

Supplement of

Air quality and health benefits from ultra-low emission control policy indicated by continuous emission monitoring: a case study in the Yangtze River Delta region, China

Yan Zhang et al.

Correspondence to: Yu Zhao (yuzhao@nju.edu.cn)

The copyright of individual parts of the supplement might differ from the article licence.

Table List

Table S1 Evaluation of WRF simulation performance of meteorological parameters in D2.

Table S2 The ultra-low emission standard limits by sector (mg/m^3) .

Table S3 The fractions of males and females by region in the YRD for 2015.

Table S4 The baseline mortalities $(y_0, cases/10^5)$ by age group in China.

Table S5 The life expectancy by age group in China.

Figure List

Figure S1 The spatial distribution of population in the YRD region for 2015 at a horizontal resolution of 9 km (unit: persons/grid cell). The map data provided by Resource and Environment Data Cloud Platform are freely available for academic use (http://www.resdc.cn/data.aspx?DATAID=201), © Institute of Geographic Sciences & Natural Resources Research, Chinese Academy of Sciences.

Figure S2. The locations and sizes (installed capacity) of coal-fired power plants in the YRD region.

Parameters		Jan	Apr	Jul	Oct	Benchmark
Wind speed (WS10)	Obs (m/s)	2.69	2.99	2.75	2.43	
	Sim (m/s)	2.80	3.11	2.67	2.52	
	Bias (m/s)	0.12	0.11	-0.08	0.09	
	RMSE (m/s)	0.39	0.43	0.34	0.33	\leq 2.0
	IOA	0.94	0.95	0.97	0.95	≥ 0.6
Wind direction (WD10)	Obs (°)	183.05	177.54	163.67	174.14	
	Sim (°)	161.16	153.44	147.07	145.58	
	Bias (°)	-21.90	-23.32	-16.60	-28.56	≤ 10
Temperature (T2)	Obs (°C)	4.86	15.49	26.21	18.11	
	Sim (°C)	4.96	15.12	25.59	18.22	
	Bias (°C)	0.10	-0.35	-0.62	0.12	\leq 0.5
	RMSE (°C)	0.70	1.06	1.13	0.63	
	IOA	0.99	0.99	0.97	0.99	≥ 0.7
	Obs (%)	66.58	71.04	81.32	71.81	
Relative	Sim (%)	72.93	77.64	82.16	68.61	
Humidity	Bias (%)	6.35	6.60	0.84	-3.20	
(RH2)	RMSE (%)	13.26	10.36	3.55	6.48	
	IOA	0.85	0.89	0.97	0.96	≥ 0.7

Table S1 Evaluation of WRF simulation performance of meteorologicalparameters in D2.

Note: The benchmarks of statistical indicators for the meteorological parameters were reported in (Emery, C., Tai, E., and Yarwood, G.: Enhanced meteorological modeling and performance evaluation for two Texas episodes, Report to the Texas Natural Resources Conservation Commission, prepared by ENVIRON, International Corp, Novato, CA, 2001). The Bias, IOA and RMSE were calculated using the following equations (P, O and \overline{O} represent the simulation, observation, and averaged observation value, respectively):

$$Bias = \frac{1}{n} \sum_{i=1}^{n} (P_i - O_i); \quad IOA = 1 - \frac{\sum_{i=1}^{n} (P_i - O_i)^2}{\sum_{i=1}^{n} (|P_i - \overline{O}_i| + |O_i - \overline{O}_i|)^2}; \quad RMSE = \sqrt{\frac{1}{n} \sum_{i=1}^{n} (P_i - O_i)^2}$$

Sector	Section	Pollutants	Ultra-low emission limits	References
		SO_2	35	
Power	Coal-fired	NO_X	50	MEP et al. (2015)
		PM	10	
		SO_2	35	
Iron & steel	Sintering	NO_X	50	MEE (2019)
		PM	10	
Iron & steel	Iron making	SO_2	50	
		NO_X	150	MEE (2019)
		PM	10	
Cement	Cement	SO_2	30	LIDDEE and LIDAMD
		NO_X	50	(2020)
		PM	10	(2020)
Industrial boiler	r Coal-fired	SO_2	50	
		NO_X	100	SDDEE and SDBQTS
		PM	10	(2010)

Table S2 The ultra-low emission standard limits by sector (mg/m³).

Note: The details for the references:

Hebei Department of Ecology and Environment (HBDEE), Hebei Administration for Market Regulation (HBAMR). Ultra-low Emission Standard of Air Pollutants for Cement Industry, DB13/2167-2020. 2020, Hebei, China.

Ministry of Ecology and Environment of the People's Republic of China (MEE), Opinions on Promoting the Implementation of Ultra-low Emissions in the Steel Industry, 2019, Beijing, China.

Ministry of Environmental Protection of the People's Republic of China (MEP), National Development and Reform Commission (NDRC), National Energy Administration (NEA). Work Plan for Fully Implementing Ultra-low Emissions and Energy Conservation in Coal-Fired Power Plants, 2015, Beijing, China.

Shandong Department of Ecology and Environment (SDDEE), Shandong Bureau of Quality and Technical Supervision (SDBQTS). Emission Standard of Air Pollutants for Boilers, DB37/2374-2018. 2018, Shandong, China.

Province or city	Male	Female
Anhui	0.51	0.49
Shanghai	0.50	0.50
Jiangsu	0.50	0.50
Zhejiang	0.51	0.49

Table S3 The fractions of males and females by region in the YRD for 2015.

Age (vear)	IHD		STK		COPD		LC	
nge (jeur)	Male	Female	Male	Female	Male	Female	Male	Female
25-29	5.9	2.1	4.9	1.8	0.7	0.4	1.1	0.6
30-34	9.7	3.1	7.8	2.9	1	0.7	2.5	1.3
35-39	15.3	5	13.6	5.8	1.8	1.1	4.7	2.9
40-44	26.7	9.2	27.3	13.2	3.8	2.3	10.9	6.1
45-49	45.2	16.4	52.2	27	7.5	4.1	25.4	11.4
50-54	77.5	29.7	100.3	52.8	17.5	8.9	55.4	21.7
55-59	125.8	50.2	176.6	89.2	39.3	18.6	102.9	35.4
60-64	215.1	99	326.5	165.4	97.8	46.2	180.3	57.1
65-69	372.6	182.9	571.1	300.5	221.6	105.2	270.5	83.1
70-74	615	364	996.8	553.3	494.7	238.5	381.2	126.3
75-79	1050.4	676.3	1648.7	993.2	910.6	475.1	495.2	175.5
80+	2865.5	2551.6	3551.5	3037.6	2459	1782.1	622	268.7

Table S4 The baseline mortalities $(y_0, cases/10^5)$ by age group in China. Note LRI is a common disease among young children, and its baseline mortalities are 13.7 and 11.4 cases/10⁵ for male and female regardless of age, respectively.

Age (year)	Male	Female
<1	74.8	77.7
1-4	74.5	77.4
5-9	70.6	73.5
10-14	65.7	68.6
15-19	60.8	63.7
20-24	55.9	58.8
25-29	51.1	53.9
30-34	46.2	49.0
35-39	41.5	44.2
40-44	36.7	39.4
45-49	32.0	34.6
50-54	27.3	29.9
55-59	22.9	25.3
60-64	18.6	20.9
65-69	14.8	16.8
70-74	11.4	13.2
75-79	8.7	10.0
80-84	6.7	7.5
85-89	4.9	5.5
90-94	3.7	4.2
95-99	2.9	3.2
100+	2.4	2.8

Table S5 The life expectancy by age group in China.

Figure S1

 $0 \qquad 0.5 \times 10^4 \quad 1 \times 10^4 \quad 2 \times 10^4 \quad 5 \times 10^4 \quad 10 \times 10^4 \quad 15 \times 10^4 \quad 20 \times 10^4 \quad 30 \times 10^4 \quad 35 \times 10^4$

Figure S2

