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Abstract. The hydroxyl radical (OH) is the primary atmo-
spheric oxidant responsible for removing many important
trace gases, including methane, from the atmosphere. Al-
though robust relationships between OH drivers and modes
of climate variability have been shown, the underlying mech-
anisms between OH and these climate modes, such as the
El Niño–Southern Oscillation (ENSO), have not been thor-
oughly investigated. Here, we use a chemical transport model
to perform a 38 year simulation of atmospheric chemistry,
in conjunction with satellite observations, to understand the
relationship between tropospheric OH and ENSO, Northern
Hemispheric modes of variability, the Indian Ocean Dipole,
and monsoons. Empirical orthogonal function (EOF) and re-
gression analyses show that ENSO is the dominant mode of
global OH variability in the tropospheric column and upper
troposphere, responsible for approximately 30 % of the total
variance in boreal winter. Reductions in OH due to El Niño
are centered over the tropical Pacific and Australia and can
be as high as 10 %–15 % in the tropospheric column. The
relationship between ENSO and OH is driven by changes
in nitrogen oxides in the upper troposphere and changes in
water vapor and O1D in the lower troposphere. While the
correlations between monsoons or other modes of variability
and OH span smaller spatial scales than for ENSO, regional
changes in OH can be significantly larger than those caused
by ENSO. Similar relationships occur in multiple models

that participated in the Chemistry–Climate Model Initiative
(CCMI), suggesting that the dependence of OH interannual
variability on these well-known modes of climate variability
is robust. Finally, the spatial pattern and r2 values of correla-
tion between ENSO and modeled OH drivers – such as car-
bon monoxide, water vapor, lightning, and, to a lesser extent,
NO2 – closely agree with satellite observations. The ability
of satellite products to capture the relationship between OH
drivers and ENSO provides an avenue to an indirect OH ob-
servation strategy and new constraints on OH variability.

1 Introduction

The hydroxyl radical (OH), the atmosphere’s primary oxi-
dant, removes many trace gases that affect composition and
climate. Despite its central role in atmospheric chemistry, the
spatiotemporal distributions of OH concentrations are poorly
constrained, often confounding the interpretation of observed
variations and trends of important atmospheric constituents.
For example, there are several plausible explanations of the
observed fluctuations in the global burden of atmospheric
methane (CH4), the second-most important anthropogenic
greenhouse gas. Explanations include variations and trends
in both emissions and oxidation of methane (Prather and
Holmes, 2017; Rigby et al., 2017; Turner et al., 2017). Bet-
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ter constraints on OH and its dynamical and photochemical
drivers are needed to improve confidence in our interpreta-
tion of recent methane trends and to project future climate in
response to changes in emissions and composition.

Observational limitations and chemistry–climate model
disagreement pose challenges to advancing our understand-
ing of the spatiotemporal variability in OH. There are few
direct in situ OH observations on local, regional, and global
scales (Stone et al., 2012), as OH is both highly reactive, with
a lifetime of ∼ 1 s in the free troposphere (Mao et al., 2009)
and low in concentration (of the order of 106 molec.cm−3).
Recent work has demonstrated that formaldehyde, a longer-
lived species (hours) whose chemical production in the re-
mote troposphere is dominated by CH4 oxidation, shows
promise for inferring variability in OH columns over the re-
mote atmosphere (Wolfe et al., 2019). In models of atmo-
spheric chemistry and transport, OH can vary widely, with
differences in global methane lifetime, a proxy for OH abun-
dance, between 45 % and 80 % among models in intercom-
parison projects (e.g., Voulgarakis et al., 2013; Nicely et al.,
2017; Zhao et al., 2019).

Analysis of the factors causing intermodel differences in
the tropospheric OH burden is challenging as causation is
difficult to prove with a species so tightly coupled to a
multitude of chemical and meteorological processes. Pri-
mary OH production occurs through photolysis of O3, fol-
lowed by reaction with water vapor (H2O(v)), while sec-
ondary production is often regulated by nitrogen oxides
(NOx=NO+NO2) through the reaction of the hydroperoxyl
radical (HO2) with NO. Globally, CO and CH4 are the pri-
mary sinks, although other species, particularly volatile or-
ganic compounds (VOCs), can be important regionally. How-
ever, attributing OH variability remains challenging, with
different models showing widely ranging responses in OH
to changes in these drivers, particularly to NOx and humidity
(Wild et al., 2020).

These chemical and radiative drivers of OH variability
are, in turn, partially regulated by large-scale dynamical fea-
tures, such as the El Niño–Southern Oscillation (ENSO),
monsoons, and modes of northern hemispheric (NH) vari-
ability (e.g., the North Atlantic Oscillation – NAO), through
changes in transport and emissions. Oman et al. (2011, 2013)
used satellite observations and chemistry–climate models to
show that the horizontal and vertical distributions of tropo-
spheric ozone are significantly modulated by ENSO, most
prominently through the manifestation of a dipole pattern
over southeast Asia and the tropical western Pacific. Sekiya
and Sudo (2012) found similar results with the CHASER
chemical transport model, along with strong relationships be-
tween ozone variability and the Indian Ocean Dipole (IOD),
the Arctic Oscillation, and the Asian winter monsoon. ENSO
events can also change CH4 emissions from wetlands (Zhang
et al., 2018), lightning NO production (Murray et al., 2013,
2014; Turner et al., 2018), and CO emissions from biomass
burning (Duncan et al, 2003a, b; Rowlinson et al., 2019).

In addition to this biomass burning relationship with ENSO,
Buchholz et al. (2018) also noted relationships between CO
in tropical fire regions and the IOD as well as with the
Tropical South Atlantic and Southern Annular modes. Rela-
tionships between the Madden–Julian Oscillation (MJO) and
variability of tropical ozone (Tian et al., 2007; Ziemke et al.,
2015), H2O(v) (Myers and Waliser, 2003), and CO (Wong
and Dessler, 2007) have also been shown. Finally, climate
modes can alter the long range transport of CO to the Arc-
tic through increased outflow from Europe (Li et al., 2002;
Creilson et al., 2003; e.g., Duncan and Bey, 2004) and Asia
(Fisher et al., 2010) for the NAO and ENSO, respectively.

Despite the strong links between these dynamical features
and OH drivers, there is little research on the relationship
between these processes and OH itself. Turner et al. (2018)
used a 6000 year simulation with free running dynamics to
suggest that ENSO is the dominant mode of OH variabil-
ity at decadal timescales, mainly through its effects on light-
ning NO emissions. Their study, however, held most forcings
and emissions, including greenhouse gas concentrations and
biomass burning, to 1860 conditions. Emissions of lightning
NO, dust, and dimethyl sulfide were allowed to respond to
model meteorology. During the 1997–1998 ENSO event, in-
creases in CO from biomass burning led to decreases in OH
of 9 % on the global scale (Rowlinson et al., 2019) and up
to 20 % over the Indian Ocean (Duncan et al., 2003a). Using
inversions of observations of methyl chloroform to estimate
OH concentrations, Prinn et al. (2001) found OH to be lower
during ENSO years, suggesting this could be linked to re-
duced UV radiation near the surface due to increased cloud
coverage. As with ENSO, modeling studies have shown that
the Asian monsoon increases OH concentrations in the up-
per troposphere (UT) through increased lightning NO pro-
duction, despite increases in convectively lofted OH sinks,
particularly CO (Lelieveld et al., 2018).

Here, we examine how OH and related chemical and ra-
diative factors vary with known modes of climate and at-
mospheric variability. Using correlation analysis, we com-
pare the relationship between ENSO and tropospheric col-
umn OH from the MERRA-2 GMI (Modern-Era Retrospec-
tive analysis for Research and Applications Global Model-
ing Initiative) setup of the NASA Goddard Earth Observing
System (GEOS) Chemistry–Climate Model (GEOSCCM;
Strode et al., 2019) and four models that participated
in the joint International Global Atmospheric Chemistry
(IGAC)/Stratosphere–troposphere Processes And their Role
in Climate (SPARC) Chemistry–Climate Model Initiative
(CCMI) (Morgenstern et al., 2017). After evaluating these re-
lationships from the MERRA-2 GMI model with in situ and
satellite observations, we further explore the relationship be-
tween OH, its precursors, and ENSO. Finally, we expand the
analysis to include not only ENSO but also other modes of
internal climate variability.

Atmos. Chem. Phys., 21, 6481–6508, 2021 https://doi.org/10.5194/acp-21-6481-2021



D. C. Anderson et al.: Spatial and temporal variability in the hydroxyl radical 6483

2 Methods

In this section, we outline the methodology used to under-
stand the relationship between OH and large-scale dynami-
cal drivers. First, we describe the analysis methods used in
Sect. 2.1. In Sects. 2.2 and 2.3, we describe the relevant de-
tails of the MERRA-2 GMI and CCMI simulations, respec-
tively.

2.1 Description of analysis methods

Because the factors driving OH concentrations and interan-
nual variability are altitude dependent, we divide the atmo-
sphere into the following four layers: the surface to the top of
the planetary boundary layer (PBL), from the top of the PBL
to 500 hPa (lower free troposphere – LFT), between 500 and
300 hPa (middle free troposphere – MFT), and from 300 hPa
to the tropopause (upper free troposphere – UFT). Output
from each model has been vertically averaged to these layers
on a seasonal basis. In addition, we also examine the tropo-
spheric column.

To help determine the relationship between the modes
of climate variability and photochemical and meteorological
variables archived by the various models, we regress model
output against different climate indices. To perform the re-
gression, we first detrend the output on a monthly basis, re-
moving any linear trend from each variable over the 1980 to
2018 period to account for changes in the background value.
We then regress the model variable against a specific cli-
mate index (e.g., ENSO index) for 1980 to 2018. We perform
these regressions on each grid cell for each of the 4 layers as
well as for the tropospheric column. In the results below, we
only include regressions where the Pearson correlation co-
efficient (r) exceeds 0.5, unless otherwise indicated. Using
other methods to define significance of a regression, such as
a two-tailed Student t test with p values less than 0.05, does
not significantly alter the results.

Climate features considered here include ENSO, the IOD,
several northern hemispheric atmospheric modes of vari-
ability, and various monsoons. We use monthly values of
the ENSO multivariate index (MEI; Wolter and Timlin,
2011) obtained from https://psl.noaa.gov/enso/mei (last ac-
cess: 21 April 2021) and averaged to seasonal timescales.
Here, ENSO-related events are defined according to the sea-
sonally averaged MEI, where MEI> 0.5 is an El Niño event,
MEI<−0.5 is a La Niña event, and an MEI value be-
tween 0.5 and −0.5 is a neutral event. For the Indian Ocean
Dipole, we used the Dipole Mode Index (DMI) obtained
from https://psl.noaa.gov/gcos_wgsp/Timeseries/DMI/ (last
access: 21 April 2021). Northern hemispheric modes con-
sidered are the NAO, the East Atlantic pattern (EA), the Pa-
cific North American pattern (PNA), the East Atlantic West-
ern Russian pattern, the Scandinavian pattern, the West Pa-
cific pattern, the East Pacific North Pacific pattern, and the
Tropical Northern Hemisphere pattern. Indices for the NH

modes were taken from the NOAA Climate Prediction Cen-
ter (available online at https://www.cpc.ncep.noaa.gov/data/
teledoc/telecontents.shtml, last access: 21 April 2021) and
were determined from a rotated principal component analy-
sis of the 500 hPa geopotential height of the National Center
for Environmental Prediction Reanalysis.

The MERRA-2 GMI (Sect. 2.2) and CCMI models
(Sect. 2.3) included here are constrained or nudged to re-
analyses data (MERRA, MERRA-2, JRA-55, and the ERA-
Interim) which assimilate observed meteorology. The mete-
orological variables used to calculate the DMI and MEI, in-
cluding sea surface temperature, sea level pressure, and zonal
and meridional winds, agree well or are identical among
the different reanalyses (Orbe et al., 2020; Bosilovich et al.,
2015). Thus, climate modes in these models correspond to
the NOAA indices. Likewise, indices for the NAO calculated
from surface pressure from the models correlate well (r2 of
0.79 or greater) with the NAO index calculated by NOAA.

Monsoons included in this analysis are the Asian, South
American, North American, southern African, northern
African, Australian, and the western North Pacific. We cal-
culate the monsoon index for each model used in this study
based on the definitions of Yim et al. (2013), where the in-
dex is defined by the difference in zonal winds at 850 hPa
between two monsoon-specific regions. See Table 2 in Yim
et al. (2013) for more details. Because the MERRA-2 GMI
and CCMI models included here are constrained or nudged
to different reanalyses, the calculated monsoon index varies
among the models, although the indices of a given monsoon
from each model are highly correlated with one another (gen-
erally r2> 0.9). Table 1 summarizes the climate modes and
monsoons and the corresponding indices used here.

In addition to regression analysis, we also performed
an empirical orthogonal function (EOF) analysis for tropo-
spheric column OH (TCOH) and separately for each of the
four layers described above. EOF analysis allows for the sta-
tistical determination of the spatial modes of OH variabil-
ity and their variation with time without a priori knowledge
of the controlling mechanisms (e.g., Barnston and Livezey,
1987). To perform the analysis, OH fields for each grid box
were detrended by subtracting a linear fit to the time series
over the 1980 to 2018 period to account for changes in back-
ground associated with long-term trends in OH. We report
here only the first and second EOFs and their associated prin-
cipal component time series as none of the other EOFs corre-
lated spatially or temporally with any of the modes of climate
variability discussed here.

2.2 MERRA-2 GMI simulation description

To understand the interannual variability of OH, we use
the MERRA-2 GMI (Modern-Era Retrospective analysis
for Research and Applications Global Modeling Initia-
tive) simulation, publicly available at https://acd-ext.gsfc.
nasa.gov/Projects/GEOSCCM/MERRA2GMI/ (last access:
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Table 1. Summary of the climate modes and monsoons considered in this work. The index used to characterize the mode, as well as the source
of the index, is also indicated. Note: NCEP – National Centers for Environmental Prediction; NOAA –National Oceanic and Atmospheric
Administration.

Mode type Index Mode type Index

El Niño–Southern Oscillation Multivariate ENSO Index (NOAA) North Atlantic Oscillation Rotated principal component
analysis of geopotential height
at 500 mbar from NCEP
reanalysis

Indian Ocean Dipole Dipole Mode Index (NOAA) East Atlantic

Asian monsoon Model-specific index calcu-
lated from the difference of
zonal winds in monsoon spe-
cific regions

Pacific North American

South American monsoon East Atlantic Western Russian

North American monsoon Scandinavian

Southern African monsoon West Pacific

Northern African monsoon East Pacific–North Pacific

Australian monsoon Tropical Northern Hemisphere

Western North Pacific monsoon

21 April 2021). This is a run of the GEOSCCM model
(Strode et al., 2019) constrained to meteorology from
MERRA-2 (Gelaro et al., 2017) that uses the GMI chem-
ical mechanism (Duncan et al., 2007; Oman et al., 2013;
Gelaro et al., 2017). The GMI chemical mechanism includes
approximately 120 species and 400 reactions, characterizing
the photochemistry of the troposphere and stratosphere. The
model was run from 1980 to 2018 at a resolution of C180 on
the cubed sphere, equivalent to approximately 0.625◦ longi-
tude× 0.5◦ latitude, with 72 vertical levels. The model was
run in a replay mode (Orbe et al., 2017) and constrained to
temperature, pressure, and winds from MERRA-2. Model
output is available at daily and monthly resolutions, with
hourly output available only for some local satellite overpass
times. All data used in this work are monthly averaged unless
otherwise indicated.

Anthropogenic emissions are from the Measuring Atmo-
spheric Composition and Climate mega City (MACCity) in-
ventory (Granier et al., 2011) for 1980–2010 and then from
the Representative Concentration Pathway 8.5 (RCP8.5) sce-
nario for 2011–2018. Biomass burning emissions are from
the Global Fire Emissions Database (GFED) 4s inventory
starting in 1997 (Giglio et al., 2013). Biomass burning emis-
sions from before 1997 are calculated from scale factors de-
rived from aerosol index data from the Total Ozone Mapping
Spectrometer (TOMS) instrument, as described in Duncan
et al. (2003b). Biogenic emissions are calculated online us-
ing the method described in Guenther et al. (1999, 2000),
which is an early form of the Model of Emissions of Gases
and Aerosols from Nature (MEGAN). A known high bias in
isoprene emissions from MEGAN (e.g., Wang et al., 2017),
could exacerbate low modeled OH in regions dominated by
biogenic VOC emissions. Lightning NO emissions are based
on the cumulative mass flux (Allen et al., 2010), with con-
straints from the Lightning Imaging Sounder (LIS)/Optical

Transient Detector (OTD) v2.3 climatology (Cecil et al.,
2014). Total, global lightning NO emissions are scaled to be
6.5 TgNyr−1 for each year of the simulation, although emis-
sions demonstrate significant interannual variability on the
local scale. For example, over the tropical Pacific, an area
we will investigate throughout this paper, peak emissions are
1.5 times higher than the minimum emissions over the time
period studied here (Fig. S1 in the Supplement).

Methane concentrations are specified at the surface
for four different latitude bands (90–30◦ S, 30◦ S–0◦, and
0◦–30◦ N, 30–90◦ N) at monthly resolution and advected
throughout the troposphere. Methane data are from the
NOAA Global Monitoring Division (GMD) surface network
(Dlugokencky et al., 1994) and monthly values are interpo-
lated from annual means.

Because CH4 is specified as a boundary condition, the
model does not capture feedbacks (e.g., wetland or wild-
fire emissions) between CH4 emissions and climate modes
beyond the extent to which these manifest in the observed
methane surface concentrations. ENSO, for example, is
known to affect atmospheric CH4 concentrations through
changes in emissions from wetlands (Zhang et al., 2018;
Melton et al., 2013) and biomass burning (Worden et al.,
2013), although there is uncertainty in the magnitudes of
these effects (Melton et al., 2013). On the global scale, how-
ever, these ENSO-induced changes in emissions do not sig-
nificantly perturb background CH4. For example, during the
1997–1998 ENSO event, one of the largest on record, CH4
grew at a rate of approximately 15 ppbvyr−1 (parts per bil-
lion by volume per year) on top of a background of the or-
der of 1700 ppbv (Nisbet et al., 2016). Because of this small
perturbation and the dominance of CO as the primary OH
sink over much of the globe (see Sect. 5), it is unlikely that
the relationship between climate modes and OH would differ
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significantly with the inclusion of direct methane emissions
in the simulation.

2.3 IGAC/SPARC Chemistry–Climate Model Initiative
(CCMI) Phase 1 model simulations

To place the results from MERRA-2 GMI in the context of
other models, we compare our simulation with those from
the CCMI. The CCMI was conducted to help assess the abil-
ity of a suite of models to address various aspects of at-
mospheric chemistry, including trends in tropospheric ozone
and the controlling mechanisms of OH (Morgenstern et al.,
2017). Output from these models have already been used
to assess various aspects of tropospheric OH (Zhao et al.,
2019; Nicely et al., 2020), HCHO (Anderson et al., 2017),
O3 (Revell et al., 2018; Dhomse et al., 2018), and meteoro-
logical variables (Orbe et al., 2020). Modeling groups con-
ducted multiple runs, including a forecast scenario to 2100
and two hindcast scenarios, one with free-running meteorol-
ogy and one, the specified dynamics (SD) scenario, in which
models were either nudged to meteorological reanalyses or
run as chemical transport models (Orbe et al., 2020).

We perform a similar analysis as with MERRA-2 GMI
with four models that performed the CCMI SD run. We use
the SD run, which spanned the years 1980–2010, instead
of the other scenarios, to allow for more direct comparison
among the CCMI models and with MERRA-2 GMI and ob-
servations from the satellite. We include only models that
output data for all years between 1980 and 2010 and that
have non-methane hydrocarbon chemistry in their chemical
mechanisms. Models used here are WACCM (Solomon et al.,
2015), CHASER (MIROC-ESM; Watanabe et al., 2011), a
setup of EMAC with 90 vertical levels (EMAC; Jöckel et al.,
2016), and MRI-ESM1r1 (Yukimoto et al., 2012). We omit
CAM4Chem and a different setup of EMAC with 47 ver-
tical levels because results for those models are essentially
identical to WACCM and EMAC90, respectively. EMAC90
and CHASER were nudged to the ERA-Interim reanalysis,
WACCM to the MERRA reanalysis, and MRI to the JRA-
55 reanalysis. Sea surface temperatures (SSTs) and sea ice
were prescribed in each model with the Hadley SST data set.
Anthropogenic emissions were from the MACCity inven-
tory, while lightning NOx was calculated online using model-
specific parameterizations. Biomass burning emissions are
from Granier et al. (2011), which incorporate a modified ver-
sion of the RETRO inventory from 1980–1996 and GFEDv2
from 1997–2010 and are based on Lamarque et al. (2010).
Monthly averaged CO emissions from this inventory in In-
donesia, where biomass burning emissions are strongly af-
fected by ENSO (e.g., Duncan et al., 2003a), are highly cor-
related (r2

= 0.79) in time with the GFED version 4s inven-
tory used in the M2GMI simulation. Likewise, monthly aver-
aged CO emissions over Indonesia from the two inventories
agree within 35 %, on average. Further model details can be

found in Orbe et al. (2020), Morgenstern et al. (2017), and
references therein.

As with the MERRA-2 GMI analysis, we use monthly
averaged output. For layer averaging, only EMAC90,
WACCM, and MRI output a tropopause height, while no
models output PBL height. To calculate the tropopause
height for CHASER, we used the relationship between O3
and CO, as described in Pan et al. (2004). PBL height for all
models was determined from the bulk Richardson number
(Seibert et al., 2000).

3 MERRA-2 GMI simulation evaluation

While there has been some evaluation of the MERRA-2 GMI
simulation (Ziemke et al., 2019; Strode et al., 2019), species
in the simulation relevant to this study have not been investi-
gated. As a result, we evaluate MERRA-2 GMI using in situ
observations of OH and related species and remotely sensed
observations of OH drivers in order to understand the effect
any model biases could have on our results. In Sect. 3.1, we
use in situ observations from the first two deployments of
the Atmospheric Tomography (ATom) campaign to evaluate
OH and CO over the remote Pacific and Atlantic Oceans. In
Sect. 3.2, we also compare output to satellite observations
of CO, H2O(v), and NO2 to evaluate the model over larger
temporal and spatial scales.

3.1 Evaluation of MERRA-2 GMI with in situ
observations

During the ATom campaign, a suite of air quality and
climate-relevant trace gases and aerosols were measured
throughout the remote Pacific and Atlantic. During each of
the deployments, aircraft transected the Pacific from Alaska
to New Zealand, went around Tierra del Fuego, and traveled
north over the Atlantic to Greenland. Each flight consisted of
a series of ascents and descents, allowing for vertical profil-
ing across most latitudes of the remote Pacific and Atlantic
Oceans. The combination of the flight track and the repetition
across seasons provided unprecedented sampling of many
trace gases, including OH. As part of the ATom campaign,
a limited subset of species, including OH and CO, from the
MERRA-2 GMI simulation were output hourly for the dura-
tion of ATom 1 (July–August 2016) and ATom 2 (January–
February 2017) only, allowing for direct comparison to the
in situ observations. Only daily or longer resolution output is
available for the other deployments, and, as a result, we focus
our analysis on these first two deployments.

Observations used here include OH (Brune et al., 2020)
and CO (Santoni et al., 2014), with 2σ uncertainties of 35 %
and 3.5 ppbv, respectively. Data have been averaged to a
5 min time base and filtered for biomass burning influence,
defined as times when concentrations of HCN and CO are
both above the 75th percentile for the individual ATom de-
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ployments. We omit the biomass-burning-influenced parcels
because small differences in measured and modeled winds
could result in misplacement of modeled biomass burning
plumes, resulting in unrealistically large differences in OH.
Inclusion of the biomass-burning-influenced parcels does not
significantly change the model bias but does degrade the cor-
relation. For comparison of the observations to MERRA-2
GMI, hourly data were output by the model and then bilin-
early interpolated in the horizontal and linearly interpolated
in time and in the vertical to the in situ observation time and
location.

MERRA-2 GMI has a OH high bias of approximately
20 % (Fig. 1a) when compared to observations from ATom
2. A regression of measured and modeled OH shows a mod-
erate to high correlation in both the Southern Hemisphere
(SH) and NH, with r2 values of 0.30 and 0.78, respectively.
Normalized mean biases (NMBs) relative to the observations
are within measurement uncertainty in both the NH (19 %)
and SH (16 %), with nearly identical high biases during the
summer deployment of ATom 1 (Fig. 1c). The compara-
tively poorer model performance for OH in the SH is being
driven by continental outflow from South America and New
Zealand. When data from these regions are omitted (Fig. 1a;
blue stars), the correlation for the SH increases to 0.63 and
the NMB is 22 %. The limited model output at hourly reso-
lution does not allow for a determination of the cause of this
disagreement in continental outflow regions. In the case of
South America, however, a known high bias in modeled iso-
prene, resulting in extremely low OH over the Amazon, is
consistent with the disagreement between the simulation and
observations.

Agreement between observed and modeled CO shows a
strong hemispheric dependence, with a NMB of −14 % in
the NH (i.e., the model is lower than observations by 14 %)
and 8 % in the SH during ATom 2, although both hemispheres
have a strong correlation (r2> 0.7). While agreement in the
SH improves in ATom 1, with a NMB of 2 % (Fig. 1d), the
model underestimate in the NH is even more pronounced
(NMB=−20 %). This NH low bias in CO is a well-known
problem in global chemistry models (e.g., Naik et al., 2013;
Stein et al., 2014; Travis et al., 2020) and could be a con-
tributing factor in the overestimate in OH, as CO is the dom-
inant global OH sink.

Comparison of the MERRA-2 GMI simulation to in situ
observations demonstrates that the model captures the spatial
variability of OH and its predominant global sink, CO, in the
remote atmosphere during both the NH summer and winter,
with the exception of OH off the coast of South America and
New Zealand. The poorer agreement between measured and
modeled OH in regions of fresh, continental outflow suggests
that modeled relationships between climate modes and OH
in these regions might be more uncertain than in the remote
atmosphere. This lack of agreement does not significantly af-
fect the results discussed in this work, as the majority of the
relationships found between OH and modes of climate vari-

ability discussed in Sects. 4 and 5 are centered in the remote
atmosphere.

3.2 Evaluation of MERRA-2 GMI with satellite
observations

While there are no remotely sensed observations of tropo-
spheric column OH (TCOH), there are satellite observations
of OH drivers. Comparing these observations to MERRA-2
GMI allows for model evaluation over larger spatial and tem-
poral scales than with ATom. Satellite data used here include
tropospheric CO columns from the Measurement Of Pol-
lutants In The Troposphere (MOPITT) instrument, H2O(v)
from the Atmospheric Infrared Sounder (AIRS), and tropo-
spheric NO2 from the Ozone Monitoring Instrument (OMI).
AIRS is on the Aqua satellite, with a daily local overpass
time of approximately 13:30 LT (local time; applicable to all
times given herein). We use the monthly averaged, level 3,
version 6 standard physical retrieval (Susskind et al., 2014)
from 2003 to 2018. For MOPITT CO on the Terra satellite,
we use the level 3, version 008 retrieval that uses both near-
and thermal-infrared radiances (Deeter et al., 2019) from
2001 to 2018. MOPITT has a daily local overpass time of
approximately 10:30. Both satellite products have a global
horizontal resolution of 1◦× 1◦. We also use the OMI NO2
version 4, level 3 product (Lamsal et al., 2021) from 2005 to
2018. Data have been regridded to 1◦× 1◦ horizontal resolu-
tion. OMI is located on the Aura satellite and, as with AIRS,
has a local overpass time of approximately 13:30.

For comparison of the satellite retrievals to MERRA-2
GMI, we use monthly fields of the model variables output
at the satellite overpass time. For CO, where averaging ker-
nel and a priori information are available for the level 3 MO-
PITT data, we convolve the model output with these vari-
ables so that direct comparison between satellite and model
are possible. While shape factors and scattering weights for
the OMI NO2 retrieval are unavailable for the level 3 data,
shape factors for the OMI NO2 retrieval are determined from
a similar setup of the GEOSCCM model, also employing the
GMI chemical mechanism and MERRA-2 meteorology. Ap-
plying the satellite shape factors to the simulation discussed
here would therefore not result in significant changes in the
modeled NO2. Finally, for AIRS H2O(v), averaging kernel in-
formation was unavailable for the level 3 data, so numerical
comparisons between satellite and model should be regarded
as more qualitative than quantitative.

When compared to MOPITT in boreal winter (i.e.,
DJF – December–February), tropospheric column CO from
MERRA-2 GMI (Fig. 2; first column) shows similar results
to that found through comparison to the in situ observations,
namely a low bias in the NH (9 %) and high bias in the SH
(7 %). Differences over the tropical Pacific, an area that will
be shown later to have a strong relationship between ENSO
and OH, are generally less than 10 %, while a noticeable high
bias exists over parts of South America. Results for June–
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Figure 1. Regression of observed OH (a, c) and CO (b, d) from ATom 2 (boreal winter 2017; a, b) and ATom 1 (boreal summer 2016; c,
d) against hourly output from MERRA-2 GMI interpolated to the ATom flight track. Data from the Southern (blue circles) and Northern
(orange triangles) hemispheres are shown, along with the r2, bias, and normalized mean bias (NMB) for each hemisphere. Observations and
model output have been filtered for biomass burning influence. Observations of continental outflow from New Zealand and South America
from ATom 2 are indicated by blue stars.

August (JJA) are spatially similar (Fig. 3), with a NH low
bias of 20 % and overestimates of column CO, averaging
45 %, in the SH. These areas of high bias over South Amer-
ica likely result from the high bias in isoprene emissions, as
discussed in Sect. 2.2, that would lead to unrealistically high
in situ production of CO.

MERRA-2 GMI captures the spatial distribution of
H2O(v), although the model is biased high in both the col-
umn and throughout much of the troposphere. Overestimates
in column H2O(v) are ∼ 14 % in both DJF (Fig. 2h) and
JJA (Fig. 3). These overestimates extend over most of the
world’s oceans, and only small regions over northern India,
central Africa, eastern Russia, and eastern Canada show any
underestimate in H2O(v). Fractional differences in H2O(v)
between MERRA-2 GMI and the different AIRS pressure
levels are most pronounced in the tropical UT (Fig. 4). At
pressures greater than 700 hPa, modeled H2O(v) is generally
within 10 % of the observations, while for pressures less than
500 hPa, modeled H2O(v) in the equatorial region disagrees
with observations by 55 % on average.

Agreement between observed and modeled NO2 is weaker
than for the other species examined here. While MERRA-2
GMI appears to capture the regions with local NO2 maxima –
notably those over central Africa, eastern China, and the
northeastern United States – the magnitudes frequently dif-

fer. The simulation shows a significant high bias over central
Africa and the equatorial Atlantic of the order of 100 %, sug-
gesting that biomass burning emissions of NOx, the dominant
NO source in this region, are too high. In contrast, concen-
trations over eastern Asia are too low in the model, suggest-
ing errors in the anthropogenic emissions inventory and/or in
the NOx lifetime. Strode et al. (2019) also evaluated NO2 in
MERRA-2 GMI, comparing trends in tropospheric column
NO2 over the eastern US and eastern China in MERRA-2
GMI and OMI. They found that, although trends were simi-
lar between the simulation and observations in both regions,
the magnitude of the trends differed, likely due to errors in
the MACCity emissions inventory.

As with the in situ observations, comparison between
MERRA-2 GMI and satellite retrievals demonstrates that the
simulation is able to capture the distribution of the chemi-
cal drivers of OH in remote regions which tend to exhibit
the strongest relationship between OH and climate modes
(see Sect. 4). These results lend confidence to the analysis
described in Sects. 4 and 5 and suggest that the findings
in remote regions are likely applicable to the actual atmo-
sphere. The large disagreement between the simulation and
observed column CO and NO2 in regions that are signifi-
cantly impacted by biomass burning and/or biogenic emis-
sions suggests, however, that modeled relationships of chem-
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Figure 2. Tropospheric column CO (a, d, g), H2O(v) (b, e, h), and NO2 (c, f, i) from MOPITT, AIRS, and OMI, respectively (a–c), and
MERRA-2 GMI (d–f) for DJF (December–February). For the satellite retrievals and model, data are averaged over the time range described
in the text for each instrument. The fractional difference between MERRA-2 GMI and the satellite is shown in (g–i).

ical species with modes of climate variability in these re-
gions should be viewed with caution. We further evaluate the
ability of the simulation to capture the relationship between
ENSO and CO, H2O(v), and NO2 using satellite observations
in Sect. 5.1.2.

4 The relationship between simulated OH variability
and climate modes

When considered in concert, the modes of climate variability
evaluated here (i.e., ENSO, the IOD, and NH modes), along
with monsoons, explain a substantial fraction of the sim-
ulated tropospheric OH interannual variability over 19 %–
40 % of the global troposphere by mass, depending on sea-
son. Figure 5 highlights regions that show significant correla-
tion between TCOH and the NH modes (purple), monsoons
(light blue), ENSO (green), and the IOD (orange) for each
season in MERRA-2 GMI output. In all seasons, correla-
tion with ENSO has the largest spatial extent, but in DJF and
MAM (March–May), for example, the eight NH modes can
explain TCOH variability over large swaths of the NH, com-
prising 10 % of global, tropospheric mass. In JJA, the com-
bination of the different climate modes and monsoons has
the smallest spatial coverage (19 % of the global tropospheric

mass), while the IOD, consistent with its seasonal variability,
only has a widespread correlation with TCOH during SON
(September–November). Similar patterns are found for the
individual layers (Fig. S2 in the Supplement).

Below, we examine the relationships between tropospheric
OH and the various modes of climate variability demon-
strated in Fig. 5. First, in Sect. 5, we show that El Niño events
lead to global reductions in tropospheric OH, with changes
being driven by decreased secondary production in the UFT
that more than compensates for increased primary produc-
tion in the PBL. In Sect. 6, we demonstrate that the effects
on OH from NH modes of variability, the IOD, and some
monsoons have limited spatial scales, as compared to ENSO,
but can significantly alter local OH distributions. In both sec-
tions, we also compare simulations from MERRA-2 GMI to
simulations from the CCMI, demonstrating that the relation-
ship between OH and climate modes is robust among multi-
ple models.

5 Relationship between simulated OH variability and
ENSO in MERRA-2 GMI

To understand the relationship between OH, its drivers, and
ENSO, we first investigate the OH production rate. In the
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Figure 3. Same as Fig. 2 except for JJA (June–August).

Figure 4. The fractional difference in zonal mean H2O(v) between
MERRA-2 GMI and AIRS for the different AIRS pressure layers
for DJF. Positive numbers indicate a high bias in the model.

MERRA-2 GMI simulation, the OH production rate is pri-
marily dependent on Reactions 1–4, where O1D is produced
from the photolysis of tropospheric O3. In the free tropo-
sphere, these four reactions comprise at least 95 % of OH
production in the tropics, on average, and at least 90 % in
the PBL. Only in the regions with large biogenic emissions

(e.g., South America and central Africa) do other reactions
contribute more than 15 % of the total OH production in the
PBL. As will be shown, the effects of ENSO on OH are pri-
marily focused away from these regions, so we restrict our
analysis to the reactions (R1)–(R4).

H2O2+ hυ→ 2OH (R1)
NO+HO2→ NO2+OH (R2)
O3+HO2→ 2O2+OH (R3)

H2O+O1D→ 2OH. (R4)

During El Niño events, the dominance of these individual
reactions in producing OH varies with altitude. We focus our
analysis on DJF throughout Sect. 5 because that is the season
with the largest impact of ENSO on OH, as shown in Fig. 5.
Figure 6 shows the zonal mean of the fraction of total OH
production from the H2O+O1D (Fig. 6a) and NO+HO2
(Fig. 6b) reactions as well as the total OH production rate
(Fig. 6c) during El Niño events in DJF. While the production
rates along these pathways vary with the ENSO phase, as
discussed in Sects. 5.2 and 5.3, the relative importance of
the individual reactions is similar during neutral and La Niña
events (not shown) and is in agreement with previous model
studies (e.g., Spivakovsky et al., 2000).

The H2O+O1D reaction is dominant from the surface to
about 800 hPa through much of the SH and the tropics, while,
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Figure 5. Regions that show a significant correlation (absolute value of r > 0.5) between a NH mode (purple), monsoon (light blue), ENSO
(green), or IOD (orange) and TCOH for each season in the MERRA-2 GMI simulation. Regions with TCOH less than 1× 1011 molec.cm−2

have been hatched out.

Figure 6. Zonal mean of the fractional contribution of the O1D+H2O (a) and NO+HO2 (b) reactions to the total OH production rate and
the total OH production rate (c) for El Niño events (MEI > 0.5) for DJF, averaged over 1980–2018.

near the surface, the NO+HO2 reaction only has large im-
pacts in the NH midlatitudes. This influence of NOx in the
NH midlatitudes extends through much of the troposphere. In
the UFT, this reaction is the greatest contributor to total OH
production at all latitudes except the NH polar region, where
the HO2+O3 reaction dominates during polar night (Fig. S3
in the Supplement). Total OH production in the polar regions,
however, is orders of magnitude lower than in the tropics.
Outside of the polar regions, the HO2+O3 and H2O2 photol-

ysis reactions generally contribute between 10 % and 30 % of
the total rate (Fig. S3). The dominant OH sink throughout the
troposphere is CO, which is responsible for a 50 % or greater
OH loss at all tropospheric pressures and latitudes (Fig. S4 in
the Supplement) during El Niño events. Because of the dif-
fering importance of the individual OH production reactions
with altitude, we first examine the relationship between OH
and ENSO for TCOH (Sect. 5.1) and then separately for the
PBL (Sect. 5.2) and the UFT (Sect. 5.3). Finally, in Sect. 5.4,
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we investigate the MFT and LFT, where the effects of ENSO
on OH are more limited.

5.1 Tropospheric column OH

5.1.1 The relationship between simulated TCOH and
ENSO

As shown in Fig. 7, TCOH decreases by 3.3 % during
El Niño events (relative to neutral events) equatorward of
30◦ in DJF and is characterized by widespread decreases in
the tropics and subtropics, especially in northern Australia
and west–central and southern Africa. Regional increases are
found over eastern Africa, the east–central Pacific, south-
ern South America, and Indonesia. Maximum decreases in
TCOH are of the order of 4.5× 1011 molec.cm−2 (∼ 10 %–
15 %) and are centered over northern Australia, while max-
imum increases in TCOH (∼ 2.5× 1011 molec.cm−2) are
centered over Sumatra.

During La Niña events, TCOH increases relative to neu-
tral events over much of the globe, although the changes are
not necessarily symmetric with those seen during El Niño
events. Increases over Australia are of the order of 1 to
2× 1011 molec.cm−2, on par with the decreases seen during
El Niño, but the changes during La Niña are centered over
western Australia and the Indian Ocean. Over the Pacific,
the magnitude of the OH increase is lower (of the order of
0.5 to 1× 1011 molec.cm−2) than the decreases found during
El Niño, and some regions off the coast of Hawaii and Papua
New Guinea show decreases during both ENSO phases. Be-
sides these two regions, there are also significant decreases in
OH over eastern Africa and in the southern portion of South
America.

Consistent with these widespread changes in TCOH, EOF
analysis demonstrates that, over most seasons, with JJA be-
ing the notable exception, ENSO is the dominant mode of
OH variability. Figure 8 shows the spatial component of the
first EOF of TCOH for the four seasons. While EOF analysis
does not quantify changes in column content, it does high-
light, for each mode of variability, regions where changes in
TCOH are most prominent. For DJF, the first EOF (Fig. 8a) is
almost identical to the composite figure showing OH anoma-
lies during El Niño (Fig. 7a). Likewise, the temporal com-
ponent of the first EOF strongly correlates with the MEI
(r2
= 0.70; Table 2). In DJF, the first EOF is responsible for

29 % of the total spatial variance for TCOH. Although ENSO
is the dominant mode, however, 70 % of the spatial variance
is still unexplained. In JJA, ENSO influence on OH is much
weaker, with a correlation between the first EOF and TCOH
of r2
= 0.25, consistent with the seasonal cycle of ENSO.

While the spatial pattern of the EOF varies seasonally
(Fig. 8), ENSO shows similar levels of correlation to the tem-
poral component of the first EOF in MAM and SON as for
DJF, with r2 values of 0.54 and 0.60, respectively. Likewise,
the spatial patterns of the first EOF of TCOH for these sea-

sons are similar to the composite figures showing OH anoma-
lies during El Niño (Fig. S5 in the Supplement). For MAM,
the EOF again shows regions with a negative sign over much
of the Northern Hemisphere, with the largest magnitude cen-
tered over the Pacific Ocean, India, and the Atlantic coast
of the United States. Regions with an opposite sign include
the Maritime Continent and much of central Africa. In SON,
almost all of the tropics show some response, with major
centers off the east coast of Papua New Guinea and off the
west coast of Sumatra. In addition, there is a larger response
over the Indian Ocean than for other months, also evident in
the regression of TCOH with the MEI, suggesting the pos-
sible influence of the IOD, which is correlated with ENSO
(r2
= 0.30). This seasonal component in the strength of the

relationship between the EOF and the MEI is also reflected
in the correlation analysis (Fig. 5), where the area of corre-
lation between TCOH and the MEI maximizes in DJF and
minimizes in JJA.

5.1.2 The relationship between TCOH drivers and
ENSO

To understand the factors driving ENSO-related changes
in TCOH, we also investigate the relationship between
OH precursors and ENSO. Figure 6 demonstrates that the
O1D+H2O and NO+HO2 reactions control zonal mean
OH production in the tropics. As a result, we investigate
the relationship between the tropospheric column H2O(v),
CO, NO2, and ENSO using both MERRA-2 GMI output
and satellite retrievals. We use NO2 here, instead of NO,
because of its observability from space, although simulated
NO demonstrates similar spatial correlation patterns with the
MEI as simulated NO2.

Regression of total column H2O(v) from AIRS against the
MEI (Fig. 9e) reveals a tripole pattern over the Pacific Ocean,
with an area of positive correlation throughout much of the
equatorial Pacific Ocean and areas of anti-correlation pole-
ward of this region, in agreement with previous work (e.g.,
Shi et al., 2018). Each of these areas is well captured by the
MERRA-2 GMI simulation (Fig. 9a), showing nearly iden-
tical spatial patterns and strength of correlation over most
of the globe. This relationship between H2O(v) and ENSO
can be explained by the increased convective uplifting in the
equatorial Pacific and the associated increased subsidence
poleward of this region during El Niño events. While the
anticorrelation between H2O(v) and the MEI over Australia
and southern Africa is consistent with the decrease in TCOH
over these regions during El Niño events (Fig. 7), the positive
correlation between H2O(v) and the MEI over the equatorial
Pacific suggests there must be competing effects from other
OH drivers in order to explain the decreases in TCOH in this
region.

Simulated tropospheric column NO2 is strongly anti-
correlated with ENSO over the equatorial Pacific, indicating
a suppression of OH production when the MEI is positive
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Figure 7. Absolute difference in TCOH between El Niño events and neutral events (a) for DJF, averaged over 1980–2018. El Niño and neutral
events are defined as a season having an MEI value greater than 0.5 or an MEI value between −0.5 and 0.5, respectively. The analogous plot
for La Niña events (MEI less than −0.5) is also shown (b). Panel (c) shows the average OH column for neutral events. The 1980–2018 time
period includes 11 El Niños, 12 La Niñas, and 15 neutral events in DJF.

Table 2. For each season, we show the r2 of the correlation of the temporal component of the EOF that has the highest correlation with the
MEI for TCOH and for OH in each layer. In addition, we also indicate the percent (Pct.) of the total spatial variance explained by that EOF.
With the exception of the values indicated by an asterisk (∗), the first EOF has the highest correlation with the MEI. Those indicated with an
asterisk (∗) are the second EOF.

Column UFT MFT LFT PBL

Season Pct. variance r2 Pct. variance r2 Pct. variance r2 Pct. variance r2 Pct. variance r2

DJF 29.4 0.7 37.6 0.73 20.8 0.81 11.7∗ 0.55 12∗ 0.85
MAM 25.9 0.54 36.2 0.61 23.4 0.40 9.5∗ 0.48 9.3∗ 0.59
JJA 30.7 0.25 44.6 0.14 29 0.15 27.7 0.06 39.4 0.07
SON 33.2 0.60 41.1 0.50 22.8 0.63 12.3∗ 0.59 9.3∗ 0.63

(El Niño), which is consistent with Fig. 7. Column NO2 ex-
hibits the opposite correlation pattern to that of H2O(v) over
the Pacific, with decreases in NO2 in regions with increased
H2O(v) and vice versa. The similarities in the spatial corre-
lation patterns for NO2 and H2O(v) with the MEI suggests
that convection is also at least partially driving the changes
in NO2 in the equatorial Pacific. Changes in the Walker circu-
lation associated with El Niño events have been shown to re-
distribute O3 in the tropics, resulting in a dipole pattern over
the western and central Pacific (Oman et al., 2011). Analy-
sis of vertical winds and the NO2 anomaly suggests a similar
mechanism for NO2.

Correlations between OMI NO2 and the MEI suggest
similar relationships as found in the MERRA-2 GMI sim-
ulation, although the correlations are not as robust as
for the other satellite variables examined here. This is
likely because tropospheric NO2 columns over the ocean
are frequently at or below the instrumental average noise
(5× 1014 molec.cm−2). As with the simulation, OMI sug-
gests broad regions of anti-correlation between ENSO and
NO2 in the equatorial Pacific and the Gulf of Alaska as well
as a region of positive correlation in the extra-tropical NH
Pacific. These results demonstrate that, with enough tempo-

ral and spatial averaging, OMI is capable of capturing the
variability in tropospheric NO2, even in remote regions with
low concentrations.

Tropospheric column CO and the MEI are positively cor-
related over most of the globe in both MERRA-2 GMI and
in MOPITT (Figs. 9b and f, respectively), suggesting strong
increases in CO during El Niño events. This increase in CO
is associated with increased biomass burning, particularly in
Indonesia, and is consistent with the modeled decrease in OH
(e.g., Duncan et al., 2003a) and with the widespread decrease
in TCOH over much of the tropics.

5.2 The planetary boundary layer

5.2.1 The relationship between PBL OH and ENSO

In contrast to the tropospheric column (Fig. 7), mean mass-
weighted OH (e.g., Lawrence et al., 2001) in the PBL in-
creases globally by 1 % during El Niño events (Fig. 10),
although regional differences are significantly larger. PBL
OH exhibits an area of strong positive correlation with the
MEI (Fig. 11d) over the central Pacific, marked by increases
in concentrations of the order of 2–3× 105 molec.cm−3,
approximately 15 % higher than concentrations in neutral
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Figure 8. The first EOF of TCOH from MERRA-2 GMI for DJF (a), MAM (b), JJA (c), and SON (d).

Figure 9. Regression of tropospheric column H2O(v) (a), CO (b), NO2 (c), and OH (d) from MERRA-2 GMI (top) and satellite retrievals
from AIRS (e), MOPITT (f), and OMI (g) against the MEI for DJF over the satellite lifetime.
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Figure 10. Same as panels (a) and (b) of Fig. 7 except for the PBL level.

Figure 11. Correlation of OH from MERRA-2 GMI with the MEI for the different atmospheric layers in DJF.

events. Changes in the PBL during La Niña are smaller, with
localized concentration decreases of about 5 %–10 % over
the tropical Pacific (Fig. 10b). Regions with significant cor-
relation between PBL OH and the MEI are distinctly smaller
than in the UFT (Fig. 11) and for TCOH (Fig. 5a), fur-
ther emphasizing the comparatively limited spatial effects of
ENSO in the PBL.

The more geographically limited changes in OH, shown
by the composite and regression analyses, are consistent with
EOF analysis. During all seasons except JJA, ENSO corre-
lates more strongly with the second EOF for the PBL (Ta-
ble 2), suggesting another mechanism is the dominant mode
of variability. The spatial pattern of the second EOF for PBL
OH varies markedly across seasons (Fig. S6 in the Supple-
ment), with the largest signal over the tropical Pacific during

DJF and MAM and over Indonesia in SON. In general, the
r2 with ENSO is 0.5 or higher, and the mode contributes ap-
proximately 10 % of the total spatial variance, although cor-
relation in JJA (r2

= .07) is negligible.
In contrast to the ENSO-related EOFs, the first EOF

(Fig. S7 in the Supplement) for the DJF PBL layer reveals
a spatial pattern much more limited to continental regions
and areas of continental outflow, suggesting that this mode
of variability is potentially reflective of long-term emission
trends in both anthropogenic and biomass burning emissions.
This is more evident in the first EOF for JJA, where the spa-
tial pattern shows opposite signs over regions with known net
emissions reductions (the United States, portions of Europe,
and Japan) and those with known net emissions increases
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Figure 12. Correlations of the MEI with the production rate of OH from the H2O+O1D reaction (a) for DJF and the total OH production
rate, as defined in the text, (b) for the PBL level are shown.

Figure 13. Correlation of the indicated species with the MEI for the PBL level for DJF.

(China, India, and the Middle East) over the 1980–2018 pe-
riod examined here.

5.2.2 The relationship between PBL OH drivers and
ENSO

Approximately 80 % of the zonal mean OH production in the
tropical PBL during El Niño events is from the H2O+O1D
reaction (Fig. 6a). Figure 12 shows the correlation of the
MEI against both OH production from this reaction and
the total OH production rate for the PBL. Similar plots for
the other OH production reactions are shown in Fig. S8
in the Supplement. The nearly identical regression pattern
for the H2O+O1D and the total production rate with the

MEI demonstrates that changes in this reaction are driving
changes in OH in the tropics during El Niño events.

To understand the relationship between the OH produc-
tion rate and ENSO in the PBL, we examine the changes in
H2O(v) and O1D (Fig. 13). The spatial correlation of H2O(v)
and the MEI in the PBL exhibits a tripole pattern similar to
that seen in the tropospheric column (Fig. 9a). While H2O(v)
is correlated with the MEI in the equatorial Pacific, which
would lead to increases in OH production, H2O(v) is anti-
correlated with the MEI near the Hawaiian Islands and in the
south Pacific, which would lead to decreased OH production
in these regions. Because OH increases in these areas during
El Niño events, the decreased H2O(v) is offset by increases
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Figure 14. Same as Fig. 7 except for the UFT.

in O1D, resulting in a net positive correlation of the total OH
production rate.

Changes in O1D and its photochemical drivers, O3 and
the rate of O3 photolysis to O1D (J(O1D)), are driving the
ENSO-related changes in OH in the PBL. O1D shows dis-
tinct regions of positive correlation with ENSO extending
from the Philippines to the eastern Pacific Ocean and an-
other region of positive correlation off the coast of Papua
New Guinea (Fig. 13b). O1D abundance is controlled both
by O3 concentrations and incoming solar radiation at wave-
lengths less than 320 nm. Positive correlation between ENSO
and O3 in the PBL is limited to the western Pacific Ocean,
where horizontal advection of relatively high O3 air from
Indonesia to the Pacific Ocean is increased during El Niño
events due to changes in the Walker circulation (Oman et al.,
2011). Changes in O3 and O1D off the coast of Papua New
Guinea are potentially linked to the South Pacific Conver-
gence Zone, which has a strong dependence on ENSO (Bor-
lace et al., 2014). J(O1D) exhibits two regions of positive
correlation extending from South America, namely one that
reaches Hawaii in the NH and another that spans almost to
the coast of Australia in the SH (Fig. 13d). The MERRA-2
GMI simulation shows a reduction in total stratospheric col-
umn O3 of 2 %–5 % in the tropics during El Niño, consistent
with previous work (e.g., Randel et al., 2009), which could
contribute to the increase in J(O1D), although more work is
needed to establish this link.

5.3 The upper free troposphere

5.3.1 The relationship between UFT OH and ENSO

Similar to the relationship between ENSO and TCOH, OH
in the UFT shows a strong anticorrelation with the MEI over
much of the tropics (Fig. 11a), resulting in large-scale de-
creases during El Niño events. Decreases are highest over
northern Australia and the west–central Pacific, of the order
of 1–2× 105 molec.cm−3 or 15 %–20 % lower than in neu-

tral events. During La Niña events, OH increases with respect
to neutral events over much of the globe, although the magni-
tude of the increases is lower than for El Niño events. As with
TCOH, one notable exception is over central Africa, where
UFT OH decreases between 1–2× 105 molec.cm−3.

EOF analysis on UFT OH, followed by correlation of the
temporal component (i.e., the principal component) with the
MEI, demonstrates that ENSO is the dominant mode of OH
variability in the UFT throughout much of the year. The MEI
correlates with UFT OH (r2> 0.5) for DJF, MAM, and SON
and explains 36 % of the spatial variance, or greater, in each
of the seasons (Table 2), demonstrating that the relationship
between ENSO and OH is even stronger in the UFT than in
the tropospheric column as a whole. As with the other atmo-
spheric levels, there is little correlation between OH and the
MEI for JJA.

5.3.2 The relationship between UFT OH drivers and
ENSO

While changes in the O1D+H2O reaction drive ENSO-
related changes in OH production in the PBL, the NO+HO2
reaction drives OH production in the UFT. The nearly iden-
tical correlation patterns between the NO+HO2 reaction
(Fig. 15) and the total OH production rate in the UFT layer
suggest that changes in NO and/or HO2 during El Niño are
driving interannual OH variability in the UFT, leading to de-
creased OH production over most of the tropical Pacific. This
dependence on the NO+HO2 reaction is consistent with its
overall contribution to the total production rate, as shown in
Fig. 6. Similar plots for the other OH production reactions are
shown in Fig. S9 in the Supplement. While J(O1D) does in-
crease in the UFT during El Niño events, as does production
from the O1D+H2O reaction in some regions, the relatively
small contribution of this reaction to the total OH production
in the UFT (Fig. 6a) does not significantly perturb OH in this
layer.
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Figure 15. Correlations of the production rate of OH from the NO+HO2 reaction (a) for DJF and the total OH production rate, as defined
in the text (b) with the MEI, for the UFT level are shown.

Figure 16. Correlation of the indicated species with the MEI for the UFT level for DJF.

Regression analysis suggests that changes in NO are driv-
ing the relationship between OH and ENSO in the UFT in
MERRA-2 GMI. The MEI–NO correlation exhibits a strong
dipole pattern in the tropics (Fig. 16), with areas of positive
correlation over southeast Asia and the maritime continent
and a large area of anti-correlation over much of the Pacific.
HO2 exhibits the opposite pattern, with increased concentra-
tions over much of the Pacific during El Niño. This is con-
sistent with the NO pattern, as decreased NO concentrations

favor the partitioning of HOx (HOx=OH+HO2) towards
HO2.

Similarities between NO and O3 correlation with the MEI
in the UFT suggest similar mechanisms in controlling the
spatial distribution of these species. The relationship between
O3 and the MEI, shown in Fig. 16b, is similar to that found in
Oman et al. (2013), using satellite data. They demonstrated
that areas of increased O3 over Indonesia coincided with in-
creased downward flow in the region associated with changes
in the Walker circulation. Decreases in O3 over the Pacific
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Figure 17. The regression of lightning NO emissions at 300 hPa (a)
and the lightning flash rate from the LIS/OTD time series (b) against
the MEI. Lightning data are restricted to within 35◦ of the Equator
because of the spatial coverage of the Tropical Rainfall Measuring
Mission (TRMM) satellite on which LIS is located.

coincided with increased upward motion, convectively loft-
ing low O3 air throughout the column. Similarly, regions of
anomalously low NO in the UFT during El Niño events are
associated with regions of anomalous upward motion, sug-
gesting that decreases in upper tropospheric NO results from
the convective lofting of NOx-poor air from lower in the tro-
pospheric column.

The anti-correlation between ENSO and NO also suggests
that lightning emissions of NO over the tropical Pacific do
not significantly increase OH production in the region dur-
ing El Niño events. Lightning NO emissions in MERRA-2
GMI show a correlation pattern (Fig. 17) similar to that of
H2O(v) (Fig. 9a), with increased lightning over the equatorial
Pacific and decreased lightning poleward of this region dur-
ing El Niño events. The correlation pattern from MERRA-2
GMI output agrees closely with flash rate data observed from
the Lightning Imaging Sensor (LIS). The only region of sig-
nificant difference between the satellite and MERRA-2 GMI
is in the equatorial Pacific, where the region of positive cor-
relation extends from Papua New Guinea to the South Amer-
ican coast in the simulation, but only about half that distance
is covered in the satellite product.

This tripole correlation pattern between MEI and light-
ning, evident in both the satellite and model (Fig. 17) is in
contrast to the relationship with NO (Fig. 16a) and other re-
active nitrogen (NOy) species in the UFT. While the anti-

correlation in NO is consistent with the changes in lightning
NO emissions in some regions, in the equatorial Pacific band,
NO decreases during El Niño events despite an increase in
lightning NO emissions. This apparent discrepancy occurs
because even though lightning NO increases by 100 % or
more over the equatorial Pacific during El Niño events in the
model, the absolute difference is orders of magnitude lower
than the accompanying changes over land. We conclude that
the resulting NO perturbations over the equatorial Pacific
latitudes are dominated by mechanism other than the local
lightning response, such as changes in the Walker circulation
and the associated transport of air originating over the conti-
nents. This mechanism is supported by the similar regression
pattern of longer-lived species, such as HNO3 (Fig. 16c) and
PAN (not shown) and NO in the UFT, showing that trans-
port of reactive nitrogen from other source regions, particu-
larly lightning over South America, is likely reduced during
El Niño events.

Our findings are broadly consistent with Turner et al.
(2018), who found that increases in lightning NO emissions
drive increases in OH during La Niña and, conversely, de-
creases in lightning NO emissions lead to OH decreases dur-
ing El Niño. The results presented here suggest that, in addi-
tion to this influence of lightning locally, other mechanisms,
such as atmospheric transport of NOy species, also likely
contribute to the relationship between ENSO and OH in the
equatorial Pacific.

5.4 Variability in the MFT and LFT

As in the UFT, ENSO is the dominant mode of variabil-
ity in the MFT in DJF, with strong correlation between the
MEI and the temporal component of the first EOF (r2

= 0.81)
and the first EOF explaining 20.8 % of the total spatial vari-
ance. Likewise, the largest OH anomalies in the LFT during
both El Niño and La Niña are centered over Australia and
South Africa (Fig. 18), similar to patterns seen in the UFT.
Unlike in the UFT, however, there is a large region extend-
ing from the coast of South America into the Pacific where
OH concentration is positively correlated with ENSO. These
changes are driven by the increase in H2O(v) and subsequent
increased OH production from the H2O+O1D reaction.

ENSO-related changes in OH concentration in the LFT are
smaller in magnitude than for the other atmospheric levels
(Fig. 18), with maximum increases in OH during El Niño
of the order of 1–1.5× 105 molec.cm−3. The spatial extent
of significant correlation between the MEI and OH concen-
tration in the LFT is smaller than for the other atmospheric
levels (Fig. 11), with the most prominent feature being an
area of positive correlation near Indonesia. Consistent with
the more limited impact, ENSO is correlated with the second
EOF of OH concentration for the LFT (r2

= 0.55), explain-
ing only 11.7 % of the total variability (Table 2).

It is likely that competing effects from the different drivers
limit the interannual variability in OH in the LFT and MFT,
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Figure 18. Same as panels (a) and (b) of Fig. 7 except for the MFT and LFT.

explaining the smaller regions of correlation with ENSO. For
these levels, no single OH production reaction clearly ex-
plains the relationship between ENSO and OH. In contrast
to the PBL and UFT, where the relationship between the to-
tal OH production rate closely mirrored the production rates
from the O1D+H2O and NO+HO2 reactions, respectively,
there are no analogous relationships for the LFT and MFT.
At these levels, no reaction clearly dominates total OH pro-
duction (Fig. 6). Increases in H2O in the mid-troposphere,
which would tend to increase OH, are offset by decreases in
NO and O3. These competing effects likely explain why the
absolute changes in OH are comparatively smaller in the LFT
than in the other layers.

The comparatively smaller changes in LFT OH during
El Niño events limit the effect of ENSO on the interannual
variability of the CH4 lifetime. Global mean, mass-weighted
tropospheric OH decreases by 2.2 % during El Niño events,
corresponding to only a 1 % decrease in the CH4 lifetime.
While changes in OH concentration are most pronounced in
the UFT and PBL, the CH4 lifetime is mostly dictated by
OH in the LFT due to the temperature dependence of the
OH+CH4 reaction rate. This limited effect on CH4 life-
time highlights the importance of investigating the spatial
OH variability as global mean metrics can obscure important
year-to-year changes.

5.5 Comparing simulated OH relationships with ENSO
in MERRA-2 GMI with the CCMI models

To understand whether the relationship between OH and
ENSO found in MERRA-2 GMI is robust, we examine
model simulations from the CCMI. To compare the rela-

tionship between OH and ENSO among the different mod-
els, we performed the same regression analysis on TCOH
for the four CCMI models considered here as for MERRA-
2 GMI. Figure 19 shows the number of CCMI models that
demonstrate a meaningful correlation between TCOH and
the MEI, defined as the absolute value of r greater than 0.5,
for each grid cell. To facilitate comparison, OH for each
model has been regridded to the resolution of the model with
the lowest horizontal resolution (2.81◦ longitude× 2.77◦ lat-
itude). This regridding does not substantially alter the corre-
lation patterns examined here.

In agreement with MERRA-2 GMI, TCOH varies with
ENSO over a large fraction of the tropics in most of the
CCMI models, with broadly similar spatial regression pat-
terns for most models across all seasons, except for MAM
(Fig. 19). In DJF, most models show strong correlation be-
tween ENSO and column OH over the central Pacific and
south of the Aleutian Islands, with at least three CCMI mod-
els and MERRA-2 GMI showing correlation in each of these
areas. This agreement highlights the relationship of OH with
ENSO and with the PNA and Australian monsoon, as dis-
cussed in Sect. 6. Similar agreement among models was
found for SON and JJA, although the spatial extent of the
highly correlated region is much smaller for JJA. In SON,
the expansion of the area of significant correlation over most
of the Indian Ocean likely results from the strong relationship
between the IOD and ENSO during this season. There is less
agreement in MAM, with only one or two models showing
strong correlation in most regions.

EOF analysis of the different CCMI models likewise sug-
gests that, in DJF, ENSO is the dominant mode of TCOH
variability. The spatial pattern of the first EOF of TCOH in
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Figure 19. The number of CCMI models that show a correlation between TCOH and ENSO over the period 1980 to 2010. Only regressions
with an absolute value of r greater than 0.5 are included. All models have been regridded to a common horizontal grid. This regridding does
not substantially alter the correlation patterns examined here. Grid boxes that also exhibit significant correlations between TCOH and ENSO
for MERRA-2 GMI are indicated by the stippling.

DJF for the five models is shown in Fig. S10 in the Supple-
ment, and the principal component time series, along with
the time series of the MEI, is shown in Fig. S11 in the Sup-
plement. MERRA-2 GMI, WACCM, and MRI show a strong
correlation between the MEI and the first EOF (r2> 0.64).
For each of these models, ENSO is the cause of 29 %–48 %
of the total spatial variance in TCOH. The correlation be-
tween the first EOF and the MEI for CHASER is weaker
(r2
= 0.28), although the spatial component shows similari-

ties to the other models. Correlation between the MEI and
the EOFs for the UFT and MFT levels increases to 0.56 and
0.45, respectively, showing that ENSO is still important in
controlling the interannual variability of CHASER, at least
in the UFT. Similarly, EMAC has no correlation between the
first EOF of TCOH and the MEI but does for the UFT layer
(r2
= 0.64). This EOF explains 20 % of the total spatial vari-

ance for this level but has a substantially different spatial pat-
tern than for the other models. While further work is needed
to understand the cause of the relationship between OH and
ENSO in the UFT in EMAC, results from MERRA-2 GMI
suggest a role for changes in production via the NO+HO2
reaction.

The agreement among the majority of the models suggests
that the relationship between ENSO and TCOH is robust.
While SSTs and emissions are identical among the models,
meteorology, chemical mechanisms, and parameterizations,
such as that for lightning and convection, vary widely. De-

spite the differences in these chemical and dynamical drivers
of OH, the spatial patterns of the ENSO TCOH relationship
are similar for most models. While it is beyond the scope of
this paper, determining the cause of intermodel differences
in this relationship between OH and climate modes could
further our understanding of the mechanisms driving inter-
annual OH variability. Given the results from the MERRA-2
GMI analysis, investigating ENSO-related changes in UFT
NO, both from lightning and transport, could provide insight
into these intermodel differences. Furthermore, Nicely et al.
(2020) showed that J(O1D) was the largest driver in differ-
ences in the methane lifetime in the CCMI models, suggest-
ing the potential importance of this variable in intermodel
differences in the OH–ENSO relationship in the PBL and
lower troposphere.

6 Relationship between simulated OH and NH climate
modes, monsoons, and the IOD

We now investigate the relationship between OH and the NH
modes of variability, monsoons, and the IOD. In Sect. 6.1, we
evaluate the relationships in MERRA-2 GMI, demonstrating
that these other climate features exert a much more spatially
limited influence on OH as compared to ENSO (Fig. 5). De-
spite the comparatively limited extent of influence, each of
these modes of variability can strongly influence the atmo-
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spheric oxidative capacity on the local scale. In Sect. 6.2, we
compare the results from MERRA-2 GMI to CCMI simula-
tions, demonstrating that the relationship between OH and
the IOD and NH modes is robust among models, while the
relationship between monsoons and OH is primarily limited
to MERRA-2 GMI.

6.1 Simulated OH and the NH climate modes,
monsoons, and the IOD in MERRA-2 GMI

Northern hemispheric modes of variability are strongly cor-
related (r > 0.5) with OH over ∼ 10 % of the globe during
DJF but have a comparatively smaller effect on global OH
than ENSO. During the positive phases of the NAO, defined
as the index being greater than 0.4, TCOH increases by up
to 25 % in the northern Atlantic. Similarly, during the posi-
tive phase of the PNA, TCOH decreases by 10 %–20 % in the
northern Pacific (Fig. 20). Because OH production is almost
an order of magnitude lower in the NH mid-latitudes than in
the tropics (Fig. 6c), however, the resultant decrease in global
mean mass-weighted OH (e.g., Lawrence et al., 2001) during
the positive phase of the NAO is only 0.77 %, as compared to
decreases of 2.2 % during an El Niño event. Similar results
are found for the other NH modes.

The effects of the monsoons on OH interannual variability
are much more localized than for ENSO and vary markedly
among the different monsoons (Fig. S12 in the Supplement).
For example, Fig. S13a in the Supplement shows the par-
tial correlation coefficient (e.g., Sekiya and Sudo, 2012) of
TCOH with the Australian monsoon, taking into account the
correlation of the Australian monsoon index with the MEI,
which has an r2 of 0.65 for DJF. Correlation is almost ex-
clusively restricted to areas near the Australian continent. In
this region, however, monsoons with an index in the 75th
percentile or higher result in TCOH that is 15 %–20 % (up
to 7× 1011 molec.cm−2) higher than for monsoons with an
index between the 25th and 75th percentile (Fig. S14 in the
Supplement). These increases in OH column for the strongest
monsoons are larger in magnitude than typical changes as-
sociated with ENSO, although they are limited to a smaller
region, suggesting that the Australian monsoon can signifi-
cantly perturb the local atmospheric oxidative capacity.

In contrast, despite its larger scale, the Asian monsoon
only shows a correlation with TCOH over a small portion of
the subcontinent (Fig. S12b and d). Correlations outside of
the subcontinent region result from the correlation between
the Asian monsoon and ENSO. Interestingly, this correlation
is only present during MAM and SON and not during JJA
when the Asian monsoon is at full strength. Lelieveld et al.
(2018) have shown, using in situ observations, that upper tro-
pospheric OH is increased during the Asian monsoon. The
lack of correlation demonstrated here suggests that the model
is not accurately capturing the chemical variability within the
monsoon anticyclone. The correlation with the monsoon in-
dex for MAM and SON could result from interannual vari-

ability at the start and end of the monsoon. Since these sea-
sons are at the fringe of the monsoon, yearly variations in the
start and end date would lead to larger variability than that
seen during JJA when the monsoon is active every year.

The IOD also shows a strong relationship with OH, al-
though, due to its annual cycle, the relationship is only
present during SON (Fig. 5d). Taking into account the cor-
relation between ENSO and the IOD (r2

= 0.30), the par-
tial correlation between the Dipole Mode Index (DMI) and
TCOH becomes mostly restricted to the western Indian
Ocean (Fig. S13b), where TCOH is anticorrelated with the
DMI, resulting in decreases in TCOH of the order of 10 %
(about 1.5× 1011 molec.cm−2). During the positive phase
of the IOD, the Indian Ocean basin exhibits a Walker-type
circulation with anomalous surface easterly winds and in-
creased convection in the region that exhibits anticorrelation
between OH and the DMI. This region is also characterized
by an anticorrelation between the DMI and OH production
from the NO+HO2 reaction, despite a positive correlation
with lightning NO emissions analogous to the relationship
between NO and ENSO in the equatorial Pacific. This sug-
gests that the anticorrelation between TCOH and the DMI
in the eastern Indian Ocean is being driven by changes in
NO transport from this Walker-type circulation. More work
is needed, however, to prove this relationship, as the correla-
tions between OH production from the NO+HO2 reaction
and the DMI do not meet our stated statistical significance
criteria.

6.2 Simulated OH and the NH climate modes,
monsoons, and the IOD in the CCMI models

The MERRA-2 GMI and the CCMI simulations exhibit
nearly identical spatial relationships between TCOH and the
NH climate modes and the IOD, demonstrating that these
relationships are robust among multiple models. For exam-
ple, all five models show two broad regions of correlation
between the NAO and TCOH, corresponding to the dipole
pattern of the NAO (Fig. 21a). Similar agreement is found for
the other NH modes (Fig. S15 in the Supplement). Likewise,
most models show the same pattern of correlation between
the IOD and TCOH (Fig. 21b), consistent with their agree-
ment for ENSO, since the two modes are closely related.

In contrast to the other modes of variability, the rela-
tionship between TCOH and the different monsoons varies
widely among the models. Agreement is highest for the Aus-
tralian monsoon (Fig. 21c), where most models see correla-
tion off the northwestern coast of the continent. For the other
monsoons considered here, there is no consistent relation-
ship with OH, with MERRA-2 GMI being the only model
showing correlations with most monsoons (Fig. S16 in the
Supplement). While models and observations have shown
the monsoons can change OH abundance, particularly in the
UFT (Lelieveld et al., 2018), the lack of correlation among
the models suggests either that those changes are not highly
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Figure 20. Fractional change in TCOH for positive phases of the NAO (a) and PNA (b), defined as having an index greater than 0.4, as
compared to neutral events (index between −0.4 and 0.4). Note that, for emphasis, the x axis is shifted in panel (b) to center the map over
the Pacific Ocean.

Figure 21. Same as Fig. 19 except for the NAO (a), the IOD (b), and the Australian Monsoon (c). The NAO and Australian monsoon are
shown for DJF and the IOD for SON.

variable from year to year or that not all models capture the
mechanisms behind monsoon influence on OH, such as con-
vective lofting of OH precursors.

7 Conclusions

Because of limited in situ observations and intermodel differ-
ences, there is significant uncertainty in the processes driv-
ing interannual OH variability, despite its importance in con-
trolling the removal of many atmospheric trace gases. Here,
we have explored the relationship between OH and multi-
ple modes of climate variability, including ENSO, the IOD,
NH modes of variability, and monsoons, in order to under-
stand how these large-scale dynamical features influence OH
through control of its dynamical and photochemical drivers.

Using output from the MERRA-2 GMI simulation, we
have shown that during DJF, when considered together, these
climate features can explain a portion of OH variability over

approximately 40 % of the troposphere by mass. ENSO is
the dominant mode of variability in all seasons except for
JJA and can explain 20 %–30 % of the spatial variance in
TCOH and results in an average decrease in the global, mass
weighted OH of 2.2 % during El Niño events. Effects from
the other modes of variability considered here are more lim-
ited in spatial scale but can strongly alter the atmospheric
oxidative capacity on the local scale. For example, changes
in TCOH for the NAO, IOD, and Australian monsoon can
reach 0.5, 1.5, and 7× 1011 molec.cm−2, respectively, com-
pared to 2× 1011 molec.cm−2 for ENSO.

Changes in OH with ENSO are driven by different pro-
cesses in the upper and lower troposphere. In the PBL, where
OH production is dominated by the reaction of O1D with
water, changes in the distribution of these species lead to
a positive correlation between OH and ENSO. Increases in
H2O(v) during El Niño are associated with increased convec-
tion and warmer SSTs, while increases in O1D result from

Atmos. Chem. Phys., 21, 6481–6508, 2021 https://doi.org/10.5194/acp-21-6481-2021



D. C. Anderson et al.: Spatial and temporal variability in the hydroxyl radical 6503

increased horizontal advection of O3 in the western Pacific
and increased photolysis rates resulting from reduced strato-
spheric O3 in the eastern Pacific. In the upper troposphere,
NO controls the OH abundance over the tropical Pacific. In
much of the region, decreases in lightning NO production
correspond to decreases in total NO and, thus, OH. In the
equatorial region, however, increases in lightning NO pro-
duction are offset by other processes, potentially including
transport due to changes in the Walker circulation. Further
work is needed to determine the relative importance of these
two factors in controlling OH in the region during El Niño
and La Niña events.

Absolute changes in OH concentration during El Niño
and La Niña events in the LFT and, to a lesser extent, the
MFT were limited by competing effects from changes in the
O1D+H2O and NO+HO2 reactions. As a result, ENSO
only explains 11.7 % of the variability in the LFT and is
associated with the second EOF. Because OH variability in
the LFT drives variability in the CH4 lifetime, which showed
limited response to ENSO variability, further research is war-
ranted to understand the dominant mode of OH variability at
this level, including any impacts in emissions trends, which
appear to be the dominant mode of variability in the PBL.

The relationship between the individual climate modes
seen in MERRA-2 GMI is also seen in the majority of the
CCMI models, suggesting that the relationship between the
modes and OH is robust. A total of four of the five mod-
els examined here show similar relationships between ENSO
and TCOH for all seasons except MAM, and three of those
models suggest that ENSO is the dominant mode of OH vari-
ability in DJF, responsible for between 30 % and 50 % of to-
tal spatial variance. Similar agreement is found for the NH
modes of variability and the IOD, while there is little agree-
ment among models between the relationship of the individ-
ual monsoons and OH.

Despite the agreement among models in the importance
of the driving factors of OH variability, there is still a lack
of observations demonstrating that the models are accurate.
We have shown here that satellite observations of H2O, CO,
lightning flashes, and, to a lesser extent, NO2 are able to cap-
ture the respective variability in each variable and the rela-
tionship with ENSO while being in excellent agreement with
the model simulation. While further understanding of the re-
lationship between these species and ENSO is needed, the re-
sults presented here suggest that combining the observations
of OH drivers and the various climate modes could lead to
additional methods to constrain OH from space.

Data availability. All output from MERRA-2 GMI is publicly
available at https://acd-ext.gsfc.nasa.gov/Projects/GEOSCCM/
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(CEDA Archive, 2021). Output from WACCM is available at
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