

Supplement of

Total OH reactivity over the Amazon rainforest: variability with temperature, wind, rain, altitude, time of day, season, and an overall budget closure

Eva Y. Pfannerstill et al.

Correspondence to: Eva Y. Pfannerstill (eva.pfannerstill@mpic.de)

The copyright of individual parts of the supplement might differ from the article licence.

Supplementary Information

Figure S1. Soil moisture and total OH reactivity in hourly time resolution for the four measurement periods.

Figure S2. Unattributed OH reactivity fraction profiles for noon- and nighttime in each measurement period. The shaded areas represent the standard deviation. The measurement uncertainty given is the average over all observation periods. Note that the unattributed fraction is usually below the measurement uncertainty.

Figure S3. Campaign average noontime total OH reactivities as a function of height with linear regressions for gradient determination. The results of the linear regressions were: March 2018: R = -0.005*h + 25.7; October 2018: R = -0.015*h + 34.0; June 2019: R = -0.016*h + 24.3; September 2019: R = -0.026*h + 40.4.

Figure S4. Daytime OH reactivity for each season by protonated mass-to-charge ratio (m/z) of PTR-ToF-MS ions and colored by compound class (see Table S1). Isoprenoids include isoprene, monoterpenes and sesquiterpenes as specified in Table S1 (including primarily emitted oxygenated monoterpenes). Ions colored as isoprenoids or GLVs include fragments as denoted in Table S1. Note that there exist is benefitied as a second.

5 that the y axis is in logarithmic scale.

Figure S5. Hourly averages of total OH reactivity at 80 m a. g. l. at the ATTO tower as a function of photosynthetically active radiation (PAR). Temperature color scale shown in (b) for all panels. (a) Wet season (March 2018), fit function: R = 21.7-0.003*[PAR], $r^2 = 0.08$ (b) Transition season (June 2019), fit function: R = 15.4-0.004*[PAR], $r^2 = 0.27$ (c) Dry seasons (October 2018 and September 2019), fit equation: R = 21.4-0.006*[PAR], $r^2 = 0.27$.

Figure S6. Modelled total OH reactivity from the temperature-dependent parameterization (Sect. 3.3.1) vs. measured total OH reactivity. Linear regression: y = 8.7 + 0.6x, $r^2 = 0.61$.

Figure S7. Timeseries of meteorological parameters (wind speed at 320 m, precipitation at 320 m, PAR at 80 m), OVOC OH reactivity and acetaldehyde mixing ratios around (a) a daytime rain event and (b) an evening rain event. (c) Vertical profiles of OVOC-attributed OH reactivity for two rain events.

Figure S8. Total OH reactivity as a function of terpenoid reactivity with black carbon mass concentration as a colour scale for September 2019. The Pearson Correlation coefficient for total OH reactivity vs. isoprene OH reactivity is $r^2 = 0.75$, for total OH reactivity vs. black carbon (not shown) it is $r^2 = 0.14$, showing that the dependence of total OH reactivity on plant activity is larger than on biomass burning.

Compound/ protonated mass (grey shaded compounds are gas standard calibrated with low uncertainty, compounds marked with a * were included in Nölscher et al., 2016)	Chemi- cal formula	<i>kvoc+oH</i> [cm ³ molecules ⁻¹ s ⁻¹]	Detected by	Compounds attributed to protonated mass	If no unambiguous compound identification: reaction rate coefficient derived from	Literature reference for reaction rate coefficent	Avg. OH reactivity in Sept 2019 at 80 m [s ⁻¹]	Compound class /comments
Methane*	CH ₄	6.45E-15	Picarro Cavity ring-down spectroscopy instrument			IUPAC, 2020	0.29	Inorganic
Carbon monoxide*	СО	1.44E-13	Picarro Cavity ring-down spectroscopy instrument			IUPAC, 2020	0.04	Inorganic
Ozone*	O ₃	7.30E-14	UV Photometric O ₃ Analyzer			IUPAC, 2020	0.02	Inorganic
33.0335*	CH ₃ OH	9.00E-13	PTR-ToF-MS	Methanol		IUPAC, 2020	0.09	OVOC
42.0338*	C_2H_3N	2.20E-14	PTR-ToF-MS	Acetonitrile		IUPAC, 2020	2.0e-4	Others
45.0335*	C ₂ H ₄ O	1.50E-11	PTR-ToF-MS	Acetaldehyde		IUPAC, 2020	0.53	OVOC
59.0491*	C ₃ H ₆ O	1.80E-13	PTR-ToF-MS	Acetone		IUPAC, 2020	0.01	OVOC
63.0263	C ₂ H ₆ S	4.80E-12	PTR-ToF-MS	Dimethyl sulfide		IUPAC, 2020	0.24	SVOC
69.0699*	C5H8	1.0E-10	PTR-ToF-MS	Isoprene		IUPAC, 2020	9.48	Isoprene
71.0491*	C ₄ H ₆ O	5.62E-11	PTR-ToF-MS	Methyl vinyl ketone; methacrolein; (1,2)-isoprene hydroxy hydroperoxide; (4,3)-isoprene hydroxy hydroperoxide	Weighted average (MVK/MACR = 1.5/1 according to Kuhn et al., 2007)	St Clair et al., 2016; IUPAC, 2020	2.86	OVOC
73.0648*	C ₄ H ₈ O	4.87E-11	PTR-ToF-MS	2-butanone (MEK)		IUPAC, 2020	0.01	OVOC
79.0543*	C ₆ H ₆	1.20E-12	PTR-ToF-MS	Benzene		IUPAC, 2020	0.05	Others
93.0699*	C ₇ H ₈	1.45E-11	PTR-ToF-MS	Toluene / here: fragment of aromatic monoterpenes (Kari et al., 2018)	p-cymene reaction rate coefficient	IUPAC, 2020	0.03	MT

107.0856	C ₈ H ₁₀	1.45E-11	PTR-ToF-MS	Xylenes / here: fragment of aromatic monoterpenes [identified by correlation with parent mass]	p-cymene reaction rate coefficient	IUPAC, 2020	0.01	MT
121.1012	C ₉ H ₁₂	1.45E-11	PTR-ToF-MS	Trimethylbenzene / here: fragment of aromatic monoterpenes [identified by correlation with parent mass]	p-cymene reaction rate coefficient	IUPAC, 2020	0.01	MT
137.1325*	C ₁₀ H ₁₆	7.23E-11	PTR-ToF-MS (sum), speciation by TD-GC-TOF- MS	Monoterpenes	Weighted average according to speciation: $68.1\% \alpha$ -pinene, $14.0\% \beta$ -pinene, 9.5% limonene, 5.7% camphene, $1.3\% \beta$ -myrcene, 0.9% sabinene, 0.3% terpinolene, $0.2\% \gamma$ -terpinene	IUPAC, 2020	0.60	MT
31.0179	НСНО	8.50E-12	PTR-ToF-MS	Formaldehyde		IUPAC, 2020	0.13	OVOC
41.0386	C ₃ H ₄	none	PTR-ToF-MS	Fragment of isoprene and monoterpenes (Pagonis et al., 2019; Kari et al., 2018)	None, because isoprene and MTs are calibrated		none	none
43.0179	C ₂ H ₂ O	6.90E-13	PTR-ToF-MS	Fragment of acetic acid (Pagonis et al., 2019)	Acetic acid reaction rate coefficient	IUPAC, 2020	0.06	OVOC
43.0543	C ₃ H ₆	1.50E-11	PTR-ToF-MS	Fragment of 1-hexanol (Pagonis et al., 2019) [propene was excluded by NO+ PTR-MS measurements]		IUPAC, 2020	0.18	GLV
46.0288	CH ₃ NO	1.50E-12	PTR-ToF-MS	Formamide		Nizamov and Dagdigian, 2003	0.005	Others. Isotope of acetaldehyde on m/z 46 was subtracted
47.0128	НСООН	4.50E-13	PTR-ToF-MS	Formic acid		IUPAC, 2020	0.02	OVOC
47.0492	C ₂ H ₆ O	3.2E-12	PTR-ToF-MS	Ethanol		IUPAC, 2020	0.01	OVOC
57.0335	C ₃ H ₄ O	1.96E-11	PTR-ToF-MS	Acrolein		Atkinson and Arey, 2003	0.24	OVOC
57.0699	C ₄ H ₈	3.78E-11	PTR-ToF-MS	Butenes [identified by NO+ chemistry]; or fragment of hexanol, hexenyl acetate [identified by correlation with parent mass] (Pagonis et al., 2019)	Average of butenes or hexanol/hexenyl acetate reaction rate coefficients according to identification	Atkinson and Arey, 2003; Atkinson et al., 1995	0.28	Others/GLV
61.0285	$C_2H_4O_2$	6.90E-13	PTR-ToF-MS	Acetic acid		IUPAC, 2020	0.03	OVOC
63.0441	C ₂ H ₆ O ₂	1.45E-11	PTR-ToF-MS	1,2-ethanediol		IUPAC, 2020	0.00	OVOC

71.0856	C5H10	1.30E-11	PTR-ToF-MS	Fragment of 2-pentanol, octanol, nonanol (Pagonis et al., 2019)	average	IUPAC, 2020	0.07	OVOC
73.0284	$C_3H_4O_2$	3.30E-11	PTR-ToF-MS	Methyl glyoxal		IUPAC, 2020	0.09	OVOC
74.0601	C ₃ H ₇ NO	1.25E-11	PTR-ToF-MS	N,N-dimethyl formamide, N- methyl acetamide	average	Solignac et al., 2005; Barnes et al., 2010	0.00	Others
75.0441	C ₃ H ₆ O ₂	2.85E-12	PTR-ToF-MS	Hydroxyacetone		IUPAC, 2020	0.08	OVOC
77.0598	$C_3H_8O_2$	1.62E-11	PTR-ToF-MS	2-methoxyethanol; 1,2-propanediol	average	Porter et al., 1997; IUPAC, 2020	0.03	OVOC
83.0492	C ₅ H ₆ O	9.30E-11	PTR-ToF-MS	3-methylfuran (isoprene oxidation product)		IUPAC, 2020	0.37	OVOC
83.0856	C ₆ H ₁₀	6.26E-11	PTR-ToF-MS	Fragment of hexenol and hexanal (Pagonis et al., 2019) [identified by correlation with parent mass]	Average	Atkinson and Arey, 2003; Atkinson et al., 1995	0.29	GLV
84.0808	C5H9N	2.56E-13	PTR-ToF-MS	Pentanenitrile	rate coefficient of propanenitrile	Sun et al., 2008	0.00	Others; isotope of C_6H_{10} on m/z 84 was subtracted
85.0648	C ₅ H ₈ O	4.43E-11	PTR-ToF-MS	E-2-pentenal; 3-methyl-3-buten-2- one; E-2-methyl-2-butenal; 3- penten-2-one; 1-penten-3-one	average	Grosjean and Williams, 1992; Jiménez et al., 2009; Davis et al., 2007	0.14	OVOC
85.1012	C ₆ H ₁₂	1.50E-11	PTR-ToF-MS	Fragment of hexanol (Pagonis et al., 2019) [identified by correlation with other GLVs]		Atkinson and Arey, 2003	0.07	GLV
87.0441	C ₄ H ₆ O ₂	2.38E-11	PTR-ToF-MS	2,3-Butanedione; acetic acid ethenyl ester; 2-propenoic acid methyl ester; 4-hydroxy-2-butenal	average	Baker et al., 2005; Teruel et al., 2006; Blanco et al., 2009; Dagaut et al., 1988	0.23	OVOC
87.0805	C ₅ H ₁₀ O	6.27E-11	PTR-ToF-MS	Pentanal; Z-2-penten-1-ol; 2- Methyl-3-buten-2-ol; 3-methyl-3- buten-1-ol	average	Atkinson and Arey, 2003; IUPAC, 2020; Cometto et al., 2008; Orlando et al., 2001	0.51	GLV
89.0234	$C_3H_4O_3$	1.20E-13	PTR-ToF-MS	Pyruvic acid		IUPAC, 2020	1.1e-4	OVOC
89.0598	C ₄ H ₈ O ₂	6.47E-12	PTR-ToF-MS	1,4-dioxane; formic acid 1- methylethyl ester; ethyl acetate; butyric acid; acetoin; 1-hydroxy-3- butanone	average	Picquet et al., 1998; IUPAC, 2020; Pimentel et al., 2010; Aschmann et al., 2000; Moriarty et al., 2003	0.13	OVOC

95.0161	$C_2H_6O_2S$	3.00E-13	PTR-ToF-MS	Dimethylsulfone		IUPAC, 2020	0.00	Others
95.0492	C ₆ H ₆ O	2.80E-11	PTR-ToF-MS	Phenol		IUPAC, 2020	0.03	Others
97.0284	C ₅ H ₄ O ₂	3.51E-11	PTR-ToF-MS	Furfural		Bierbach et al., 1995	0.03	OVOC
97.0648	C ₆ H ₈ O	6.78E-11	PTR-ToF-MS	Hexadienal		Colmenar et al., 2014	0.07	
97.1012	C ₇ H ₁₂	2.96E-11	PTR-ToF-MS	Fragment of heptanal (plant odorant)	Heptanal reaction rate coefficient	Atkinson and Arey, 2003	0.03	OVOC
99.0441	$C_5H_6O_2$	4.04E-11	PTR-ToF-MS	Furfuryl alcohol	Furan reaction rate coefficient	Atkinson, 1986	0.33	OVOC
99.0805	C ₆ H ₁₀ O	4.76E-11	PTR-ToF-MS	E-2-hexenal, Z-3-hexenal	average	Atkinson et al., 1995; Xing et al., 2012	0.14	GLV
99.1169	C ₇ H ₁₄	4.60E-11	PTR-ToF-MS	Fragment of decene	1-decene reaction rate coefficient	Aschmann and Atkinson, 2008	0.07	MT
101.0598	C ₅ H ₈ O ₂	6.83E-11	PTR-ToF-MS	C5-hydroxycarbonyl (ISOPOOH conversion product on metal surfaces (Mentler, 2018)); oxopentanal	average	Aschmann et al., 2013; St Clair et al., 2016	0.45	OVOC
101.0961	C ₆ H ₁₂ O	2.70E-11	PTR-ToF-MS	n-hexanal		Atkinson et al., 1995	0.03	GLV
103.0390	C ₄ H ₆ O ₃	6.90E-13	PTR-ToF-MS	Acetic anhydride	Reaction rate coefficient of acetic acid	IUPAC, 2020	3.5e-4	OVOC
103.0754	$C_5H_{10}O_2$	2.66E-11	PTR-ToF-MS	Butanoic acid methyl ester; acetic acid methylethyl ester, 2-methyl- propanoic acid methylester, n- propyl acetate; 1-hydroxy-2- methyl-3-butanone; 1-hydroxy-3- methyl-2-butanone; 5-hydroxy-2- pentanone; pentanoic acid; C5-diol (ISOPOOH conversion product on metal surfaces (Mentler, 2018))	average	Schütze et al., 2010; Ferrari et al., 1996; Aschmann et al., 2000; NCBI, 2006; St Clair et al., 2016	0.02	OVOC
105.0547	C ₄ H ₈ O ₃	4.66E-12	PTR-ToF-MS	Methoxy methylacetate; methoxy ethylformate; ethoxy methylformate	average	O'Donnel et al., 2004	0.00	OVOC
105.0699	C ₈ H ₈	1.45E-11	PTR-ToF-MS	MT fragment (p-cymene)	p-cymene reaction rate coefficient	IUPAC, 2020	0.02	MT
107.0492	C ₇ H ₆ O	1.26E-11	PTR-ToF-MS	Benzaldehyde		IUPAC, 2020	0.01	Others
109.0648	C ₇ H ₈ O	3.27E-11	PTR-ToF-MS	Anisol, p-cresol, benzylalcohol	average	IUPAC, 2020; Coeur-Tourneur et al., 2010	0.01	MT

109.1012	C ₈ H ₁₂	none	PTR-ToF-MS	Fragment of sesquiterpenes	none		None	none
111.0805	C7H10O	3.83E-11	PTR-ToF-MS	Heptadienal (ox. product of myrcene, ocimene, terpinolene)		Baker et al., 2004	0.03	OVOC
111.1169	C ₈ H ₁₄	3.60E-11	PTR-ToF-MS	Fragment of octanal	Reaction rate of nonanal	Bowman et al., 2003	0.05	OVOC
113.0233	C ₅ H ₄ O ₃	4.04E-11	PTR-ToF-MS	Furoic acid	Reaction rate coefficient of furan	Atkinson, 1986	0.14	OVOC
113.0598	C ₆ H ₈ O ₂	5.80E-11	PTR-ToF-MS	E-hexendione; Z-hexendione	average	Tuazon et al., 1985	0.13	OVOC
113.0961	$C_7H_{12}O$	4.39E-11	PTR-ToF-MS	E-2-Hepten-1-al		Davis et al., 2007	0.03	OVOC
115.0390	$C_5H_6O_3$	3.35E-12	PTR-ToF-MS	Pentanetrione	Reaction rate coefficient of pentanone	Jiménez et al., 2005	0.00	OVOC
115.0754	$C_{6}H_{10}O_{2}$	2.82E-11	PTR-ToF-MS	2,5-hexanedione; ethyl-2-butenoate	average	Dagaut et al., 1988; Teruel et al., 2012	0.05	OVOC
115.1118	C7H14O	7.10E-12	PTR-ToF-MS	2-heptanone; 5-methyl-2-hexanone; 2-,4-dimethyl-3-pentanone; heptanal	average	Atkinson and Arey, 2003	0.01	OVOC
117.0546	$C_5H_8O_3$	9.05E-12	PTR-ToF-MS	1-acetyloxy-2-propanone	Reaction rate coefficient as 119.0703	O'Donnel et al., 2004	0.01	OVOC
119.0703	C ₅ H ₁₀ O ₃	7.10E-12	PTR-ToF-MS	Ethoxy ethylformate; ethoxy methylacetate	average	O'Donnel et al., 2004	0.01	OVOC
119.0856	C ₉ H ₁₀	1.45E-11	PTR-ToF-MS	Fragment of p-cymene	Reaction rate coefficient of p- cymene	Atkinson and Arey, 2003	0.01	MT
123.0441	C ₇ H ₆ O ₂	1.20E-12	PTR-ToF-MS	Benzoic acid	Rate coefficient of benzene	IUPAC preferred value	0.00	Others
125.0598	$C_7H_8O_2$	7.35E-11	PTR-ToF-MS	Guaiacol		Coeur-Tourneur et al., 2010	0.03	OVOC
127.1118	C ₈ H ₁₄ O	4.05E-11	PTR-ToF-MS	E-2-octenal		Gao et al., 2009	0.04	OVOC
129.1274	C ₈ H ₁₆ O	1.08E-10	PTR-ToF-MS	Octenol	Reaction rate coefficient of hexenol	Atkinson et al., 1995	0.02	OVOC
133.1012	$C_{10}H_{12}$	5.08E-11	PTR-ToF-MS	Cymenene (dimethyl styrene)	Reaction rate coefficient of styrene	IUPAC, 2020	0.02	MT
135.1169	$C_{10}H_{14}$	1.45E-11	PTR-ToF-MS	p-cymene		Atkinson and Arey, 2003	0.01	MT
139.1118	C ₉ H ₁₄ O	5.49E-11	PTR-ToF-MS	Monoterpene oxidation products (4- acetyl-2-cyclohexene; nopinone; camphenilone; sabinaketone)	average	Atkinson and Aschmann, 1993	0.14	OVOC
143.1067	C ₈ H ₁₄ O ₂	7.84E-11	PTR-ToF-MS	Z-3-hexenyl acetate		Atkinson et al., 1995	0.05	GLV
143.1431	C9H18O	3.60E-11	PTR-ToF-MS	Nonanal		Bowman et al., 2003	0.01	OVOC

149.1325	$C_{11}H_{16}$	none	PTR-ToF-MS	Sesquiterpene fragmentation product		none	none	none
151.0995	C ₁₀ H ₁₄ O	4.90E-11	PTR-ToF-MS	Thymol, carvol	Reaction rate coefficient of cresol	IUPAC, 2020	0.04	MT
153.0547	C ₈ H ₈ O ₃	1.20E-12	PTR-ToF-MS	Methyl salicylate	Reaction rate coefficient of benzene	IUPAC, 2020	0.00	OVOC
153.1274	C ₁₀ H ₁₆ O	4.30E-12	PTR-ToF-MS	Camphor		Atkinson and Arey, 2003	0.00	MT
155.1067	$C_9H_{14}O_2$	1.24E-11	PTR-ToF-MS	Arbusculone, C9 unsaturated esters	Average of tetrahydrofuran and methoxy ethylformate reaction rate coefficients	O'Donnel et al., 2004; Moriarty et al., 2003	0.01	OVOC
155.1425	C ₁₀ H ₁₈ O	2.72E-11	PTR-ToF-MS (sum), speciation by TD-GC-TOF- MS	Eucalyptol (1,8-cineole), linalool	Weighted average according to speciation: 89% eucalyptol, 11% linalool	Atkinson et al., 1995; Ceacero- Vega et al., 2011	0.01	MT
157.1586	C ₁₀ H ₂₀ O	9.24E-11	PTR-ToF-MS	Menthol, citronellol	Average	Ham et al., 2006; Ceacero-Vega et al., 2012	0.05	MT
205.1951	C ₁₅ H ₂₄	Dry season: 7.12E-11 (80 m), 6.77E- 11 (150 m), 6.48E-11 (320 m) Wet season: 7.06E-11 (80 m), 6.37E- 11 (150 m), 6.11E-11 (320 m)	PTR-ToF-MS (sum), speciation by TD-GC-TOF- MS	Sesquiterpenes	Weighted average according to time-dependent speciation. <i>Dry</i> <i>season average:</i> α -copaene : cyperene : longifolene : cyclosativene = 44:26:3:27 (80 m), 37:24:14:25 (150 m), 35:13:40:12 (320 m) <i>Wet season average:</i> α -copaene : cyperene : longifolene : cyclosativene = 46:19:19:16 (80 m), 29:22:32:17 (150 m). For cyperene, the reaction rate coefficient of α -cedrene was used, and for cyclosativene, the one of longifolene.	IUPAC, 2020	0.08	SQT

References

Aschmann, S. M. and Atkinson, R.: Rate constants for the gas-phase reactions of OH radicals with E-7-tetradecene, 2-methyl-1-tridecene and the C(7)-C(14) 1-alkenes at 295 +/- 1 K, Physical chemistry chemical physics PCCP, 10, 4159–4164, https://doi.org/10.1039/b803527j, 2008.

Aschmann, S. M., Arey, J., and Atkinson, R.: Reaction of OH radicals with 5-hydroxy-2-pentanone: formation yield of 4-oxopentanal and its OH radical reaction rate constant, Environ. Chem., 10, 145, https://doi.org/10.1071/EN12146, 2013. Aschmann, S. M., Arey, J., and Atkinson, R.: Atmospheric Chemistry of Selected Hydroxycarbonyls, J. Phys. Chem. A, 104, 3998–4003, https://doi.org/10.1021/jp9939874, 2000.

Atkinson, R.: Kinetics and mechanisms of the gas-phase reactions of the hydroxyl radical with organic compounds under atmospheric conditions, Chemical reviews, 86, 69–201, https://doi.org/10.1021/cr00071a004, 1986.

Atkinson, R. and Arey, J.: Atmospheric degradation of volatile organic compounds, Chemical reviews, 103, 4605–4638, https://doi.org/10.1021/cr0206420, 2003.

Atkinson, R. and Aschmann, S. M.: Atmospheric chemistry of the monoterpene reaction products nopinone, camphenilone, and 4-acetyl-1-methylcyclohexene, J Atmos Chem, 16, 337–348, https://doi.org/10.1007/BF01032629, available at: https://link.springer.com/content/pdf/10.1007/BF01032629.pdf, 1993.

Atkinson, R., Arey, J., Aschmann, S. M., Corchnoy, S. B., and Shu, Y.: Rate constants for the gas-phase reactions of cis -3-Hexen-1-ol, cis -3-Hexenylacetate, trans -2-Hexenal, and Linalool with OH and NO 3 radicals and O 3 at 296 ± 2 K, and OH radical formation yields from the O 3 reactions, Int. J. Chem. Kinet., 27, 941–955, https://doi.org/10.1002/kin.550271002, 1995.

Baker, J., Arey, J., and Atkinson, R.: Formation and Reaction of Hydroxycarbonyls from the Reaction of OH Radicals with 1,3-Butadiene and Isoprene, Environ. Sci. Technol., 39, 4091–4099, https://doi.org/10.1021/es047930t, 2005.

Baker, J., Arey, J., and Atkinson, R.: Kinetics of the Gas-Phase Reactions of OH Radicals, NO 3 Radicals and O 3 with Three C 7 -Carbonyls Formed From The Atmospheric Reactions of Myrcene, Ocimene and Terpinolene, J Atmos Chem, 48, 241–260, https://doi.org/10.1023/B:JOCH.0000044420.94492.fa, 2004.

Barnes, I., Solignac, G., Mellouki, A., and Becker, K. H.: Aspects of the atmospheric chemistry of amides, Chemphyschem a European journal of chemical physics and physical chemistry, 11, 3844–3857, https://doi.org/10.1002/cphc.201000374, 2010.

Bierbach, A., Barnes, I., and Becker, K. H.: Product and kinetic study of the oh-initiated gas-phase oxidation of Furan, 2-methylfuran and furanaldehydes at ≈ 300 K, ATMOSPHERIC ENVIRONMENT, 29, 2651–2660, https://doi.org/10.1016/1352-2310(95)00096-H, available at: http://www.sciencedirect.com/science/article/pii/135223109500096H, 1995.

Blanco, M. B., Bejan, I., Barnes, I., Wiesen, P., and Teruel, M. A.: OH-initiated degradation of unsaturated esters in the atmosphere: Kinetics in the temperature range of 287-313 K, The journal of physical chemistry. A, 113, 5958–5965, https://doi.org/10.1021/jp901755x, 2009.

Bowman, J. H., Barket, D. J., and Shepson, P. B.: Atmospheric chemistry of nonanal, Environmental science & technology, 37, 2218–2225, https://doi.org/10.1021/es026220p, 2003.

Ceacero-Vega, A. A., Ballesteros, B., Bejan, I., Barnes, I., Jiménez, E., and Albaladejo, J.: Kinetics and mechanisms of the tropospheric reactions of menthol, borneol, fenchol, camphor, and fenchone with hydroxyl radicals (OH) and chlorine atoms (Cl), The journal of physical chemistry. A, 116, 4097–4107, https://doi.org/10.1021/jp212076g, 2012.

Ceacero-Vega, A. A., Ballesteros, B., Bejan, I., Barnes, I., and Albaladejo, J.: Daytime reactions of 1,8-cineole in the troposphere, Chemphyschem a European journal of chemical physics and physical chemistry, 12, 2145–2154, https://doi.org/10.1002/cphc.201100077, 2011.

Coeur-Tourneur, C., Cassez, A., and Wenger, J. C.: Rate coefficients for the gas-phase reaction of hydroxyl radicals with 2-methoxyphenol (guaiacol) and related compounds, The journal of physical chemistry. A, 114, 11645–11650, https://doi.org/10.1021/jp1071023, 2010.

Colmenar, I., Martín, P., Cabañas, B., Salgado, S., and Martínez, E.: Atmospheric reactions between E,E-2,4-hexadienal and OH, NO3 radicals and Cl atoms, ATMOSPHERIC ENVIRONMENT, 99, 159–167, https://doi.org/10.1016/j.atmosenv.2014.09.065, available at: http://www.sciencedirect.com/science/article/pii/S1352231014007584, 2014.

Cometto, P. M., Dalmasso, P. R., Taccone, R. A., Lane, S. I., Oussar, F., Daële, V., Mellouki, A., and Le Bras, G.: Rate coefficients for the reaction of OH with a series of unsaturated alcohols between 263 and 371 K, The journal of physical chemistry. A, 112, 4444–4450, https://doi.org/10.1021/jp7111186, 2008.

Dagaut, P., Wallington, T. J., Liu, R., and Kurylo, M. J.: A kinetic investigation of the gas-phase reactions of hydroxyl radicals with cyclic ketones and diones: Mechanistic insights, J. Phys. Chem., 92, 4375–4377, https://doi.org/10.1021/j100326a026, 1988.

Davis, M. E., Gilles, M. K., Ravishankara, A. R., and Burkholder, J. B.: Rate coefficients for the reaction of OH with (E)-2-pentenal, (E)-2-hexenal, and (E)-2-hexenal, Physical chemistry chemical physics PCCP, 9, 2240–2248, https://doi.org/10.1039/b700235a, 2007.

Ferrari, C., Roche, A., Jacob, V., Foster, P., and Baussand, P.: Kinetics of the reaction of OH radicals with a series of esters under simulated conditions at 295 K, Int. J. Chem. Kinet., 28, 609–614, https://doi.org/10.1002/(SICI)1097-4601(1996)28:8<609:AID-KIN6>3.0.CO;2-Z, 1996.

Gao, T., Andino, J. M., Rivera, C. C., and Márquez, M. F.: Rate constants of the gas-phase reactions of OH radicals with trans -2-hexenal, trans -2-octenal, and trans -2-nonenal, Int. J. Chem. Kinet., 41, 483–489, https://doi.org/10.1002/kin.20424, 2009.

Grosjean, D. and Williams, E. L.: Environmental persistence of organic compounds estimated from structure-reactivity and linear free-energy relationships. Unsaturated aliphatics, Atmospheric Environment. Part A. General Topics, 26, 1395–1405, https://doi.org/10.1016/0960-1686(92)90124-4, 1992.

Ham, J. E., Proper, S. P., and Wells, J. R.: Gas-phase chemistry of citronellol with ozone and OH radical: Rate constants and products, ATMOSPHERIC ENVIRONMENT, 40, 726–735, https://doi.org/10.1016/j.atmosenv.2005.10.004, 2006.

IUPAC: Datasheets - gas phase, IUPAC, http://iupac.pole-ether.fr/, last access: 23 March 2020, 2020.

Jiménez, E., Lanza, B., Antiñolo, M., and Albaladejo, J.: Influence of temperature on the chemical removal of 3-methylbutanal, trans-2-methyl-2-butenal, and 3-methyl-2-butenal by OH radicals in the troposphere, ATMOSPHERIC ENVIRONMENT, 43, 4043–4049, https://doi.org/10.1016/j.atmosenv.2009.05.005, 2009.

- Jiménez, E., Ballesteros, B., Martínez, E., and Albaladejo, J.: Tropospheric reaction of OH with selected linear ketones: kinetic studies between 228 and 405 K, Environ. Sci. Technol., 39, 814–820, https://doi.org/10.1021/es049333c, 2005.
- Kari, E., Miettinen, P., Yli-Pirilä, P., Virtanen, A., and Faiola, C. L.: PTR-ToF-MS product ion distributions and humidity-dependence of biogenic volatile organic compounds, International Journal of Mass Spectrometry, 430, 87–97, https://doi.org/10.1016/j.ijms.2018.05.003, available at: http://www.sciencedirect.com/science/article/pii/S1387380617304943, 2018.
- Kuhn, U., Andreae, M. O., Ammann, C., Araújo, A. C., Brancaleoni, E., Ciccioli, P., Dindorf, T., Frattoni, M., Gatti, L. V., Ganzeveld, L., Kruijt, B., Lelieveld, J., Lloyd, J., Meixner, F. X., Nobre, A. D., Pöschl, U., Spirig, C., Stefani, P., Thielmann, A., Valentini, R., and Kesselmeier, J.: Isoprene and monoterpene fluxes from Central Amazonian rainforest inferred from tower-based and airborne measurements, and implications on the atmospheric chemistry and the local carbon budget, Atmos. Chem. Phys., 7, 2855–2879, https://doi.org/10.5194/acp-7-2855-2007, 2007.
- Mentler, B.: Measuring isoprene hydroxy hydroperoxides and isoprene epoxydiols using a novel funnel SRI-ToF-MS, Master Thesis, Universität Innsbruck, Innsbruck, 2018.
- Moriarty, J., Sidebottom, H., Wenger, J., Mellouki, A., and Le Bras, G.: Kinetic Studies on the Reactions of Hydroxyl Radicals with Cyclic Ethers and Aliphatic Diethers, J. Phys. Chem. A, 107, 1499–1505, https://doi.org/10.1021/jp021267i, 2003.
- NCBI: n-Pentanoic acid, https://pubchem.ncbi.nlm.nih.gov/source/hsdb/5390, last access: 23 March 2020, 2006.
- Nizamov, B. and Dagdigian, P. J.: Spectroscopic and Kinetic Investigation of Methylene Amidogen by Cavity Ring-Down Spectroscopy, J. Phys. Chem. A, 107, 2256–2263, https://doi.org/10.1021/jp022197i, 2003.
- Nölscher, A. C., Yanez-Serrano, A. M., Wolff, S., Araujo, A. C. de, Lavric, J. V., Kesselmeier, J., and Williams, J.: Unexpected seasonality in quantity and composition of Amazon rainforest air reactivity, Nature communications, 7, 10383, https://doi.org/10.1038/ncomms10383, 2016.
- O'Donnel, S. M., Sidebottom, H. W., Wenger, J. C., Mellouki, A., and Le Bras, G.: Kinetic Studies on the Reactions of Hydroxyl Radicals with a Series of Alkoxy Esters, J. Phys. Chem. A, 108, 7386–7392, https://doi.org/10.1021/jp048782w, 2004.
- Orlando, J. J., Tyndall, G. S., and Ceazan, N.: Rate Coefficients and Product Yields from Reaction of OH with 1-Penten-3-ol, (Z)-2-Penten-1-ol, and Allyl Alcohol (2-Propen-1-ol), J. Phys. Chem. A, 105, 3564–3569, https://doi.org/10.1021/jp0041712, 2001.
- Pagonis, D., Sekimoto, K., and Gouw, J. de: A Library of Proton-Transfer Reactions of H3O+ Ions Used for Trace Gas Detection, Journal of The American Society for Mass Spectrometry, 30, 1330–1335, https://doi.org/10.1007/s13361-019-02209-3, available at: https://doi.org/10.1007/s13361-019-02209-3, 2019.
- Picquet, B., Heroux, S., Chebbi, A., Doussin, J.-F., Durand-Jolibois, R., Monod, A., Loirat, H., and Carlier, P.: Kinetics of the reactions of OH radicals with some oxygenated volatile organic compounds under simulated atmospheric conditions, Int. J. Chem. Kinet., 30, 839–847, https://doi.org/10.1002/(SICI)1097-4601(1998)30:11<839:AID-KIN6>3.0.CO;2-W, 1998.
- Pimentel, A. S., Tyndall, G. S., Orlando, J. J., Hurley, M. D., Wallington, T. J., Sulbaek Andersen, M. P., Marshall, P., and Dibble, T. S.: Atmospheric chemistry of isopropyl formate and tertbutyl formate, Int. J. Chem. Kinet., 42, 479–498, https://doi.org/10.1002/kin.20498, 2010.
- Porter, E., Wenger, J., Treacy, J., Sidebottom, H., Mellouki, A., Téton, S., and LeBras, G.: Kinetic Studies on the Reactions of Hydroxyl Radicals with Diethers and Hydroxyethers, J. Phys. Chem. A, 101, 5770–5775, https://doi.org/10.1021/jp971254i, 1997.
- Schütze, N., Zhong, X., Kirschbaum, S., Bejan, I., Barnes, I., and Benter, T.: Relative kinetic measurements of rate coefficients for the gas-phase reactions of Cl atoms and OH radicals with a series of methyl alkyl esters, ATMOSPHERIC ENVIRONMENT, 44, 5407–5414, https://doi.org/10.1016/j.atmosenv.2009.08.011, 2010.
- Solignac, G., Mellouki, A., Le Bras, G., Barnes, I., and Benter, T.: Kinetics of the OH and Cl reactions with N-methylformamide, N,N-dimethylformamide and N,N-dimethylacetamide, Journal of Photochemistry and Photobiology A: Chemistry, 176, 136–142, https://doi.org/10.1016/j.jphotochem.2005.07.020, 2005.
- St Clair, J. M., Rivera-Rios, J. C., Crounse, J. D., Knap, H. C., Bates, K. H., Teng, A. P., Jørgensen, S., Kjaergaard, H. G., Keutsch, F. N., and Wennberg, P. O.: Kinetics and Products of the Reaction of the First-Generation Isoprene Hydroxy Hydroperoxide (ISOPOOH) with OH, The journal of physical chemistry. A, 120, 1441–1451, https://doi.org/10.1021/acs.jpca.5b06532, 2016.
- Sun, J., Tang, Y., Sun, H., Pan, Y., Jia, X., Pan, X., and Wang, R.: Mechanistic and kinetic study of the OH+C2H5CN reaction, Chemical Physics Letters, 463, 315–321, https://doi.org/10.1016/j.cplett.2008.08.055, 2008.
- Teruel, M. A., Lane, S. I., Mellouki, A., Solignac, G., and Le Bras, G.: OH reaction rate constants and UV absorption cross-sections of unsaturated esters, ATMOSPHERIC ENVIRONMENT, 40, 3764–3772, https://doi.org/10.1016/j.atmosenv.2006.03.003, 2006.
- Teruel, M. A., Benitez-Villalba, J., Caballero, N., and Blanco, M. B.: Gas-phase oxidation of methyl crotonate and ethyl crotonate. kinetic study of their reactions toward OH radicals and Cl atoms, The journal of physical chemistry. A, 116, 6127–6133, https://doi.org/10.1021/jp2113889, 2012.
- Tuazon, E. C., Atkinson, R., and Carter, W. P.: Atmospheric chemistry of cis- and trans-3-hexene-2,5-dione, Environmental science & technology, 19, 265–269, https://doi.org/10.1021/es00133a009, 1985.
- Xing, J.-H., Ono, M., Kuroda, A., Obi, K., Sato, K., and Imamura, T.: Kinetic study of the daytime atmospheric fate of (Z)-3-hexenal, The journal of physical chemistry. A, 116, 8523–8529, https://doi.org/10.1021/jp303202h, 2012.

 Table S2. Contributions of different classes of compounds during daytime rain events compared to dry daytime periods (calculated from hourly OH reactivity averages).

OH reactivity contributed by	Rain (daytime, n= 18, ± standard deviation)	Dry (daytime, n=81, ± standard deviation)	
Isoprene	32 ± 18 %	36 ± 19 %	
Monoterpenes	3 ± 1 %	6 ± 4 %	
OVOC	16±6%	22 ± 10 %	
GLV	6 ± 2 %	9±4%	
SQT	$1\pm0.3~\%$	$1 \pm 0.9\%$	
Inorganics	$3 \pm 0.1 \%$	3 ± 0.1 %	
Others	0 %	0 %	
Unattributed fraction	39 ± 19 %	23 ± 25 %	