

Supplement of

Explicit modeling of isoprene chemical processing in polluted air masses in suburban areas of the Yangtze River Delta region: radical cycling and formation of ozone and formaldehyde

Kun Zhang et al.

Correspondence to: Li Li (lily@shu.edu.cn)

The copyright of individual parts of the supplement might differ from the article licence.

11 Text S1. Conditional Probability Function (CPF)

The CPF was originally used to show the wind directions that dominate a high concentration
of a pollutant, showing the probability of such concentrations occurring by wind direction
(Ashbaugh et al. 1985). The CPF is defined as:

15
$$CPF = \frac{m_{\theta,j}}{n_{\theta,j}}$$

16 Where $m_{\theta,j}$ is the number of samples in the wind sector θ and wind speed interval *j* with mixing 17 ratios greater than high O₃ concentration. In this study, we defined high O₃ concentration as the 18 95th percentile of observed O₃ concentration (131 ppbv). $n_{\theta,j}$ is the total number of samples in the 19 wind sector θ and wind speed interval *j*.

20

21 Test S2. Sensitive study of HONO/NO₂ ratio.

To investigate the sensitivity of our simulation to HONO/NO₂ ratio, we conducted a series of simulations with different HONO/NO₂. The results were summarized in Table S2 and Figure S1. A lower HONO/NO₂ ratio (e.g. 0.005) can lead to 15.28% decrease of HO radical and a higher ratio (e.g. 0.04) can caused 14.08% increase in OH concentration. This could be explained by the importance role of HONO photolysis in OH sources.

Figure S1. Comparison of observed and simulated O3 concentrations in 5 episodes.

Figure S2. Comparison of observed and simulated HCHO concentrations in 5 episodes

Figure S3. Comparison of simulated and linear regression concentration of OVOC

Figure S4. Comparison of OH concentration under different HONO/NO2 ratios.

43 Figure S6. Sensitivity analysis of OBM modelled O₃, HCHO, and OH concentrations without alkenes 44 (including ethylene, propene, and acetylene), isoprene, and EXT (ethylbenzene, xylene, and toluene) 45 input.

Figure S7. Sensitivity analysis of OBM modelled O₃, HCHO, and OH concentrations with different 48 49 CH₄ concentrations.

vsis of OBM modelled O₃, HCHO, and OH concentrations with reduce NO₂ concentrations.

HONO/NO ₂ ratio	Change in OH (%)		
0.005	-15.3%		
0.01	-9.3%		
0.03	7.5%		
0.04	14.1%		

Table S2 Results of linear regression of OVOC

β ₀	β_1	β_2	β ₃	β_4	β5	Sig	R
-0.3425	0.027	0.623	0.820	1.091	0.205	0.000	0.853

65 **Reference:**

- 66 Lowell L. Ashbaugh, William C. Malm, Willy Z. Sadeh. A residence time probability analysis of
- 67 sulfur concentrations at grand Canyon National Park[J]. Atmospheric Environment, 1985,

68 19(8):1263-1270.