues in applying SARs to this data set:
(a) phase serves as a proxy for volatility and, (b) given that
all compounds are products of the same precursors, volatility
is decreased primarily by the addition of functional groups
and is a proxy for increased functionality. Consequently, the
increased variability in estimated vapor pressures of particle-

phase isomers may be due in part to the need to extrapolate
the SARs toward lower volatility and higher functionality,
which is farther from their well-constrained domains.

The 〈1p〉formula metric obscures some of the larger indi-
vidual differences between isomer pairs. The complete cu-
mulative frequency distribution of 1p is shown in Fig. 1c
for all isomer pairs. While 50 % of 1p values differ by less
than 1 log unit, a long tail indicates that, in many cases, iso-
mers may differ by up to around 3 log units (or, rarely, 4 or
5 log units) in their estimated vapor pressures. These trends
are relatively robust, exhibited across all five tested estima-
tion methods. The various oxidation systems (Fig. 1d) vary
in their1p cumulative frequency distribution in qualitatively
similar ways to their distributions of 〈1p〉formula; toluene ox-
idation isomers differ substantially more in their vapor pres-
sures than the isomers in other systems, and gas-phase iso-
mers are slightly less variable in their estimated vapor pres-
sures than particle-phase isomers.

It is, consequently, difficult to provide a single number to
characterize the typical 〈1p〉formula values due to the wide
distribution, variabilities between systems, and differences
between methods. However, it is a reasonable overall sum-
mary that vapor pressures of isomers estimated by most
structure-based methods differ by between 0.5 and 3 log
units, with a central tendency of ∼ 1 log unit. Estimation
methods typically agree about the range of 〈1p〉formula, but
it is sensitive to the oxidation system being studied. Simi-
lar to phase dependence, system dependence may be due in
part to varying degrees of extrapolating each SAR to func-
tional groups or intramolecular interactions not captured in
their development.

Though 1 log unit (a factor of 10), is a substantial differ-
ence in vapor pressures, it must be placed in the context of
our ability to estimate the parameter. In other words, if esti-
mation methods differ by more than this for a given species,
details of the molecular structure are less important than
which estimation method is used, so knowing the molecu-
lar structure would not substantively improve the estimate. In
the Supplement, compare EPI, Myrdal and Yalkowsky, SIM-
POL, and EVAPORATION vs. Nannoolal estimation meth-
ods, both as scatterplots (Fig. S8) and histograms of the dif-
ference between two methods (Fig. S9). The Myrdal and
Yalkowsky (using the Nannoolal boiling point estimation)
and EPI methods estimate substantially higher vapor pres-
sures for low-volatility oxidation products than the other
three methods, consistent with previous work (Compernolle
et al., 2011). This trend is in agreement with previous work
that has shown overestimation of vapor pressures, particu-
larly at lower vapor pressures, by the Myrdal and Yalkowsky
method and the Stein and Brown method upon which EPI is
based (Barley and McFiggans, 2010). In turn, Nannoolal es-
timates somewhat lower vapor pressures than SIMPOL and
EVAPORATION for low-volatility compounds but to a lesser
extent. Similar trends between SIMPOL, Nannoolal, EVAP-
ORATION, and Myrdal and Yalkowsky have been previ-
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Figure 1. Differences in vapor pressure between isomers. (a) Distribution of 〈1p〉formula, the average difference between vapor pressures of
isomers of a given formula for the five structure-based estimation methods examined, with (b) the same distribution broken out by oxidation
system for the Nannoolal method. Average values of each distribution are provided in parentheses. (c) Cumulative probability distribution of
1p, the difference between any two isomers of a given formula for the five structure-based estimation methods examined, with (d) the same
distribution broken out by the oxidation system for the Nannoolal method. The other four methods are shown in Figs. S6–S7.

ously shown for the oxidation products of α-pinene (Com-
pernolle et al., 2011; Valorso et al., 2011). There is no suf-
ficiently large database of known vapor pressures to know
which of these methods is most accurate in these regions.
We instead assume that the best available estimate for the va-
por pressure of a compound is the average of the SIMPOL,
Nannoolal, and EVAPORATION estimates. This assumption
is largely based on previous work demonstrating agreement
between Nannoolal and experimental data (Barley and Mc-
Figgans, 2010; O’Meara et al., 2014), and the similarity of
the other two methods (SIMPOL and EVAPORATION) to
Nannoolal. The EPI and Myrdal and Yalkowsky methods are
treated as outliers based on their bias relative to experimental
data (shown by Barley and McFiggans, 2010, and O’Meara
et al., 2014). By averaging the vapor pressures estimated for
each compound with the Nannoolal, SIMPOL, and EVAP-
ORATION methods, we mitigate any biases present in any
one method. The average of these three methods provides
an average structure-based estimate for a given species, de-

noted here as p. The methods treated here are, of course,
not exhaustive, but these three methods represent several of
the most widely used methods in the field, perform well in
comparison to experimental data, and rely on completely in-
dependent parameterizations. Other methods that performed
well in prior reviews (Barley and McFiggans, 2010; O’Meara
et al., 2014), such as the Lee–Kesler method, are not included
here either because they are not widely used within the atmo-
spheric field and/or they use the Nannoolal boiling point es-
timation method (2004) and, consequently, do not represent
a truly independent source of bias or error.

To understand precision in a structure-based estimation,
we quantify the differences between methods in the predicted
property of a given species. For each compound, the vapor
pressure is estimated using the three selected methods above.
We denote1mp as the absolute difference in estimated vapor
pressure of a given species between any two methods q and
r (1mp = | log(mp,q)− log(mp,r)|) and 〈1mp〉 as the aver-
age value for the three possible combinations. The 〈1mp〉
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frequency distribution is shown in Fig. 2a–b; it is important
to note that these distributions are strongly sensitive to the
set of methods that are included and/or excluded. For gas-
phase components, 1mp for the three test methods is within
1 log unit, with 〈1mp〉 around 0.5 log units. This is in rea-
sonable agreement with reported uncertainties for each indi-
vidual method. Estimation methods appear to have somewhat
less skill for particle-phase atmospheric oxidation products,
as expected due to their farther extrapolation from experi-
mental constraints. For lower-volatility compounds, 〈1mp〉
is around 1 log unit, with most compounds within 2 log
units in estimated vapor pressure. Note that, for both gas-
and particle-phase compounds, toluene oxidation products
again tend to differ more in their estimated vapor pressures.
In other words, while isomers for this system have higher va-
por pressure differences, models are also less reliable at esti-
mating this property; these facts may be related (high uncer-
tainty in estimation may contribute to larger differences be-
tween isomers) and may point to a lack of experimental con-
straints on group contributions of the functionalities formed
from oxidation of an aromatic compound.

The difference in the variability between estimates for gas-
vs. particle-phase components is primarily a function of dif-
ferences in volatility. This issue is qualitatively observed in
the direct comparison between methods shown in Fig. S8,
in which methods diverge at lower vapor pressure, but we
examine this issue more explicitly here. Figure 2c shows
〈1mp〉 as a function of average vapor pressure, p, for all
species and methods considered here; averages (and stan-
dard deviations) of 10 bins of equal points each (deciles)
are shown to make trends clear. At higher vapor pressures,
differences between methods remain under 1 log unit, while
this increases substantially at the lowest vapor pressures
(and oxidation products decane and α-pinene always have
lower 〈1mp〉 than those from toluene). As discussed above
in the case of isomer variability, this increasing 〈1mp〉 at
low volatility is likely an indication of increased uncertainty
for compounds that are well below the volatility range with
which these SARs were constrained, and volatility in this
data set acts, in part, as a proxy for functionality. The de-
crease in vapor pressure caused by each functional group is,
of course, uncertain, so methods diverge as the number of
functional groups increases and volatility decreases (Valorso
et al., 2011).

As in our discussion of vapor pressure differences between
isomers, it is difficult to provide a single number to charac-
terize the skill of these methods in estimating vapor pressure
from a molecular structure. It is a reasonable overall sum-
mary that higher vapor pressures can be estimated within
1 log unit, with a central tendency of ∼ 0.5 log unit. This
〈1mp〉 range is somewhat smaller than the typical differ-
ences between isomers, 〈1p〉formula. We estimate that the ef-
fect of isomers is 0.5–1.5 log units greater than the variabil-
ity between estimation methods for high-to-moderate vapor
pressures. At lower vapor pressures, however, 〈1p〉formula

is not substantially larger than 〈1mp〉, so the impact of
structure is less than the variability in estimation methods.
Both conclusions are likely insensitive to the specific as-
sumptions about which methods to include in this compar-
ison, as the uncertainty in most estimation methods is gen-
erally the lowest for high-volatility compounds and high
for low-volatility compounds. However, the transition va-
por pressure below which differences between isomers are
lost in the uncertainty of these methods is sensitive to the
methods included in the comparison. For the three meth-
ods included in this comparison, the transition can reason-
ably be considered to be in the range of 10−10 to 10−12 atm
(c∗ ≈ 10−2.5 to 10−0.5 µgcm−3), where the average differ-
ence between methods, 〈1mp〉, is approximately equal to
the average difference between isomers, 〈1p〉formula (∼ 1 log
unit). This suggests that the difference in vapor pressures be-
tween isomers is likely relevant for estimating vapor pres-
sures of semivolatile oxidation products – those that can par-
tition back and forth between the gas and particle phases un-
der typical atmospheric conditions (roughly c∗ ≈ 10−0.5 to
102.5 µgcm−3 as per Donahue et al., 2009, 2011).

3.2 Estimation of vapor pressure by formulas

The above analysis indicates that isomers are sufficiently dif-
ferent between their estimated vapor pressures so that struc-
ture should be taken into account when estimating this pa-
rameter. However, due to the increasing use of mass spec-
trometric instruments that measure atmospheric constituents
by their formulas with no accompanying structural informa-
tion, there is an increasing need to estimate vapor pressure
and other parameters by formula only. Formula-based esti-
mation will necessarily be more uncertain as it relies on less
information (i.e., lacks molecular structure). A goal of this
work is to assess the precision of current formula-based es-
timation approaches. For each formula, an average estimated
vapor pressure of a formula (denoted pformula) is computed
as the average, p, of all isomers of that formula. pformula
therefore represent a composite structure-based estimate of
the vapor pressure using the three structure-based methods
(i.e. SIMPOL, Nannoolal, and EVAPORATION) and all iso-
mers. Including all isomers and all methods in the average
of each formula provides the most direct possible compari-
son between a formula- and structure-based estimation, miti-
gating bias introduced by any one structure-based estimation
method or uncertainties driven by any one isomer. The stan-
dard deviation of this average, σp, also provides an estimate
of the range of the vapor pressures that species of a given
formula may be estimated to have. This range represents the
variability in estimated vapor pressure driven by differences
in molecular structure, accounting for both differences be-
tween isomers and between SARs, and thus provides an es-
timate of the maximum precision of an estimation method
that ignores structure. Assuming an approximately normal
distribution, ∼ 68 % of isomers of a formula are expected
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Figure 2. Differences in vapor pressures between the Nannoolal, SIMPOL, and EVAPORATION estimation methods. (a) Distribution of
〈1mp〉, the average difference between vapor pressures estimated for a given compound in the (a) gas and (b) particle phase, with each
oxidation system shown in a different shade. Average values of each distribution are provided in parentheses. (c) Distribution of 〈1mp〉 as a
function of vapor pressure (as the average vapor pressure of a species, p), broken out by oxidation system. Red dots are individual species;
larger markers and error bars are the average and standard deviation of deciles. (d) Cumulative probability distribution of 1mp , which is the
difference between any two methods for given species.

to have a vapor pressure within the range of [pformula− σp,
pformula+σp], and∼ 95 % of estimates fall within 2 standard
deviations. The precision of the three formula-based estima-
tion methods (Daumit, modified Li, and Donahue) is assessed
by comparing their estimated vapor pressure with pformula
(Fig. 3). An unbiased, formula-based estimation would be
expected to fall along a 1 : 1 line, with two-thirds of esti-
mates falling within the expected range of [pformula− σp,
pformula+ σp].

Biases and uncertainty in the three formula-based estima-
tion techniques can be understood in the context of their de-
velopment. All three methods demonstrate a relatively high
skill at predicting the estimated vapor pressures for more
volatile components, where isomer differences are lower and
structure-based estimation methods tend to agree due to bet-
ter constraints. The formula-based methods diverge from
each other and from the composite structure-based estimate

at lower vapor pressures. The Daumit method (Fig. 3a) tends
to estimate lower vapor pressures than expected, which is
predictable upon closer inspection of this method. Daumit
treats all oxygen as a combination of hydroxyl and carbonyl
groups, which is reasonable in some cases (e.g., carboxyl
acids). In cases where this approximation does not hold, it
is generally true that the decrease in vapor pressure caused
by a functional group is less than sum of its component oxy-
gens. For example, peroxides have relatively little impact on
vapor pressure but will be treated as two hydroxyl groups
as discussed in Sect. 2.5.1. As the number of groups in-
creases, vapor pressure decreases faster than it should, lead-
ing to a low bias in the Daumit method. Conversely, the Li
method (implemented here with a modified nitrogen coef-
ficient) is based on vapor pressures calculated by the EPI
method, which tends to estimate higher vapor pressures for
low-volatility species (Fig. S8). Consequently, the Li method
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Figure 3. Comparison between average vapor pressure of a formula pformula (average of all methods and all isomers; see the text) and the
formula-based estimate using the (a) Daumit method, (b) Li method, modified to remove its bias for nitrates, (c) Donahue method, and
the (d) average of the Daumit and modified Li methods. Each formula is represented as an open circle at pformula, with light gray bars
representing a standard deviation of the average, σp , to indicate the approximate range. Insets are distributions of z scores for each method,
calculated as the difference between the formula-based method and pformula, relative to the standard deviation of pformula. (e) Distribution
of error from applying the average Daumit–Li method to any given compound, with each oxidation system shown in a different shade (gas
and particle phases combined). Average values of each distribution are provided in parentheses.

follows the same trend, estimating higher than expected va-
por pressures at low vapor pressures (Fig. 3b). The Don-
ahue method (Fig. 3c) roughly follows but exceeds the bi-
ases of the Daumit method as it is based on simpler assump-
tions about molecular structure (and cannot treat nitrogen-
containing components). In general, the formula-based esti-
mations from all three methods fall well outside the range of
pformula. Distributions of z scores are shown as insets, calcu-
lated as the difference between the formula-based estimate
and pformula, relative to the standard deviation of pformula,
i.e., z score= (p−pformula)/σp. Observed z scores are usu-
ally greater than 1 and frequently approach 4 (see the dis-
tribution in Fig. 3), indicating that the vapor pressures esti-
mated from formula-based method is several standard devia-
tions away from the structure-based pformula.

An interesting (though likely coincidental) conclusion
from this analysis is that the Daumit and modified Li meth-
ods are biased, from the composite structure-based estimate,

by roughly equal but opposite amounts. Consequently, an av-
erage of these two methods (Fig. 3d) provides a relatively ac-
curate estimate of the vapor pressure of a formula. An ideal
formula-based approach cannot be more accurate than the ac-
tual variability in pformula, so should produce a normal dis-
tribution of error. The combined Daumit–Li method exhibits
little to no bias, with 57 % of estimates within 1 standard de-
viation, 80 % within 2 standard deviations. This distribution
is only a little broader than ideal (i.e., longer tails of high er-
ror), so this formula-based estimation method can reproduce
the structure-based estimate almost as precisely as possible.
With other it approaches may be possible to achieve these
results (e.g., refitting coefficients for the Li method), but no
such effort is attempted here as they are unlikely to substan-
tially improve on the precision of this formula-based method
and are no less empirical than combining existing empirical
methods.
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These results demonstrate that formula-based parameter
estimation can provide a representative estimate of vapor
pressure for a given formula, i.e., typical of a large mixture of
isomers. However, the error in this approach increases if used
to estimate the vapor pressure of an individual compound.
The difference between the formula-based and structure-
based estimate of vapor pressure for a given molecule is fre-
quently several orders of magnitude (Fig. 3e), even if using
the lowest error method (the average of the Daumit and Mod-
ified Li methods). This error is significantly higher in the case
of toluene oxidation products, further supporting the conclu-
sion that estimating vapor pressure for these compounds is
particularly challenging. The error in estimating the vapor
pressure of an individual molecule using only its formula is
approximately the same as 〈1p〉formula, which is the differ-
ence in vapor pressures between isomers (i.e., Fig. 1a com-
pared to Fig. 3e). This level of error is expected for an opti-
mal, formula-based method as the lack of structural informa-
tion as an input means the formula-based method does not
distinguish between isomers, so it cannot be more precise
than differences between them. Considering the average and
distribution of error, the combined Daumit–Li method (mod-
ified to consider nitrates) appears to represent a nearly opti-
mal approach to estimating vapor pressure from a molecular
formula.

3.3 Isomer differences for Henry’s law constant

Like vapor pressure, the estimation of HLC can be criti-
cal for estimating the partitioning of an atmospheric organic
species between vapor and condensed phases. We, conse-
quently, seek to address the same issue here of whether dif-
ferences in the estimated HLC of isomers are larger than the
differences between SARs.

Similar to 1p and 〈1p〉formula above, 1HLC and
〈1HLC〉formula here denote the absolute difference in esti-
mated HLC of any isomer pair and the average value of all
possible pairs of a given formula, respectively. Isomers are
observed to substantially differ in their estimated HLC. Us-
ing HWINb, 〈1HLC〉formula is less than 3 orders of mag-
nitude, with an overall average of approximately 1.5 log
units (Fig. 4a). This is slightly lower than the estimate from
GROMHE, for which 〈1HLC〉formula is less than 4 orders
of magnitude, with an overall average of approximately 2
log units. Average variability again obscures the more ex-
treme cases observed across all isomer pairs. The distri-
bution of 1HLC for all possible isomer pairs is shown in
Fig. 4b. 1HLC sometimes reaches up to 4 or 5 log units
(Fig. 4b). These estimates suggest that 〈1HLC〉formula is typ-
ically ∼ 1 log unit larger than 〈1p〉formula and up to several
log units more in extreme cases. This may be due, in part, to
the relatively high uncertainty in estimating HLC relative to
estimating vapor pressure (Hodzic et al., 2014; Wang et al.,
2017), as the high uncertainty may contribute to larger vari-
ability between estimates for isomers.

For a given species, HLC estimated with GROMHE and
HWINb frequently differ by several orders of magnitude
(Fig. 4c–d; additional comparisons in Fig. S10). We denote
the difference between HLC estimation methods for a given
species as 〈1mH〉. As observed for 〈1mp〉, the differences
in vapor pressure estimation methods, 〈1mH〉 is largest for
particle-phase components, especially for the toluene oxida-
tion system; similarly, this is due, in part, to the uncertainty
inherent in extrapolating these SARs to high HLC and mul-
tiple functional groups. Based on 〈1mH〉, it is a reasonable
summary of these data that estimates of HLC agree between
methods to within 2 log units, with a central tendency of
∼ 1 log unit. Overall, 〈1HLC〉formula is generally ∼ 1 log
unit higher than the variability between estimation methods,
similar to the case of vapor pressure.

3.4 Estimation of Henry’s law constants by formulas

Similar to pformula above, a composite structure-based es-
timate, HLCformula, was computed for each formula as the
average value of HLC estimated with both GROMHE and
HWINb and for all isomers with that formula. Given the re-
lationship (in log space) observed between vapor pressure
and HLC in previous studies (Hodzic et al., 2014; Lannuque
et al., 2018), a formula-based estimation of HLC is expected
to be achievable. We apply that concept here through a simple
linear regression (Fig. 5a) between pformula and HLCformula
(i.e., estimated parameter for a formula calculated as the
average for all isomers using all structure-based estima-
tion methods). These parameters are observed to have a lin-
ear relationship (R2

= 0.75) of the form log(HLCformula)=

−1.15log(pformula)−0.78, where pformula is in units of stan-
dard atmosphere and HLCformula is in units of molarity per
standard atmosphere. This equation (shown as a purple line
in Fig. 5b) also effectively describes the relationship between
HLCformula and its vapor pressure estimated using the aver-
age of the modified Li and Daumit methods. Estimation of
HLC in the absence of any structural information (i.e., from
formulas alone) is consequently in good agreement with the
average estimated HLC of a formula, which exhibits little
bias within 1 standard deviation of HLCformula 57 % of the
time and 2 standard deviations 80 % of the time (Fig. 5c).
As in the case of vapor pressure, estimating HLC of a single
species using its formula is less reliable, with errors up to 6
orders of magnitude (Fig. 5d). The relationship between es-
timated HLC and estimated vapor pressure is again approx-
imately as precise as possible for a formula-based method
for the estimation of HLC (as in the case of vapor pressure
estimation, there is a longer tail of high error than expected
for an ideal normal distribution). Formula-based estimation
of HLC therefore appears to reasonably precisely capture the
estimated HLC of a typical mixture of isomers. However, the
average relationship described by this linear fit is necessarily
a function of the data with which it was generated, and previ-
ous work found the slope to vary depending on the oxidized
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Figure 4. Differences in Henry’s law constant (HLC) between isomers and methods. (a) Distribution of 〈1HLC〉formula, which is the average
difference between HLC of isomers of a given formula for the two structure-based estimation methods examined. (b) Cumulative probability
distribution of1HLC, which is the difference between any two isomers of a given formula for the two methods examined. (c–d) Distribution
of absolute differences between structure-based estimates of HLC for a given compound in the (c) gas and (d) particle phase, with each
oxidation system shown in a different shade. Average values of each distribution are provided in parentheses.

precursor (Hodzic et al., 2014). Consequently, while the re-
lationship shown in Fig. 5 represents a reasonable, formula-
based approach to estimating HLC for a complex mixture of
atmospheric oxidation products (moderate to low volatility,
with multiple functional groups), it should not be extended
to other systems (e.g., large, nonpolar compounds) without
further investigation.

3.5 Estimation of kOH

The last physicochemical parameter we examine in this work
is the rate constant for the reaction between a gas-phase or-
ganic compound and the OH radical, kOH. The variability in
rate constants is also substantially lower for kOH than for
other parameters, with nearly all molecules having a rate
constant between 10−12 and 10−10 cm3 molec−1 s−1 (as op-
posed to many orders of magnitude for vapor pressure and
HLC). As opposed to the absolute differences in log terms
used for the other parameters, comparisons are consequently
more reasonably quantified in terms of relative difference,

i.e., 1k = |kOH,i − kOH,j |/kOH,i , where i in this work refers
to Jenkin and j refers to Kwok and Atkinson. Both meth-
ods selected here for structure-based estimation of this pa-
rameter (Jenkin; Kwok and Atkinson) agree that the average
difference between isomers, 〈1k〉formula, is approximately a
factor of 2 to 3 (100 %–200 % relative difference; Fig. 6a). In
contrast, the two methods tend to differ by only 25 %–50 %
(Fig. S11; 75 % for toluene products). Differences in the
estimated kOH of isomers are therefore significantly larger
than the apparent variability in their estimation. Similar to
vapor pressure and HLC, for each formula, we compute a
composite structure-based average kformula as the average of
both methods for all isomers of a given formula. Due to the
relatively narrow range of possible kOH, and the significant
variability between isomers, kformula is not particularly vari-
able across formulas. Most formulas containing only carbon,
hydrogen, and oxygen have estimated rate constants in the
range of 2–4× 10−11 cm3 molec−1 s−1, with an overall av-
erage of 2.8× 10−11 cm3 molec−1 s−1 (Fig. 6b). Formulas
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Figure 5. Comparison between HLCformula (average HLC of all methods and all isomers) and (a) pformula, the average vapor pressure
of a formula with best fit line shown, and (b) the estimated vapor pressure using the formula-based average Daumit–Li method estimate,
with same fit line shown in purple. (c) Comparison between HLCformula and the HLC estimated from vapor pressure calculated from the
Daumit–Li method using the best-fit equation shown in (a). Each formula is represented as an open circle at HLCformula, with light gray bars
representing a standard deviation of the average, σp , to indicate the approximate range. (d) Distribution of error from applying this method
to any given compound, with all oxidation system combined and the average value provided in parentheses.

also containing nitrogen (roughly two-thirds of formulas; pri-
marily nitrates and peroxynitrates in this data set) have an
estimated OH reaction rate constant of approximately half
this, with a tight distribution centered around an average
of 1.4×10−11 cm3 molec−1 s−1. These distributions indicate
that, for any given formula, assuming a constant kOH within
a formula class is almost always accurate to within a fac-
tor of 2. It is important to note that, given the data set used
in this work to calculate these distributions and averages,
these results apply only to atmospheric oxidation products
and are not directly applicable to directly emitted compounds
or other atmospheric constituents.

In contrast to the low variability observed for kformula,
the formula-based estimation method developed by Don-
ahue spans a larger range and typically overestimates kOH
(Fig. 6c). No correlation is observed between reactivity,
kformula, and vapor pressure,pformula (Fig. 6d; R2 is equal to

0.15 within a formula class; R2 is equal to 0.02 in the com-
bined data set), consistent with results reported by Lannuque
et al. (2018), also showing no clear trend between kOH and
p. This is in contrast with the Donahue method, which pre-
dicts a strong correlation between these properties (Fig. S5;
R2 is equal to 0.80). However, Fig. 6d demonstrates some
trends that are in rough agreement with the broad conclu-
sions Donahue et al. (2011) put forth in the paper developing
their method, i.e., higher volatility compounds react some-
what slower, moderate volatility compounds have rate con-
stants around 3× 10−11 cm3 molec−1 s−1, and lower volatil-
ity compounds have slightly higher reaction rates but are
likely to partition to the particle phase and, therefore, not re-
act quickly with OH.

The general overestimation of the Donahue method, cou-
pled with the observation that variability in the kOH of a for-
mula is quite low, suggests an improved method of estimat-
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Figure 6. (a) Differences in kOH between isomers for the two structure-based estimation methods examined. (b) Distribution of kformula,
which is the average kOH for a given formula calculated as the average of both methods for all isomers, shown separately for formulas with
and without nitrogen, with the average value provided in parentheses. (c) Comparison of formula-based Donahue estimate to kformula; dashed
lines are 1 : 1, 1 : 2, 1 : 3, etc. (d) Comparison of average kOH (k) to average vapor pressure (pformula) for a given formula, separated into
formulas with and without nitrogen. Trend lines (R2 is equal to 0.15) are shown in the same colors, with the trend line for the combined set
(R2 is equal to 0.02) shown as a dashed black line. (e) Z scores of each formula-based method are calculated as described in Fig. 3 and the
main text. (f) Distribution of error from applying this method to any given compound, with all oxidation system combined. In contrast to
other figures, this shown in relative terms, as the number of compounds that do not contain nitrogen is a minority subset of the full data set
and is thus obscured when shown with an absolute y axis.

ing kOH for a given formula is to simply assume it to have
the average value of its formula class (i.e., 2.8× 10−11 and
1.4× 10−11 cm3 molec−1 s−1 for CHO and CHON, respec-
tively). The distribution of z scores in Fig. 6e indicates that
the composite structure-based average kOH for a given com-
pound is usually (71 % of the time) within 1 standard devi-
ation of this average value and within 2 standard deviations
86 % of the time. This is, once again, approximately as pre-
cise as a formula-based method can be. In contrast, the Don-
ahue method frequently overestimates kOH of a formula by
several standard deviations. As in the case of vapor pressure
and HLC, the formula-based estimation of kOH of an indi-
vidual molecule yields errors similar to the average differ-
ences between isomers (Fig. 6f). However, due to the rela-

tively low variability of these values, this approach is still
typically within a factor of 2 (100 % error) of the average
values for each formula class. These data consequently sug-
gest that approaches to actually estimate the OH reactivity of
a gas-phase formula (including the Donahue approach) are
likely to introduce more errors than simply a rough assump-
tion of a few ×10−11 cm3 molec−1 s−1.

4 Discussion

In general, structure-based estimation methods tested in this
work agree to within approximately half an order of magni-
tude for vapor pressure, 1 order of magnitude for HLC, and
< 50 % for kOH. The estimated vapor pressures and Henry’s
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law constants of two isomers typically tend to differ by a half
to a full order of magnitude more than the variability in their
estimation (i.e., differences between SARs), and isomers dif-
fer in their kOH by several times the variability in their es-
timation. Estimation of a physicochemical parameter from
a formula can approximate the average of all relevant iso-
mers within that formula with reasonable precision and low
bias, but application of formula-based methods to an individ-
ual molecule from only its formula introduces higher error.
These results support the following three important conclu-
sions:

1. differences in the physicochemical parameters in iso-
mers tend to be larger than the differences between es-
timation methods,

2. inclusion of the molecular structure, when it is avail-
able, in the estimation of physicochemical parameters
improves the precision of the estimate, and

3. estimation of parameters based only on formula is fea-
sible, but it is more meaningful if considered as a rep-
resentative value for a typical mixture of isomers rather
than any species in particular.

We base these conclusions on the methods used in this work
to estimate the properties of a formulas in this work, i.e., va-
por pressure as the average of EVAPORATION, SIMPOL,
and Nannoolal methods; Henry’s law constant as the aver-
age of GROMHE and HWINb; and kOH as the average of the
Jenkin and Kwok and Atkinson methods. These approaches
were selected based on the accuracy of each SAR, as pub-
lished in previous work, and their publicly available imple-
mentations.

An outcome of this work that is of critical importance to
the broader atmospheric chemistry community is the demon-
stration that different publicly available implementations of
a given published structure-based vapor pressure estima-
tion method (e.g., EVAPORATION) may not all produce
the same estimates for a given species. While five structure-
based methods were considered in this work, three of them
have two known publicly available implementations, and in
all three cases, these two implementations disagree, often by
at least an order of magnitude for a large fraction of the
species tested. This implies that, while five methods might
be nominally used in the literature, there may be up to eight
de facto methods used (not including manual implementa-
tions). Some differences could simply be due to errors in im-
plementing complex parameterizations, but of more funda-
mental interest is the observation that many differences may
be unavoidable outcomes of extrapolating SARs beyond the
chemical ranges in which they are well constrained. In other
words, the complexity of atmospheric species is not always
easily described in clear-cut way by the functional groups
included in an SAR, and each implementation may parse a
structure differently. When possible, estimating a parameter

as the average of multiple methods would help to minimize
the impacts of potential uncertainties in the implementations
of each method, in addition to mitigating potential biases or
uncertainties of any one method.

Similarly, this work demonstrates the issue that the devel-
opment of empirical techniques, such as formula-based es-
timation methods, can be biased by the data used in their
development. In particular, the Li et al. (2016) method for
estimating vapor pressure from formulas (sometimes known
as the molecular corridors method) contained few nitrates in
its training data, and subsequently, it exhibits significant bias
in the nitrate-heavy systems studied here. We propose a mod-
ification to this method to address this limitation, specifically
with respect to the treatment of each NO3 unit in a formula
as an OH unit.

By combining existing methods and new approaches in
this work, we also provide new methods for the estimation of
vapor pressure, HLC, and kOH for a given molecular formula.
The methods below agree with composite structure-based es-
timates for the formula (i.e., average of all structure-based
methods for all major isomers) with approximately normally
distributed errors (with a somewhat longer tail), suggesting
they are nearly as precise as possible. The application of
the recommended formula-based methods to an individual
molecule introduces an error comparable to the difference
between isomers, which further supports the conclusions that
these methods are approximately as precise as such a method
can be. Consequently, while the estimation of parameters for
a formula can be reasonably accomplished, it nevertheless
suffers from higher uncertainty due to the lack of structural
information. It should be noted that the accuracy of formula-
based methods is limited by the accuracy of the SARs upon
which they are built. This work therefore seeks only to un-
derstand the precision, not the accuracy, of formula-based
methods in estimating the average SAR-estimated properties
of a mixture of isomers of a given formula. These conclu-
sions are also necessarily limited to the types of compounds
analyzed in this data set, namely oxidation products from
the gas-phase oxidation of a few representative compound
classes. These results can, therefore, reasonably be extended
to oxygenated compounds in complex atmospheric mixtures,
particularly with multiple functional groups in which organic
nitrogen is in the form of nitrates. Extending the conclusions
and methods of this work to broader systems will necessarily
increase the uncertainty.

Formula-based estimation methods that are found to es-
timate the average properties of a formula with, approxi-
mately, as high a precision as possible are as follows:

– Vapor pressure – average of the Daumit method and the
Li method, after modifying the latter to address its bias
for nitrates. The error is roughly 1–2 orders of magni-
tude.

– Henry’s law constant – estimated from the above va-
por pressure, using the linear relationship log(HLC)=
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−1.15log(p0)−0.78 (see Fig. 5a). The error is roughly
2–3 orders of magnitude.

– kOH – constant, depending on whether the formula con-
tains only carbon, hydrogen, or oxygen (kOH = 2.8×
10−11 cm3 molec−1 s−1) or if it also contains nitro-
gen (kOH = 1.4× 10−11 cm3 molec−1 s−1). The error is
roughly a factor of 2.

The error is estimated as the ability of the formula-based
method to recreate the structure-based estimated property of
a formula and is not based on the accuracy of the existing
SARs on which they are built. The error in vapor pressure and
HLC is estimated as a range due, in part, to its dependence
on volatility (more uncertainty at lower volatility) and oxi-
dation system (more errors in the aromatic system studied).
We reiterate that these formula-based estimation methods are
empirical and, consequently, subject to biases as with other
formula-based approaches. We attempt to minimize this issue
by developing these methods using the types of atmospheri-
cally relevant compounds to which these methods are often
applied (oxygenated oxidation products of common precur-
sors) but stress that no empirical method can be fully free of
development bias.

To facilitate the adoption of these formula-based ap-
proaches, we are including, as part of this paper, the Pa-
rameter Estimation for Atmospheric Chemistry (PEACh)
package, written in the Igor Pro programming environment
(WaveMetrics, Inc.) that is widely used by the atmospheric
chemistry community. PEACh v.1 is included in the Sup-
plement and will be updated and maintained as a GitHub
repository (https://github.com/gabrielivw/PEACh, last ac-
cess: 20 April 2021). This package implements formula-
based estimation by the methods described above. For
structure-based estimation, we encourage the practice of av-
eraging multiple SARs for structure-based estimates of prop-
erties and point the reader toward the publicly available im-
plementations used in this work.

Data availability. All data used in the core analyses of this work
are provided in the Supplement as a spreadsheet and are available
at https://doi.org/10.17632/3rgvkf7c9n.2 (Isaacman-VanWertz and
Aumont, 2021). These data include the SMILES strings and formu-
las for all products generated in the GECKO-A modeled oxidation.
The 38 594 compounds used in most of the analyses are labeled, in-
cluding flags for each oxidation system in which they appear. For
each compound, estimated parameters are provided, including va-
por pressure estimated by Nannoolal, SIMPOL, and EVAPORA-
TION, HLC estimated by GROMHE and HWINb, and kOH esti-
mated by Jenkin and Kwok and Atkinson. Where values are blank,
either the method could not provide an estimate due to limited func-
tional groups or, in cases outside of the core compounds, an estimate
was simply not calculated.
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