Production of HONO from NO$_2$ uptake on illuminated TiO$_2$ aerosol particles and following the illumination of mixed TiO$_2$/ammonium nitrate particles

Joanna E. Dyson1, Graham A. Boustead1, Lauren T. Fleming1, Mark Blitz1,2, Daniel Stone1, Stephen R. Arnold3, Lisa K. Whalley1,2, and Dwayne E. Heard1

1School of Chemistry, University of Leeds, Leeds, LS2 9JT, UK
2National Centre of Atmospheric Science, University of Leeds, Leeds, LS2 9JT, UK
3School of Earth and Environment, University of Leeds, Leeds, LS2 9JT, UK

Correspondence: Dwayne E. Heard (d.e.heard@leeds.ac.uk)

Received: 25 November 2020 – Discussion started: 1 December 2020
Revised: 13 February 2021 – Accepted: 23 February 2021 – Published: 16 April 2021

Abstract. The rate of production of HONO from illuminated TiO$_2$ aerosols in the presence of NO$_2$ was measured using an aerosol flow tube system coupled to a photofragmentation laser-induced fluorescence detection apparatus. The reactive uptake coefficient of NO$_2$ to form HONO, $\gamma_{\text{NO}_2\rightarrow \text{HONO}}$, was determined for NO$_2$ mixing ratios in the range 34–400 ppb, with $\gamma_{\text{NO}_2\rightarrow \text{HONO}}$ spanning the range $(9.97 \pm 3.52) \times 10^{-6}$ to $(1.26 \pm 0.17) \times 10^{-4}$ at a relative humidity of 15 ± 1 % and for a lamp photon flux of $(1.63 \pm 0.09) \times 10^{16}$ photons cm$^{-2}$ s$^{-1}$ (integrated between 290 and 400 nm), which is similar to midday ambient actinic flux values. $\gamma_{\text{NO}_2\rightarrow \text{HONO}}$ increased as a function of NO$_2$ mixing ratio at low NO$_2$ before peaking at $(1.26 \pm 0.17) \times 10^{-4}$ at ~ 51 ppb NO$_2$ and then sharply decreasing at higher NO$_2$ mixing ratios rather than levelling off, which would be indicative of surface saturation. The dependence of HONO production on relative humidity was also investigated, with a peak in production of HONO from TiO$_2$ aerosol surfaces found at ~ 25 % RH. Possible mechanisms consistent with the observed trends in both the HONO production and reactive uptake coefficient were investigated using a zero-dimensional kinetic box model. The modelling studies supported a mechanism for HONO production on the aerosol surface involving two molecules of NO$_2$, as well as a surface HONO loss mechanism which is dependent upon NO$_2$. In a separate experiment, significant production of HONO was observed from illumination of mixed nitrate/TiO$_2$ aerosols in the absence of NO$_2$. However, no production of HONO was seen from the illumination of nitrate aerosols alone. The rate of production of HONO observed from mixed nitrate/TiO$_2$ aerosols was scaled to ambient conditions found at the Cape Verde Atmospheric Observatory (CVAO) in the remote tropical marine boundary layer. The rate of HONO production from aerosol particulate nitrate photolysis containing a photocatalyst was found to be similar to the missing HONO production rate necessary to reproduce observed concentrations of HONO at CVAO. These results provide evidence that particulate nitrate photolysis may have a significant impact on the production of HONO and hence NO$_x$ in the marine boundary layer where mixed aerosols containing nitrate and a photocatalytic species such as TiO$_2$, as found in dust, are present.

1 Introduction

A dominant source of OH radicals in polluted environments is the photolysis of nitrous acid (HONO) (Platt et al., 1980; Winer and Biermann, 1994; Harrison et al., 1996; Alicke et al., 2002; Whalley et al., 2018; Crilley et al., 2019; Lu et al., 2019; Slater et al., 2020; Whalley et al., 2021). During a recent study in winter in central Beijing, HONO photolysis accounted for over 90 % of the primary production of OH averaged over the day (Slater et al., 2020). Oxidation by OH radicals is the dominant removal mechanism for many tropospheric trace gases, such as tropospheric methane, as...
well as the formation of secondary species, including tropospheric ozone (Levy, 1971), nitric and sulfuric acids which condense to form aerosols, and secondary organic aerosols. Understanding the formation of HONO in highly polluted environments is crucial to fully understand both the concentration and distribution of key atmospheric radical species, as well as secondary products in the gas and aerosol phases associated with climate change and poor air quality.

Atmospheric concentrations of HONO range from a few parts per trillion by volume (pptv) in remote clean environments (Reed et al., 2017) to more than 10 ppb in highly polluted areas such as Beijing (Crilley et al., 2019). The main gas-phase source of HONO in the troposphere is the reaction of nitric oxide (NO) with the OH radical. HONO has also been shown to be directly emitted from vehicles (Kurtenbach et al., 2001; Li et al., 2008), for which the rate of emission is often estimated as a fraction of known NO

\[\text{NO}_2 + \text{H}_2\text{O} \rightarrow \text{H}^+ + \text{OH}, \]

(R2)

\[e_{\text{CB}}^- + \text{O}_2 \rightarrow \text{O}_2^-. \]

(R3)

\[\text{NO}_2 + \text{O}_2^- \text{(or e}_{\text{CB}}^-) \rightarrow \text{NO}_2^- + \text{O}_2. \]

(R4)

\[\text{NO}_2^- + \text{H}^+ \rightarrow \text{HONO}. \]

(R5)

\[\text{NO}_2 + \text{OH} \rightarrow \text{HNO}_3. \]

(R6)

In previous studies of the reaction of NO\(_2\) on TiO\(_2\) aerosol surfaces, HONO was observed as a major gas-phase product (Gustafsson et al., 2006; Dupart et al., 2014). Gustafsson et al. (2006) observed a yield of gas-phase HONO of \(\sim 75\%\) (for each NO\(_2\) removed) and showed the rate of the photoreaction of NO\(_2\) on pure TiO\(_2\) aerosols dependent on relative humidity, emphasizing the superhydrophilic nature of TiO\(_2\) surfaces under UV irradiation. Dupart et al. (2014) also reported a relative humidity dependence of the uptake of NO\(_2\) onto Arizona test dust containing TiO\(_2\), with the main gas-phase products measured being NO and HONO, with a HONO yield of 30 % in experiments with 110 ppb NO\(_2\). Dupart et al. (2014) postulated the following mechanism of HONO production, which is consistent with the formation of the NO\(_2^-\) anion seen in a previous study on TiO\(_2\) surfaces (Nakamura et al., 2000):

\[h_{\text{VB}}^+ + \text{H}_2\text{O} \rightarrow \text{H}^+ + \text{OH}, \]

(R2)

\[e_{\text{CB}}^- + \text{O}_2 \rightarrow \text{O}_2^-; \]

(R3)

\[\text{NO}_2 + \text{O}_2^- \text{(or e}_{\text{CB}}^-) \rightarrow \text{NO}_2^- + \text{O}_2; \]

(R4)

\[\text{NO}_2^- + \text{H}^+ \rightarrow \text{HONO}; \]

(R5)

\[\text{NO}_2 + \text{OH} \rightarrow \text{HNO}_3. \]

(R6)

In areas with high mineral dust loading, such as desert regions, far from anthropogenic sources, NO\(_2\) concentrations are typically low. However, when dust is transported to urban areas, this source of HONO may become significant. One study reported that TiO\(_2\) composed 0.75–1.58 µg m\(^{-3}\) when aerosol loadings were 250–520 µg m\(^{-3}\) over the same time period in southeast Beijing, when air had been transported from the Gobi desert (Schleicher et al., 2010).

In this study, the production of HONO on the surface of TiO\(_2\) particles in the presence of NO\(_2\) is investigated as a function of NO\(_2\) mixing ratio, aerosol surface area density and relative humidity using an aerosol flow tube system coupled to a photo-fragmentation laser-induced fluorescence detector (Boustead, 2019). The uptake coefficient of NO\(_2\) to generate HONO is then determined, and a mechanistic interpretation of the experimental observations is presented. The production of HONO directly in the absence of NO\(_2\) from the illumination of a mixed sample of nitrate and TiO\(_2\) aerosol is also presented. Using a similar apparatus, previous work had showed that TiO\(_2\) particles produce OH and HO\(_2\) radicals directly under UV illumination (Moon et al., 2019). The atmospheric implications of these results and the role of photocatalysts for the formation of HONO are also discussed.

2 Method

2.1 Overview of the experimental setup

The production of HONO from illuminated aerosol surfaces is studied using an aerosol flow tube system coupled to a photo-fragmentation laser-induced fluorescence (PF-LIF)
schematic of the experimental setup is shown in Fig. 1. A high-efficiency particle filter (HEPA) fitted with a bypass loop and bellows valve allowing control of the aerosol number concentration entering the aerosol flow tube. Previous studies (George et al., 2013; Boustead, 2019) have shown the loss of aerosol to the walls of the flow tube to be negligible. Aerosol size distributions were measured for aerosols exiting the flow tube using a scanning mobility particle sizer (SMPS, TSI 3081) and a condensation particle counter (CPC, TSI 3775) which was calibrated using latex beads. Any aerosol surface area not counted due to the upper diameter range of the combined SMPS/CPC (14.6–661.2 nm, sheath flow of 3 L min$^{-1}$, instrumental particle counting error of 10%–20%) was corrected for during analysis by assuming a log-normal distribution, which was verified for TiO$_2$ aerosols generated in this manner (Matthews et al., 2014). However, the majority of aerosols, >90%, had diameters in the range that could be directly detected. In addition to the experiments with single-component TiO$_2$, mixed ammonium nitrate/TiO$_2$ and single-component ammonium nitrate aerosols were also generated using the atomiser for investigations of HONO production from nitrate aerosols without NO$_2$ present. An example of an aerosol size distribution from this work for single-component ammonium nitrate aerosols, mixed ammonium nitrate/TiO$_2$ and single-component TiO$_2$ aerosols is shown in Fig. 2.

2.3 Detection of HONO

As HONO is not directly detectable via LIF, it was necessary to fragment the HONO produced into OH and NO (Liao et al., 2007), with detection of OH via LIF. A 355 nm photolysis laser (Spectron Laser Systems, SL803) with a pulse repetition frequency (PRF) of 10 Hz and pulse duration \sim10 ns was used to fragment HONO into OH. This fragmentation wavelength was chosen as HONO has a strong absorption peak at \sim355 nm, leading to the breakage of the HO–NO bond to form NO and OH in their electronic ground states (Shan et al., 1989). A Nd:YAG pumped dye probe laser (JDSU Q201-HD, Q series, Sirah Cobra Stretch) with a PRF of 5000 Hz was used for the detection of OH via the fluorescence assay by gas expansion (FAGE) technique, which employs the expansion of gas through a small pinhole into the detection cell. The OH radical was measured using on-resonance detection by LIF via the excitation of the $A^2\Sigma^+ (v' = 0) \leftrightarrow X^2\Pi_i (v'' = 0) Q_1(2)$ transition at 308 nm (Heard, 2006). A multi-channel plate (MCP) photomultiplier (Photek, MCP 325) equipped with an interference filter at 308 nm (Barr Associates, 308 nm, FWHM = 8 nm, \sim50% transmission) was used to measure the fluorescence signal. A reference OH cell in which a large LIF signal could be generated was utilised to ensure the wavelength of the probe laser remained tuned to the peak of the OH transition at 308 nm.

https://doi.org/10.5194/acp-21-5755-2021 Atmos. Chem. Phys., 21, 5755–5775, 2021
Figure 1. Schematic of the Leeds aerosol flow tube system coupled to a laser-fragmentation laser-induced fluorescence detector for HONO. The paths of the 355 nm (blue) and 308 nm (purple, depicted as travelling out of the page perpendicular to the 355 nm light) light are also shown. CPC: condensation particle counter; DMA: differential mobility analyser; HEPA: high-efficiency particle air filter; FAGE: fluorescence assay by gas expansion; MCP: microchannel plate photomultiplier; MFC: mass flow controller; RH/T: relative humidity/temperature probe; SMPS: scanning mobility particle sizer.

Figure 2. Typical aerosol surface area distribution for pure ammonium nitrate aerosols (green) and pure TiO$_2$ aerosols (red) and 50:50 mixed nitrate/TiO$_2$ aerosols (purple) measured after the flow tube.

OH measurements are taken both before and after each photolysis laser pulse, allowing measurement of any OH already present in the gas flow to be determined as a background signal for subtraction. The OH generated from HONO photolysis was measured promptly (~800 ns) after the 355 nm pulse to maximise sensitivity to OH before it was spatially diluted away from the measurement region (Boustead, 2019). Offline measurements, with the probe laser wavelength moved away from the OH transition (by 0.02 nm), were taken to allow the signal generated from detector dark counts and scattered laser light to be measured and subtracted from the online signal. To determine an absolute value of the HONO concentration, [HONO], a calibration was performed, in order to convert from the HONO signal, S_{HONO}, using $S_{\text{HONO}} = C_{\text{HONO}} [\text{HONO}]$, as described fully in Boustead (2019). A glass calibration wand was used to produce OH and HO$_2$ in equal concentrations from the photolysis of water vapour at 185 nm:

$$\text{H}_2\text{O} + h\nu_{\lambda=185\text{nm}} \rightarrow \text{OH} + \text{H},$$ \hspace{1cm} (R7)

$$\text{H} + \text{O}_2 + \text{M} \rightarrow \text{HO}_2 + \text{M}.$$ \hspace{1cm} (R8)

An excess flow of NO was then added to generate HONO, which was then detected as OH in the cell. The excess flow of NO (BOC, 99.5 %) ensures rapid and complete conversion of OH and HO$_2$ to HONO. The concentration of OH and HO$_2$ produced, and therefore the amount of HONO produced in the wand, is calculated using

$$[\text{OH}] = [\text{HO}_2] = [\text{H}_2\text{O}] \sigma_{\text{H}_2\text{O}} \phi_{\text{OH}} F t,$$ \hspace{1cm} (1)

where $[\text{H}_2\text{O}]$ is the concentration of water vapour in the humidified gas flow, $\sigma_{\text{H}_2\text{O}}$ is the absorption cross section of H$_2$O at 185 nm 7.14×10^{-20} cm2 molec.$^{-1}$ (Cantrell et al., 1997), ϕ_{OH} is the quantum yield of OH for the photodissociation of H$_2$O at 185 nm (≈ 1), F is the lamp flux and t is the irradiation time (the product of which is determined using ozone actinometry (Boustead, 2019).
A typical value of the calibration factor was \(C_{\text{HONO}} = (3.63 \pm 0.51) \times 10^{-7} \text{ counts mW}^{-1} \) for \(\text{N}_2 \), leading to a calculated limit of detection of 12 ppt for a 50 s averaging period and a signal-to-noise ratio (SNR) of 1 (Boustead, 2019). The typical error in the HONO concentration was 15 % at 1\(\sigma \), determined by the error in the calibration.

2.4 Experimental procedure and data analysis

The experiments were performed with a minimum flow of 6 L min\(^{-1} \) through the aerosol flow tube, giving a Reynolds number of \(\sim 150 \), which ensured a laminar flow regime. The HONO signal, converted to an absolute concentration using a calibration factor, was measured over a range of aerosol surface area densities, both in the presence and absence of illumination, and background measurements without aerosols present were also performed.

The HONO signal originates from several sources: the illuminated aerosol surface, the illuminated quartz flow tube walls, dark reactions on aerosol surfaces, dark reactions on the flow tube surface, and finally from impurities in the \(\text{N}_2 \) (Sigma Aldrich, > 99.5 %, freeze pump thawed to further remove any remaining \(\text{NO} \) or \(\text{O}_2 \)) and \(\text{N}_2 \) flows (either HONO itself or a species which photolyses at 355 nm to give OH). Of interest here is the HONO production from both dark and illuminated aerosol surfaces which is atmospherically relevant. Following transit through the flow tube, and in the presence of \(\text{NO}_2 \), the total concentration of HONO measured by the PF-LIF detector is given by

\[
[HONO] = [\text{HONO}]_{\text{illuminated aerosols}} + [\text{HONO}]_{\text{illuminated walls}} + [\text{HONO}]_{\text{dark aerosols}} + [\text{HONO}]_{\text{dark walls}} + [\text{HONO}]_{\text{impurities}}.
\]

Any HONO seen without the presence of aerosol was therefore due to HONO impurities in the \(\text{N}_2 \) or \(\text{NO}_2 \) gas, the dark production of HONO from the flow tube walls or from the production of HONO from the illuminated reactor walls, which may include production from TiO\(_2\) aerosols coating the flow tube in the presence of \(\text{NO}_2 \). This background HONO concentration depended on the experimental conditions and on how recently the flow tube and PF-LIF cell had been cleaned to remove any build-up of TiO\(_2\) deposits. However, the build-up of TiO\(_2\) on the flow tube walls was relatively slow, and back-to-back measurements were made in the presence and absence of aerosols to obtain an accurate background. Additional experiments showed no significant production of HONO on TiO\(_2\) aerosol surfaces without the presence of \(\text{NO}_2 \). Even though the aerosol surface area density (\(\sim 0.02 \text{ m}^2 \text{ m}^{-3} \)) was small compared to the surface area density of the reactor walls (35 \(\text{m}^2 \text{ m}^{-3} \)), very little HONO signal was produced without the presence of aerosols and was always subtracted from the signal in the presence of aerosols. The HONO signal was measured both with the lamp on and off for each aerosol surface area density to investigate the production of HONO from illuminated aerosol surfaces. The HONO signal was averaged over 50 s (average of 500 of the 355 nm photolysis laser pulses with a PRF of 10 Hz). Once aerosols were introduced into the flow tube system, a period of \(\sim 30 \text{ min} \) was allowed for equilibration and the measured aerosol surface area density to stabilise. In general, the relative humidity of the system was kept constant at RH \(\sim 15 \% \) for all experiments investigating HONO production as a function of \(\text{NO}_2 \) mixing ratio over the range 34–400 ppb. In a number of experiments, however, RH was varied in the range \(\sim 12 \%–37 \% \).

The mixing ratio of \(\text{NO}_2 \) entering the flow tube was calculated using the concentration of the \(\text{NO}_2 \) in the cylinder and the degree of dilution. The \(\text{NO}_2 \) mixing ratio within the cylinder was determined using a commercial instrument based on UV-Vis absorption spectroscopy (Thermo Fisher 42TL, limit of detection 50 pptv, precision 25 pptv). For each individual experiment, the mixing ratio of \(\text{NO}_2 \) was kept constant (within the range 34–400 ppb), and the aerosol surface area density was varied from zero up to a maximum of 0.04 \(\text{m}^2 \text{ m}^{-3} \), in order to obtain the HONO produced from illuminated aerosol surfaces in the flow tube for a given mixing ratio of \(\text{NO}_2 \). As well as subtraction of any background HONO, a correction must be made for any loss of HONO owing to its photolysis occurring within the flow tube.

In order to determine the rate of photolysis of HONO, the rate of photolysis of \(\text{NO}_2 \) was first determined using chemical actinometry, and the known spectral output of the lamp and the literature values of the absorption cross sections and photo-dissociation quantum yields for \(\text{NO}_2 \) and HONO were used to determine the rate of photolysis of HONO. When just flowing \(\text{NO}_2 \) in the flow tube, the loss of \(\text{NO}_2 \) within the illuminated region is determined only by photolysis and is given by

\[
-\frac{d[\text{NO}_2]}{dt} = j(\text{NO}_2)[\text{NO}_2],
\]

where \(j(\text{NO}_2) \) is the photolysis frequency of \(\text{NO}_2 \) for the lamp used in these experiments. From the measured loss of \(\text{NO}_2 \) in the illuminated region, and with knowledge of the residence time, the photolysis frequency, \(j(\text{NO}_2) \), was determined to be \((6.43 \pm 0.30) \times 10^{-3} \text{ s}^{-1} \) for the set of experiments using one lamp to illuminate the flow tube. \(j(\text{NO}_2) \) is given by

\[
\int_{\lambda_1}^{\lambda_2} \sigma_2(\lambda) \phi_2(\lambda) d\lambda = \int_{\lambda_1}^{\lambda_2} \sigma_2(\lambda) F_2(\lambda) d\lambda,
\]

where \(\lambda_1 \) and \(\lambda_2 \) represent the range of wavelengths over which the lamp emits, and \(\sigma_2 \) and \(\phi_2 \) are the wavelength-dependent absorption cross section and photo-dissociation quantum yield of \(\text{NO}_2 \), respectively, and \(F_2 \) is the flux of the lamp at a given wavelength. The flux of the lamp, the spectral intensity of which was measured using a spectral radiometer (Ocean Optics QE65000) as a function of wavelength, is shown in Fig. 3.
Figure 3. UVA emission spectrum for the 15 W bench lamp used in these experiments between 290–400 nm. The integrated photon flux over this wavelength range is \((1.63 \pm 0.09) \times 10^{10}\) photons cm\(^{-2}\) s\(^{-1}\) determined from the measured \(j(\text{NO}_2)\) of \((6.43 \pm 0.30) \times 10^{-3}\) s\(^{-1}\).

From the measured \(j(\text{NO}_2)\), and with knowledge of \(\sigma_2\) and \(\phi_2\) for NO\(_2\), the flux of the lamp was determined to be \((1.63 \pm 0.09) \times 10^{10}\) photons cm\(^{-2}\) s\(^{-1}\) integrated over the 290–400 nm wavelength range of the lamp. Using this flux, and the known \(\sigma_2\) and \(\phi_2\) for HONO over the same wavelength range, \(j(\text{HONO})\) was determined to be \((1.66 \pm 0.10) \times 10^{-3}\) s\(^{-1}\).

In the presence of aerosols under illuminated conditions, the rate of heterogeneous removal of NO\(_2\) at the aerosol surface to generate HONO is given by

\[
-\frac{d[\text{NO}_2]}{dt} = k[\text{NO}_2],
\]

where \(k\) is the pseudo-first-order rate coefficient for loss of NO\(_2\) at the aerosol surface, which leads to the generation of HONO. The postulated mechanism for HONO production from NO\(_2\) is discussed in Sect. 3.3.2 below, but for the definition of \(k\) it is assumed to be a first-order process for NO\(_2\). Integration of Eq. (5) gives

\[
k = -\frac{\ln \left(\frac{[\text{NO}_2]_0 - [\text{HONO}]_0}{[\text{NO}_2]_0}\right)}{t},
\]

where \([\text{NO}_2]_0 - [\text{HONO}]_0\) is the concentration of NO\(_2\) at time \(t\), assuming that each NO\(_2\) molecule is quantitatively converted to a HONO molecule following surface uptake (see Sect. 3.3.2 for the proposed mechanism), and \([\text{NO}_2]_0\) is the initial concentration of NO\(_2\). Hence \(k\) can be determined from Eq. (6) using the measurement of the concentration of HONO, [HONO], that has been generated from TiO\(_2\) aerosol surfaces for an illumination time of \(t\) (and after subtraction of any background HONO produced from other sources and after correction for loss via photolysis; see above) and with knowledge of \([\text{NO}_2]_0\).

The reactive uptake coefficient of NO\(_2\) to generate HONO, \(\gamma_{\text{NO}_2\rightarrow\text{HONO}}\), defined as the probability that upon collision of NO\(_2\) with the TiO\(_2\) aerosol surface a gas-phase HONO molecule is generated, is given by

\[
\gamma_{\text{NO}_2\rightarrow\text{HONO}} = \frac{4 \times k}{v \times \text{SA}},
\]

where \(v\) is the mean thermal velocity of NO\(_2\), given by \(v = \sqrt{(8RT)/(\pi M)}\) with \(R\), \(T\) and \(M\) as the gas constant, the absolute temperature and the molar mass of NO\(_2\), respectively; \(\text{SA}\) is the aerosol surface area density (m\(^2\) m\(^{-3}\); and \(k\) is defined as above. Rearrangement of Eq. (7) gives

\[
k = \frac{\gamma_{\text{NO}_2\rightarrow\text{HONO}} \times \text{SA} \times v}{4}.
\]

Figure 4 shows the variation of \(k\), determined from Eq. (6) above with \(t = 52\) s (illumination time in the flow tube), against aerosol surface area density, \(\text{SA}\), for \([\text{NO}_2]_0 = 200\) ppb and RH = 15 %, from which the gradient using Eq. (8) yields \(\gamma_{\text{NO}_2\rightarrow\text{HONO}} = (2.17 \pm 0.09) \times 10^{-5}\).

The uncertainty in \(k\) (\(\sim 20\) %) shown in Fig. 4 and determined by Eq. (6) is mainly controlled by the uncertainty in the HONO concentration (the HONO signal typically varies between repeated runs for a given \(\text{SA}\) by \(\sim 10\) % coupled with the 15 % error in the calibration factor), the initial NO\(_2\) mixing ratio (10 %), and the photolysis time, \(t\) (\(\sim 3\) %).
uncertainty in SA is determined by the uncertainty in the SMPS (15 %). The error in the value of \(\gamma_{\text{NO}_2\rightarrow \text{HONO}} \) (typically 20 %) is calculated from the 1\(\sigma \) statistical error of the weighted fit shown in Fig. 4. An experiment performed using air yielded an uptake coefficient value within 7 % of the equivalent experiment done in \(\text{N}_2 \), which is well within the experimental error.

2.5 Box model description

A kinetic scheme within the framework of a box model was used together with the differential equation solver Facsimile 4.3.53 (MCPA Software Ltd., 2020) to investigate the mechanism of \(\text{NO}_2 \) adsorption on TiO\(\text{2} \) in the presence of light to produce HONO. The models were only semi-explicit, focusing on determining the stoichiometric amounts of \(\text{NO}_2 \) needed to produce a single HONO molecule in the gas phase for comparison with the experimental dependence of HONO production upon \(\text{NO}_2 \) mixing ratio and to provide a predictive framework for parameterising the HONO production rate with \(\text{NO}_2 \) mixing ratio in the atmosphere. Three model scenarios were designed. The simplest model (Model 1) considered only the adsorption of a single molecule of \(\text{NO}_2 \) to the TiO\(\text{2} \) surface, the surface conversion to HONO in the presence of light and subsequent desorption of HONO – the latter was assumed to occur rapidly. The two further model scenarios investigated the effect of a 2 : 1 stoichiometric relationship between the \(\text{NO}_2 \) adsorbed to the surface of TiO\(\text{2} \) and the HONO produced, via the formation of an \(\text{NO}_2 \) dimer. Model 2 incorporated an Eley–Rideal mechanism reliant on the adsorption of one \(\text{NO}_2 \) molecule to the surface followed by the subsequent adsorption of a second \(\text{NO}_2 \) molecule directly onto the first (Fig. 5). Model 3, however, features a Langmuir–Hinshelwood mechanism of adsorption in which two \(\text{NO}_2 \) molecules adsorb to the surface and then diffuse to one another before colliding on the surface and forming the \(\text{cis}-\text{ONO-\text{NO}_2} \) dimer (Finlayson-Pitts et al., 2003; de Jesus Madeiros and Pimentel, 2011; Liu and Goddard, 2012; Varner et al., 2014). The formation of the asymmetric \(\text{cis}-\text{ONO-\text{NO}_2} \) dimer followed by isomerisation to form the asymmetric \(\text{trans}-\text{ONO-\text{NO}_2} \) dimer has been suggested to have an enthalpic barrier that is \(\sim 170 \text{kJ mol}^{-1} \) lower than for direct isomerisation to \(\text{trans}-\text{ONO-\text{NO}_2} \) from the symmetric \(\text{N}_2 \text{O}_4 \) dimer (Liu and Goddard, 2012). The dimerisation of \(\text{NO}_2 \) and subsequent isomerisation to form \(\text{trans}-\text{ONO-\text{NO}_2} \) has been suggested under dark conditions to lead to the formation of both HONO and HONO\(_3 \) in the presence of water vapour (Finlayson-Pitts et al., 2003; de Jesus Madeiros and Pimentel, 2011; Liu and Goddard, 2012;Varner et al., 2014). Although the interaction of light with TiO\(\text{2} \) with the concomitant production of electron–hole pairs (Reaction R1) is central to HONO formation, we do not specify here the exact mechanism by which the electron–hole pairs interact with surface-bound species to generate HONO. We propose that the interaction with light speeds up the autoionisation of \(\text{trans}-\text{ONO-\text{NO}_2} \) to form \(\text{(NO}^+(\text{NO}_3^-) \), which is represented by Reactions (R13) and (R15) in Model 2 and Model 3 respectively. \(\text{(NO}^+(\text{NO}_3^-) \) can then react rapidly with surface-adsorbed water, leading to HONO formation (Varner et al., 2014).

A schematic of the proposed mechanism investigated with Model 2 and Model 3 is shown in Fig. 5 and consists of (i) the adsorption of \(\text{NO}_2 \) onto a surface site, (ii) the conversion of \(\text{NO}_2 \) to form HONO via the formation of an \(\text{NO}_2 \) dimer intermediate on the surface via either a Eley–Rideal or Langmuir–Hinshelwood-type mechanism, (iii) subsequent desorption of HONO from the surface, and finally (iv) competitive removal processes for HONO both on the surface and in the gas phase that are either dependent or independent on the \(\text{NO}_2 \) mixing ratio. The model includes the gas-phase photolysis of \(\text{NO}_2 \) and HONO and the gas-phase reactions of both HONO and \(\text{NO}_2 \) with OH and O(\(\text{3P} \)) atoms.

To the best of our knowledge neither the enthalpy of adsorption of \(\text{NO}_2 \) onto a TiO\(\text{2} \) surface nor the bimolecular rate coefficients for the chemical steps on the surface shown in Fig. 5 have been determined. Hence, for each of the steps a rate coefficient \((\text{s}^{-1} \text{cm}^2 \text{molec.}^{-1}) \) was assigned, as given in Table 1, and with the exception of the experimentally determined \(j(\text{NO}_2) \) and the calculated \(j(\text{HONO}) \), and the gas-phase rate coefficients which are known, the rate coefficients were estimated, with the aim of reproducing the experimental \(\text{NO}_2 \) dependence of the HONO production and \(\text{NO}_2 \) reactive uptake coefficient; justification of chosen values is given below.

The modelled Gibbs free energy barrier for the isomerisation of \(\text{N}_2 \text{O}_4 \) to form the asymmetric ONO-\(\text{NO}_2 \) isomer (\(\text{cis} \) or \(\text{trans} \) conformation not specified) was estimated by Pimental et al. (2007) to be \(87 \text{kJ mol}^{-1} \) with a rate coefficient as large as \(2 \times 10^{-3} \text{s}^{-1} \) in the aqueous phase at 298 K, stated in the study to confirm the Finlayson-Pitts model for the hydrolysis of \(\text{NO}_2 \) on surfaces via the asymmetric \(\text{trans}-\text{ONO-\text{NO}_2} \) dimer (Finlayson-Pitts et al., 2003). Using this study as a guide, we estimated \(k_{R13} \) and \(k_{R15} \) as \(5 \times 10^{-3} \text{s}^{-1} \), slightly larger than that estimated by Pimental et al. (2007) due to the presence of light. A study into the decomposition of HONO on borosilicate glass surfaces suggested a rate coefficient for the loss HONO on the non-conditioned chamber walls to be \((1.0 \pm 0.2) \times 10^{-4} \text{s}^{-1} \) increasing to \((3.9 \pm 1.1) \times 10^{-4} \text{s}^{-1} \) when HONO was present on the walls (Syomin and Finlayson-Pitts, 2003). From this we estimated a light-accelerated loss rate coefficient of \(1 \times 10^{-3} \text{s}^{-1} \) for the loss of HONO(\(\text{ads} \)) by reaction with itself, \(k_{R18} \), and through reaction with HNO(\(\text{3ads} \)), \(k_{R17} \). Both of these reactions will occur on the surface of the aerosol. We make the assumption that the rate of loss of HONO to the walls of the chamber for this experiment is less than that of the heterogeneous loss reactions on the photocatalytic aerosol surface, leading to a \(k_{R22} \) of \(1 \times 10^{-4} \text{s}^{-1} \) as reported by Syomin and Finlayson-Pitts (2003). For \(k_{R12} - k_{R15} \), initial values were adopted and were then adjusted to fit the shape of the trend.
Figure 5. Schematic diagram of proposed mechanism of uptake of NO$_2$ on an aerosol surface in the presence of water to form HONO. Both Eley–Rideal, Model 2, and Langmuir–Hinshelwood, Model 3, mechanisms are shown with relevant estimated and calculated rate coefficients used in the models. NO$_2$-dependent and independent loss reactions of HONO are also depicted. Nitrogen is shown in black, oxygen is shown in red and hydrogen is shown in blue. ∗ denotes intermediate steps of the isomerisation of symmetric N$_2$O$_4$ to trans-ONO-NO$_2$, which is then predicted to form HONO.

in experimental results of [HONO] and $\gamma_{NO_2\rightarrow HONO}$ versus [NO$_2$], discussed fully in Sect. 3.3.2. For completeness, gas-phase loss reactions of HONO and NO$_2$ with OH and the reactions of O(3P) with NO, NO$_2$ and O$_2$ were also included in the model, Reactions (R23)–(R27), though their inclusion had no effect on the HONO concentration. The rates of Reactions (R23)–(R27) within the model are much smaller than HONO loss reactions on the surface, Reactions (R17)–(R19), and the photolysis Reaction (R21). For both Model 2 and Model 3, the adsorption of an NO$_2$ molecule to the surface, k_{R9}, was assumed to be rapid and not the rate-determining step. Likewise, the desorption of HONO was also assumed to be rapid – faster than the loss rates of adsorbed HONO but slower than the adsorption of NO$_2$; this was necessary for the model to reproduce the trend in the experimental results of [HONO] versus [NO$_2$], discussed fully in Sect. 3.3.2.

3 Results and discussion

3.1 HONO production from TiO$_2$ aerosol surfaces in the presence of NO$_2$

The production of HONO on TiO$_2$ aerosol surfaces was measured as a function of the initial NO$_2$ mixing ratio. Figure 6 shows the dependence of the HONO concentration, measured at the end of the flow tube, on the initial NO$_2$ mixing ratio for an aerosol surface area of $(1.6 \pm 0.8) \times 10^{-2}$ m2 m$^{-3}$. A sharp increase in HONO production at a low mixing ratio of NO$_2$ was seen, followed by a more gradual reduction in...
as described in Sect. 2.5, with the exception of the NO$_2$ and HONO photolysis rate coefficient and the gas-phase rate coefficient which are known.

<table>
<thead>
<tr>
<th>Reactions</th>
<th>Rate coefficientd</th>
</tr>
</thead>
<tbody>
<tr>
<td>(R9) NO$_2$(g) + surface \rightarrow NO$_2$(ads)</td>
<td>1×10^{-3}</td>
</tr>
<tr>
<td>(R10) NO$_2$(ads) \rightarrow HONO$_2$(ads)</td>
<td>1×10^{-3}</td>
</tr>
<tr>
<td>(R11) HONO$_2$(ads) \rightarrow HONO$_2$(g)</td>
<td>1×10^{-2}</td>
</tr>
</tbody>
</table>

Table 1. Reactions included in the chemical mechanism used to model NO$_2$ uptake onto TiO$_2$ aerosols. All rate coefficients are estimated, as described in Sect. 2.5, with the exception of the NO$_2$ and HONO photolysis rate coefficient and the gas-phase rate coefficient which are known.

...was found that significant aerosols were lost from the system before entering the flow tube, speculated to be due to loss to the walls of the Teflon lines. As such the RH dependence was only studied up to 37% RH; however, a clear drop-off in HONO production was seen for both NO$_2$ mixing ratios studied after \sim30% RH.

Figure 7 shows the HONO concentration measured at the end of the flow tube over a range of RH values for a fixed aerosol surface area density of $(1.59 \pm 0.16 \times 10^{-2}$ m2 m$^{-3})$ and at two NO$_2$ mixing ratios, displaying a peak in HONO production between 25%–30% RH. Above \sim37% RH, for experiments including single-component TiO$_2$ aerosols, it was found that significant aerosols were lost from the system before entering the flow tube, speculated to be due to loss to the walls of the Teflon lines. As such the RH dependence was only studied up to 37% RH; however, a clear drop-off in HONO production was seen for both NO$_2$ mixing ratios studied after \sim30% RH.

A dependence of HONO production upon RH was expected due to the potential role of water as a proton donor in the production mechanism of HONO on TiO$_2$ surfaces (Reactions R2 and R5, as shown in Fig. 5) (Dupart et al., 2014). The fractional surface coverage of water on the TiO$_2$ aerosol core, V/V_m, at 15% RH and above was calculated using the parameterisation below, which was determined using trans-

a Measured using chemical actinometry with the knowledge of the experimentally determined spectral output of the lamp and the cross sections and quantum yields of NO$_2$ and HONO; see Sect. 2.4 for more detail. b Calculated using a photon flux of $(1.63 \pm 0.09) \times 10^{16}$ photons cm$^{-2}$ s$^{-1}$. c Sander et al. (2003). d Rate coefficients are in the units of s$^{-1}$ for first-order processes or cm3 molec.$^{-1}$ s$^{-1}$ for second-order processes. T for all k values is 298 K.
mission IR spectroscopy (Goodman et al., 2001):

\[
\frac{V}{V_n} = \left[\frac{c \left(\frac{P}{P_0} \right)}{1 - \left(\frac{P}{P_0} \right)} \right]^{1 - (n + 1) \left(\frac{P}{P_0} \right)^n + n \left(\frac{P}{P_0} \right)^{n+1}} \frac{1 + (c - 1) \left(\frac{P}{P_0} \right)^n - c \left(\frac{P}{P_0} \right)^{n+1}}{1 - c},
\]

where \(V \) is the volume of water vapour adsorbed at equilibrium pressure \(P \), \(V_n \) is the volume of gas necessary to cover the surface of TiO\(_2\) particles with a complete monolayer, \(P_0 \) is the saturation vapour pressure, \(c \) is the temperature-dependent constant related to the enthalpies of adsorption of the first and higher layers (taken as 74.8 kJ mol\(^{-1}\) for TiO\(_2\), Goodman et al., 2001), and \(n \) is the asymptotic limit of monolayers (eight for TiO\(_2\), Goodman et al., 2001) at large values of \(P/P_0 \).

At 15 % RH, a fractional water coverage of 1.09 was calculated to be present on the surface, increasing to 1.50 at 35 % RH. It has been shown in previous work that HONO can be displaced from a surface by water, leading to an increase in gas-phase HONO with RH (Syomin and Finlayson-Pitts, 2003). The increase in HONO with RH to \(\sim 25\% - 30\% \) RH could therefore be attributed to both an increase in the concentration of the water reactant leading to more HONO formation and the increase in displacement of HONO from the surface due to preferential adsorption of water. A decrease in HONO production seems to occur above \(\sim 30\% \) RH, which could be due to the increased water adsorption inhibiting either NO\(_2\) adsorption or the electron–hole transfer process (Gustafsson et al., 2006). H\(_2\)O vapour adsorption is likely enhanced by the superhydrophilic properties of TiO\(_2\) surfaces under UV radiation, meaning that water monolayers form more quickly on the surface of TiO\(_2\) owing to light-induced changes in surface tension (Takeuchi et al., 2005; Gustafsson et al., 2006).

At the higher initial concentration of NO\(_2\) = 170 ppb, the RH dependence showed a similar peak in HONO production between \(\sim 25\% - 30\% \) RH, but less HONO was produced overall, as expected from Fig. 6 given the higher NO\(_2\). Previous work on the production of HONO from suspended TiO\(_2\) aerosols reported a strong RH dependence of the uptake coefficient, \(\gamma \), of NO\(_2\) to form HONO with a peak at \(\sim 15\% \) RH and decreasing at larger RH (Gustafsson et al., 2006). The same trend for the NO\(_2\) uptake coefficient was observed by Dupart et al. (2014) on Arizona test dust (ATD) aerosols with a peak in \(\gamma \) at \(\sim 25\% \) RH. This increase in the RH at which the uptake coefficient for NO\(_2\) in going from TiO\(_2\) to ATD aerosols was ascribed to the lower concentration of TiO\(_2\) present in ATD aerosols as opposed to single-component TiO\(_2\) aerosols used by Gustafsson et al. (2006) as well as by differences in particle size distribution. Gustafsson et al. (2006) reported a larger aerosol...
size distribution with a bimodal trend with mode diameters of \(\sim 80 \) and \(\sim 350 \) nm for single-component TiO\(_2\) aerosols, whereas Dupart et al. (2014) reported a smaller unimodal aerosol size distribution for ATD aerosols with a mode diameter of \(\sim 110 \) nm. In this work we also see a larger aerosol size distribution, with a lower mode diameter of \(\sim 180 \) nm similar to Dupart et al. (2014) but for pure TiO\(_2\) aerosols (aerosol size distribution shown in Fig. 2). Similar to the results of Dupart et al. (2014) we observe a trend inversion in [HONO] vs. RH at higher RH, between 25 %–30 %. An increase in HONO as a function of RH has also been observed on TiO\(_2\)-containing surfaces (Langridge et al., 2009; Gandolfo et al., 2015; Gandolfo et al., 2017) with a similar profile for the observed RH dependence of HONO being observed by Gandolfo et al. (2015) from photocatalytic paint surfaces with a maximum in HONO mixing ratio found at 30 % RH.

In comparison, a study focusing on the products of the uptake of NO\(_2\) on TiO\(_2\) surfaces showed a maximum in the gas-phase HONO yield at 5 % RH, with the yield of HONO plateauing off with further increase in humidity (Bedjanian and El Zein, 2012).

3.2 Dependence of reactive uptake coefficient on initial NO\(_2\) mixing ratio

The reactive uptake coefficient, \(\gamma_{\text{NO}_2 \rightarrow \text{HONO}} \) for NO\(_2\) \(\rightarrow \) HONO, on TiO\(_2\) aerosol particles was determined experimentally for 18 different initial NO\(_2\) mixing ratios and is shown in Fig. 8. For each initial NO\(_2\) mixing ratio, the gradient of the first-order rate coefficient for HONO production, \(k \), as a function of aerosol surface area density (e.g. Fig. 4) and in conjunction with Eq. (8) was used to obtain \(\gamma_{\text{NO}_2 \rightarrow \text{HONO}} \). The uptake coefficient initially increases with NO\(_2\), reaching a peak at \(\gamma_{\text{NO}_2 \rightarrow \text{HONO}} = (1.26 \pm 0.17) \times 10^{-4} \) for an initial NO\(_2\) mixing ratio of 51 \(\pm \) 5 ppb, before sharply decreasing as the NO\(_2\) mixing ratio continues to increase above this value.

The increase in uptake coefficient with NO\(_2\) at low NO\(_2\) (< 51 ppb) has not been seen previously in studies of HONO production from TiO\(_2\)-containing aerosols with similar [NO\(_2\)] ranges (Gustafsson et al., 2006; Ndour et al., 2008; Dupart et al., 2014) or with other aerosol surfaces (Bröske et al., 2003; Stemmler et al., 2007) or TiO\(_2\) surfaces (El Zein and Bedjanian, 2012b). It is worth noting that several of these studies reported the overall uptake of NO\(_2\) onto aerosol surfaces and not specifically the uptake to form HONO, although HONO was indirectly measured in all studies noted here (Gustafsson et al., 2006; Ndour et al., 2008; Dupart et al., 2014). For single-component TiO\(_2\) aerosols, Gustafsson et al. (2006) reported a uptake coefficient, \(\gamma_{\text{NO}_2} \), of \(9.6 \times 10^{-4} \) at 15 % RH and 100 ppb NO\(_2\). Taking into account the HONO yield of 0.75 given by Gustafsson et al. (2006), an estimated \(\gamma_{\text{NO}_2 \rightarrow \text{HONO}} = 7.2 \times 10^{-4} \) is determined and can be compared to the value observed in this work at 15 % RH and 100 ppb NO\(_2\), \(\gamma_{\text{NO}_2 \rightarrow \text{HONO}} = (2.68 \pm 0.23) \times 10^{-5} \). The \(\gamma_{\text{NO}_2 \rightarrow \text{HONO}} \) we determine is 27 times smaller than reported by Gustafsson et al. (2006). This difference is mostly due to the lower experimental photon flux in our setup, \(\sim 19 \) times less at \(\lambda_{\text{max}} = 365 \) nm owing to the use of one 15 W UV lamp to irradiate the flow tube (Boustead, 2019) compared to Gustafsson et al. (2006), who utilised four 18 W UV lamps.

The origins of the increase in \(\gamma_{\text{NO}_2 \rightarrow \text{HONO}} \), together with reaching a maximum, and the subsequent decrease at larger NO\(_2\) mixing ratios were investigated using the kinetic box model and postulated mechanism for HONO production described in Sect. 2.5. The aim was to compare the observed production of HONO and \(\gamma_{\text{NO}_2 \rightarrow \text{HONO}} \) with the modelled values, as a function of NO\(_2\) mixing ratio. The skill of the model to reproduce the observed behaviour enables a validation of the postulated mechanism for HONO production, and variation of the kinetic parameters enables the controlling influence of different steps in the mechanism on HONO production to be evaluated.

3.3 Modelling the HONO production mechanism on illuminated TiO\(_2\) aerosol surfaces

The HONO production on illuminated TiO\(_2\) aerosol surfaces was investigated for each of the mechanisms outlined in Table 1.
3.3.1 Model 1

Model 1 (see Table 1 and Fig. 5), which contains the simplest mechanism, was designed to reproduce the decreasing value of the NO\textsubscript{2} uptake coefficient to form HONO, γ\textsubscript{NO\textsubscript{2}→HONO}, with increasing NO\textsubscript{2} and also the plateauing at higher NO\textsubscript{2} mixing ratios caused by NO\textsubscript{2} reaching a maximum surface coverage, as seen by Stemmler et al. (2007). A decrease in the uptake coefficient of NO\textsubscript{2}, γ\textsubscript{NO\textsubscript{2}}, onto dust aerosol surfaces was also seen in studies where the formation of HONO from NO\textsubscript{2} uptake was not directly studied (Ndour et al., 2008; Dupart et al., 2014). The mechanism for Model 1 which is given in Table 1 describes the adsorption of one NO\textsubscript{2} molecule to a surface site which then undergoes the reaction which forms HONO, followed by desorption of HONO to the gas phase, Reactions (R9)–(R11). Any representation of the specific chemical processes which convert NO\textsubscript{2} to HONO on the surface following the initial photoproduction of electron–hole pairs in the TiO\textsubscript{2} structure (Reaction R2) was not included here as the primary focus was to produce the relationship between γ\textsubscript{NO\textsubscript{2}→HONO} and the NO\textsubscript{2} mixing ratio. Gustafsson et al. (2006) reported that the measured rate of photo-induced HONO production is 75\% that of the rate of NO\textsubscript{2} removal, whereas the dark disproportionation reaction (Reaction R28) would predict a 50\% yield, and hence that the HONO observed in their studies is not simply a photo-enhancement of

\[2\text{NO}_2(\text{ads}) + \text{H}_2\text{O}(\text{ads}) \rightarrow \text{HONO}(\text{g}) + \text{HNO}_2(\text{ads}). \]

(R28)

Gustafsson et al. (2006) suggests that an oxidant on the surface is produced following the creation of the electron–hole pair (OH is generated in Reaction R2) and suggests H\textsubscript{2}O\textsubscript{2} as a possibility, which is consistent with the observation of OH and HO\textsubscript{2} radicals produced from the surface of illuminated TiO\textsubscript{2} aerosols (Moon et al., 2019). For Model 1, outputs for the predicted concentration of HONO and the reactive uptake coefficient, γ\textsubscript{NO\textsubscript{2}→HONO}, as a function of initial NO\textsubscript{2} mixing ratio are shown in Fig. 9.

For a run time of 52 s, equal to that of the experimental illumination time, Model 1 predicts an increase in HONO production with increasing NO\textsubscript{2} mixing ratio until the HONO concentration begins to plateau, reaching ~0.25 ppb at [NO\textsubscript{2}] = 400 ppb, presumably owing to saturation on active aerosol surface sites by NO\textsubscript{2}. This leads to the modelled reactive uptake coefficient, γ\textsubscript{NO\textsubscript{2}→HONO}, monotonically decreasing with increasing NO\textsubscript{2} mixing ratio – a variation in NO\textsubscript{2} uptake coefficient similar to that seen in previous photo-enhanced NO\textsubscript{2} aerosol uptake studies (Bröské et al., 2003; Stemmler et al., 2007; Ndour et al., 2008; Dupart et al., 2014). However, the model predictions for Model 1 do not reproduce the experimental variations shown in Figs. 6 and 8, in which there is an observed initial rise and then a fall in both the HONO concentration and γ\textsubscript{NO\textsubscript{2}→HONO} with increasing NO\textsubscript{2} mixing ratio. Hence, additional processes were considered in the model in order to try to reproduce this behaviour.

3.3.2 Model 2 and Model 3 – investigating the role of NO\textsubscript{2} dimerisation for the surface formation of HONO, and including additional surface losses of HONO

As the experimental γ\textsubscript{NO\textsubscript{2}→HONO} increases with NO\textsubscript{2} at low NO\textsubscript{2} (Fig. 8), we postulate in Model 2 and Model 3 that the production of HONO under illuminated conditions is not fully first order in NO\textsubscript{2} and requires more than one NO\textsubscript{2} molecule to form HONO, consistent with the formation of the symmetric NO\textsubscript{2} dimer (N\textsubscript{2}O\textsubscript{4}) followed by isomerisation on the surface to form the asymmetric trans-ONO\textsubscript{NO\textsubscript{2}} dimer, which has been suggested to be more reactive with water than the symmetric N\textsubscript{2}O\textsubscript{4} dimer (Finlayson-Pitts et al., 2003; Ramazan et al., 2004; Ramazan et al., 2006; Liu and Goddard, 2012) due to the autoionisation to form (NO+)(NO\textsubscript{3}−), which we propose is accelerated by the presence of light, the full mechanism for which is shown in Fig. 5. A recent rotational spectroscopy study found that the trans-ONO\textsubscript{NO\textsubscript{2}} was better described as the ion pair (NO+)(NO\textsubscript{3}−) (Seifert et al., 2017). Reaction of the (NO+)(NO\textsubscript{3}−) ion pair with surface-adsorbed water can then lead to the formation of HONO and HNO\textsubscript{3}, the feasibility of which is supported by molecular dynamics simulation studies (Varner et al., 2014). While the symmetric N\textsubscript{2}O\textsubscript{4} dimer is favoured as it is the most stable conformer, the asymmetric forms have been experimentally observed in several studies (Fateley et al., 1959; Givan and Loewenschuss, 1989b, a, 1991; Pinnick et al., 1992;
Forney et al., 1993; Wang and Koel, 1998, 1999; Beckers et al., 2010). A more recent ab initio study of NO$_2$ adsorption at the air–water interface suggested an orientational preference of NO$_2$ on the surface, with both oxygen atoms facing away from the interface, which may imply that the asymmetric dimer ONO-NO$_2$ can form directly, meaning the high barrier between the symmetric and asymmetric forms does not need to be overcome (Murdachaew et al., 2013).

The energy barrier to isomerisation of symmetric N$_2$O$_4$ in the gas phase may be reduced due to the interaction with water adsorbed on surfaces. We therefore rule out the dimer in the gas phase adsorbing onto the surface first and then reacting to form HONO (Varner et al., 2014). An interesting question is whether the first NO$_2$ molecule adsorbed to the surface dimerises via the addition of a gaseous NO$_2$ via an Eley–Rideal (ER) type process or whether a Langmuir–Hinshelwood (LH) type mechanism is operating in which both NO$_2$ molecules are first adsorbed and then diffuse together on the surface forming N$_2$O$_4$. Both ER and LH mechanisms to form the NO$_2$ dimer have been included in the model, denoted as Model 2 and Model 3, respectively. The outputs for Model 2 and Model 3 (see Table 1 for details of the processes included) for the HONO concentration and γNO$_2$→HONO as a function of NO$_2$ are shown in Fig. 10 together with the experimental data. The stoichiometric relationship of the requirement of two NO$_2$ molecules forming HONO on the surface was key to reproducing the experimental trend of first an increase and then a decrease in both the HONO concentration and the reactive uptake coefficient with the initial NO$_2$ mixing ratio.

In previous work that investigated HONO production from humic acid aerosols, a saturation effect was seen with HONO production plateauing with increasing NO$_2$ mixing ratio (Stemmler et al., 2007), with the decreasing uptake coefficient, γNO$_2$→HONO, with increasing NO$_2$ being attributed to NO$_2$ fully saturating available surface sites. However, the observed decrease in [HONO] at the high NO$_2$ mixing ratios shown in Figs. 8 and 10a suggests that additional reactions on the surface may remove HONO and result in the reduction of [HONO] that is measured. As [HONO] decreases with the increase in the NO$_2$ mixing ratio, the removal process should either involve NO$_2$ directly,

$$\text{HONO} + \text{NO}_2 \rightarrow \text{NO} + \text{HNO}_3,$$

or involve species made rapidly from NO$_2$ on the surface, such as NO$_2^+$,

$$\text{HONO}^+ + \text{NO}_2^+ \rightarrow \text{H}^+ + 2\text{NO} + \text{O}_2,$$ (R19a)

which may be present at high enough concentrations of HNO$_3$ on the surface (Syomin and Finlayson-Pitts, 2003) or following reaction with h^+_VB, or a product of the reaction of O$_2^+$ (or e^-_{CB}) with NO$_2$ (Reaction R4), i.e. NO$_2^+$. Similar results were observed in a study by El Zein and Bedjanian (2012a), where NO$_2$ and NO were found to be formed from the heterogeneous reaction of HONO with TiO$_2$ surfaces in both dark and illuminated conditions, suggesting the loss of HONO via an auto-ionisation reaction between the gas-phase and adsorbed HONO to generate NO$^+$ and NO$_2^-$ (El Zein and Bedjanian, 2012a). Additional HONO surface loss pathways were assumed to occur under illuminated conditions due to the presence of e^- and h^+, leading to the oxidation of HONO to NO$_2$ and the reduction of HONO to NO (El Zein et al., 2013). Transition state theory (TST) studies of the gas-phase reaction of HONO with NO$_2$ to form HNO$_3$ calculated a large activation energy which varied depending on whether the reaction occurs via O abstraction by HONO (159 kJ mol$^{-1}$) or via OH abstraction via NO$_2$ (\sim133–246 kJ mol$^{-1}$) (Lu et al., 2000). In the gas phase these reactions are too slow to be important, but they could be enhanced on the surface, potentially more so on a phototactive surface such as TiO$_2$. For Models 2 and 3 the shape of the trend in HONO concentration and uptake coefficient, γ versus NO$_2$ concentration depended strongly on the value of k_{R19} and the choice of a 2 : 1 stoichiometric ratio of the NO$_2$ molecules adsorbed to the HONO molecules produced. Without these two key processes being included, a maximum.
in either the HONO concentration or γ as the NO$_2$ concentration is increased could not be obtained in the model. A third key condition was the requirement that the desorption rate coefficient, k_{R16}, be larger than the rate coefficient for the loss of HONO, k_{R17} and $k_{R18} = 1 \times 10^{-3}$ s$^{-1}$, but slower than the adsorption rate coefficient, k_{R9}. Changing the values of all other kinetic parameters in the model had an effect on the absolute concentration of HONO but crucially not on the shape of the trends in HONO or the uptake coefficient versus NO$_2$ concentration. Changing the values of the rate coefficients for the gas-phase loss Reactions (R23)–(R27) only had a very small impact on the HONO concentration. The addition of an NO$_2$-dependent loss reaction to both Model 2 and Model 3 had the most significant effect on the trend in modelled HONO concentration. Though it is also possible that a secondary product could remain adsorbed on the TiO$_2$ surface, effectively poisoning the photocatalyst, NO$_2$-independent loss reactions in the model, k_{R17} and k_{R18}, had little effect on the trend in [HONO] vs. NO$_2$, only having an effect on the overall [HONO]. HNO$_3$ has however been shown to remain adsorbed to surfaces once formed (Sakamaki et al., 1983; Pitts et al., 1984; Finlayson-Pitts et al., 2003; Ramazan et al., 2004) and may also react with adsorbed HONO, further reducing the product yield (Finlayson-Pitts et al., 2003); these NO$_2$-independent loss reactions may therefore become more important at higher NO$_2$ concentrations and hence surface concentrations of HONO and HNO$_3$:

$$\text{HONO}_{(ads)} + \text{HNO}_3(ads) \rightarrow 2\text{NO}_2(g) + \text{H}_2\text{O}_{(ads)} + \text{O}_2(g).$$

(R17)

The photolysis of particulate nitrate was not considered in Model 2 or Model 3, due to the lack of particulate nitrate in the system at $t = 0$. The gas-to-particle conversion of any HNO$_3$ formed was not considered to be important due to the assumption that most HNO$_3$ formed would remain adsorbed to the aerosol surface (Sakamaki et al., 1983; Pitts et al., 1984; Finlayson-Pitts et al., 2003; Ramazan et al., 2004). For Model 2, which includes the production of HONO via the Eley–Rideal mechanism, in order to reproduce the experimentally observed sharp increase followed by a decrease in both [HONO] and $\gamma_{\text{NO}_2 \rightarrow \text{HONO}}$ as a function of increasing NO$_2$ mixing ratio, the modelled rate coefficient for the adsorption of a gas-phase NO$_2$ molecule to another, the surface-adsorbed NO$_2$ to initially form the symmetric N$_2$O$_3$ dimer, k_{R12}, had to be larger than for the isomerisation step to form HONO and HNO$_3$ via trans-ONO-NO$_2$, k_{R13}. Interestingly, for HONO production via the Langmuir–Hinshelwood mechanism, Model 3, the modelled rate coefficient for the diffusion of one NO$_2$ molecule across the surface to form the dimer with another NO$_2$ molecule, k_{R14}, had to be smaller than for the isomerisation step, k_{R15}, to more closely represent the experimental results for the uptake coefficient. Additionally, in order to reproduce the experimental trend in HONO formation as a function of NO$_2$ mixing ratio, the rate coefficient for the NO$_2$-dependent loss reaction, k_{R19}, had to be larger than the NO$_2$-independent reactions, k_{R17} and k_{R18}, leading to $k_{R19} = 5 \times 10^{-3}$ s$^{-1}$. The modelled HONO concentration is also sensitive to the active site surface concentration: Model 3 required an active site surface concentration 2.5 times that of Model 2 to reproduce the peak in [HONO] at ~ 51 ppb NO$_2$ observed in the experimental results. The reason for this is due to the difference in active site occupation in the two models: one active site is being occupied by two NO$_2$ molecules per HONO formed in Model 2 as opposed to Model 3, where two active sites are occupied per HONO formed. Regardless of the choice of an Eley–Rideal or Langmuir–Hinshelwood mechanism, both models reproduce the general shape of [HONO] and $\gamma_{\text{NO}_2 \rightarrow \text{HONO}}$ with NO$_2$, providing evidence that two NO$_2$ molecules are required to form HONO.

3.4 HONO production from illumination of a mixed NH$_4$NO$_3$ / TiO$_2$ aerosol in the absence of NO$_2$

The photolysis of particulate nitrate has been postulated as a source of HONO under ambient sunlit conditions during several field campaigns, from both aircraft- and ground-based measurements (Reed et al., 2017; Ye et al., 2017a, b). Here, experiments were carried out to investigate the formation of HONO from particulate nitrate photolysis, with and without the addition of a photocatalyst. This is of significant interest for marine environments downwind of arid desert regions due to the availability of TiO$_2$ or other photocatalytic materials within aerosols in dust plumes that are transported from these regions (Hanisch and Crowley, 2003).

Using the aerosol flow tube setup described in Sect. 2.1–2.4, an aqueous solution of ammonium nitrate (5 g NH$_4$NO$_3$ in 500 mL Milli-Q water) was used to generate nitrate aerosols. At the RH used in this experiment, $\sim 50\%$, the aerosols were still deliquesced. For these experiments the residence time of the aerosols in the illuminated region of the flow tube was 30 s (flow rate ~ 6 L min$^{-1}$), with the production of HONO following illumination measured as a function of aerosol surface area density. The number of lamps was increased from one to four, increasing the photon flux from $(1.63 \pm 0.09) \times 10^{16}$ to $(8.21 \pm 2.39) \times 10^{16}$ photons cm$^{-2}$ s$^{-1}$ and j(NO$_2$) from $(6.43 \pm 0.30) \times 10^{-3}$ to $(3.23 \pm 0.92) \times 10^{-2}$ s$^{-1}$. The j(NO$_2$), j(HONO) and flux values for four lamps were more than 4 times that of one lamp only due to the lamp casings being mirrored, and so with four lamps, with two lamps on either side of the flow tube, the casings reflected the light back into the flow tube, increasing the effective light intensity. For these experiments, no gaseous NO$_2$ was added to the gas entering the flow tube. As shown in Fig. 11, for the illumination of pure nitrate aerosols, although a small amount of HONO was observed at higher aerosol loadings, no statistically significant production of HONO was seen.
A second set of experiments were performed with an aqueous solution of titanium dioxide and ammonium nitrate combined in a 1:1 mass ratio to give a TiO$_2$/NH$_4$NO$_3$ aerosol mixture (5 g NH$_4$NO$_3$ and 5 g TiO$_2$ in 500 mL Milli-Q water) to investigate if the photocatalytic properties of TiO$_2$ facilitate the production of HONO in the presence of nitrate. The RH was decreased to ensure the maximum TiO$_2$ photocatalytic activity (Jeong et al., 2013). A recent study using Raman micro-spectroscopy to observe phase changes in salt particulate nitrate photolysis rate, ambient conditions typical of the tropical marine boundary layer. Taking the ratio of the experimental [HONO] as a function of [NO$_3^-$] scale in the same way, ambient nitrate is given by

\[
d[HONO] / dr = j(pNO$_3$) [NO$_3^-$] \tag{10}
\]

and hence

\[
[HONO] = j(pNO$_3$) [NO$_3^-$] I, \tag{11}
\]

where \(j(pNO$_3$)\) is the photolysis frequency of nitrate for the lamps used in these experiments and \(I\) is the illumination time of the experiment. With knowledge of [HONO], [NO$_3^-$] and \(t = 30\) s, \(j(pNO$_3$)\) can be calculated from a measurement of [HONO] as a function of [NO$_3^-$], as shown in Fig. 12, for the mixed nitrate/TiO$_2$ experiment.

When using the four lamps together, the experimental particulate nitrate photolysis rate, \(j(pNO$_3$)\), was determined to be \((3.29 \pm 0.89) \times 10^{-4} \text{s}^{-1}\) for the mixed nitrate/TiO$_2$ aerosol. From this, it is possible to estimate \(j(pNO$_3$)\) for ambient conditions typical of the tropical marine boundary layer. Taking the ratio of the experimental \(j(\text{HONO})\) for four lamps \((8.35 \pm 0.18) \times 10^{-3} \text{s}^{-1}\) and the measured \(j(\text{HONO})\) from the RhaMBLe campaign held at the Cape Verde Atmospheric Observatory (May–June 2007) \((1.2 \times 10^{-3} \text{s}^{-1}\) (Carpenter et al., 2010; Whalley et al., 2010; Reed et al., 2017) and assuming that \(j(pNO$_3$)\) and \(j(\text{HONO})\) scale in the same way, ambient \(j(pNO$_3$)\) can be determined from

\[
(j(pNO$_3$)) = j(pNO$_3$) \times \frac{1.2 \times 10^{-3}}{j(\text{HONO})}. \tag{12}
\]
where \(j(p\text{NO}_3)_N \) is the photolysis rate coefficient of particulate nitrate at Cabo Verde. \(j(p\text{NO}_3) \) is the experimentally determined photolysis rate coefficient of particulate nitrate to form HONO and \(j(\text{HONO}) \) is the HONO photolysis rate coefficient calculated from the experimentally determined \(j(\text{NO}_2) \).

Using \(j(p\text{NO}_3) = (3.29 \pm 0.89) \times 10^{-4} \text{ s}^{-1} \), the rate of HONO production from nitrate photolysis at Cabo Verde was calculated to be \(j(p\text{NO}_3)_N = (4.73 \pm 1.01) \times 10^{-5} \text{ s}^{-1} \) from the mixed nitrate/TiO\(_2\) aerosol experiment. Although for pure nitrate aerosol in the absence of TiO\(_2\) the data were scattered and the HONO production was small (Fig. 11), an upper limit estimate of \(j(p\text{NO}_3)_N = (1.06 \pm 1.15) \times 10^{-6} \text{ s}^{-1} \) under conditions at Cabo Verde could be made using Eq. (11), as done for rate of HONO production from mixed nitrate/TiO\(_2\) aerosols. The atmospheric implications of this will be considered below.

4 Implications of HONO production from TiO\(_2\) for tropospheric chemistry

4.1 Production of HONO from sunlit aerosols containing TiO\(_2\) in the presence of NO\(_2\)

For the reactive uptake of NO\(_2\) onto illuminated TiO\(_2\) particles as a function of the initial NO\(_2\) mixing ratio, as shown in Fig. 8, a maximum value of \(\gamma_{\text{NO}_2 \rightarrow \text{HONO}} = (1.26 \pm 0.17) \times 10^{-4} \) was determined at 51 ± 5 ppb NO\(_2\) for a photon flux from the lamp of \((1.63 \pm 0.09) \times 10^{16} \text{ photons cm}^{-2} \text{ s}^{-1} \). These experiments were for single-component TiO\(_2\) particles, and so for dust aerosols a value of \(\gamma_{\text{NO}_2 \rightarrow \text{HONO}} = (1.26 \pm 0.17) \times 10^{-5} \) is appropriate, assuming a 10% fraction of TiO\(_2\) and/or other photoactive materials (which behave similarly for HONO production) in mineral dust (Hanisch and Crowley, 2003). Dust aerosols are transported from the Gobi desert to urban areas of China where high NO\(_x\) and nitrate aerosol concentrations have been observed, and in these areas HONO production facilitated by photocatalysts may be important (Saliba et al., 2014).

Using an average daytime maximum for [NO\(_2\)], \(j(\text{NO}_2) \) and aerosol surface area measurements for a non-haze period in May–June in 2018 in Beijing, of 50 ppb, \(1 \times 10^{-7} \text{ s}^{-1} \) and \(2.5 \times 10^{-3} \text{ m}^2 \text{ m}^{-3} \) (of which a maximum of 0.3% was assumed to be TiO\(_2\), though this could be higher in dust impacted events, Schleicher et al., 2010) respectively, a production rate of HONO of \(1.7 \times 10^3 \text{ molec. cm}^{-2} \text{ s}^{-1} \) (~24.8 ppt h\(^{-1}\)) has been estimated using the maximum reactive uptake coefficient measured in this work, \(\gamma_{\text{NO}_2 \rightarrow \text{HONO}} = (1.26 \pm 0.17) \times 10^{-4} \). The average RH in Beijing during summertime is significantly higher than the range of RH used in the TiO\(_2\) aerosol experiments. In previous work (Gustafsson et al., 2006), the NO\(_2\) reactive uptake coefficient decreased for relative humidities above those studied here, and hence the HONO production calculated under the conditions in Beijing may represent an upper limit. The lamp used to illuminate the TiO\(_2\) aerosols in these experiments gives rise to \(j(\text{NO}_2) = (6.43 \pm 0.3) \times 10^{-3} \text{ s}^{-1} \), and so \(\gamma_{\text{NO}_2 \rightarrow \text{HONO}} \) has been scaled by a factor of 1.55 to match the noon \(j(\text{NO}_2) \) measured in May–June 2018 in Beijing (\(10^{-2} \text{ s}^{-1} \)), to take into account the relatively small difference in experimental and atmospheric photon flux for Beijing. The HONO production rate estimated here for noontime summer (May–June 2018) in Beijing (~25 ppt h\(^{-1}\)) is similar to the value for the maximum production of HONO from urban humic acid aerosol surfaces in Europe, 17 ppt h\(^{-1}\) at 20 ppb NO\(_2\) reported by Stemmler et al. (2007). For comparison, the net gaseous production rate of HONO at noon in May–June (2018) Beijing was determined from the measured rate of gas-phase production and losses:

\[
\dot{P}_{\text{HONO}} = k_{\text{OH} + \text{HONO}} [\text{OH}] [\text{NO}_2] \quad (j(\text{HONO}) \times [\text{HONO}] + k_{\text{OH} + \text{HONO}} [\text{OH}] [\text{HONO}]),
\]

where \(k_{\text{OH} + \text{HONO}} = 3.3 \times 10^{-11} \text{ cm}^3 \text{ molec.}^{-1} \text{ s}^{-1} \) (Atkinson et al., 2004), \(k_{\text{OH} + \text{HONO}} = 6 \times 10^{-12} \text{ cm}^3 \text{ molec.}^{-1} \text{ s}^{-1} \) (Atkinson et al., 2004) and \(j(\text{HONO}) = 1 \times 10^{-2} \text{ s}^{-1} \) for an average maximum noontime OH concentration of \(8 \times 10^6 \text{ molec. cm}^{-3} \) (Whalley et al., 2021), NO concentration of 1.45 ppb (Whalley et al., 2021) and HONO concentration of 0.8 ppb (Whalley et al., 2021).

The net gas-phase production of HONO from Eq. (13) was calculated to be ~3.8 ppt h\(^{-1}\) (a net loss) as expected due to HONO loss by photolysis peaking at solar noon, suggesting the production of HONO heterogeneously from TiO\(_2\) and NO\(_2\) (~25 ppt h\(^{-1}\)) would have little effect on the overall HONO budget for Beijing summertime at noon.

4.2 Production of HONO from photolysis of mixed dust/nitrate aerosols

Particulate nitrate photolysis could be an important source of HONO in oceanic environments, for example the Atlantic Ocean, where both dust aerosols from the Sahara and high concentrations of mixed nitrate aerosols from sea spray are present, despite low NO\(_2\) concentrations (Hanisch and Crowley, 2003; Ye et al., 2017b). From the particulate nitrate photolysis experiments in the absence of NO\(_2\) conducted here, a \(j(p\text{NO}_3)_N = (4.73 \pm 1.01) \times 10^{-5} \text{ s}^{-1} \) was determined in the presence of the TiO\(_2\) photocatalysts (Sect. 3.4). Using the experimental \(j(p\text{NO}_3) \), scaled to typical ambient light levels, and a mean noon concentration of nitrate aerosols of 400 ppt measured at Cabo Verde (Reed et al., 2017), taken as an example marine boundary layer environment with a high concentration of mineral dust aerosols, a rate of HONO production from particulate nitrate at Cabo Verde was calculated as \(4.65 \times 10^5 \text{ molec. cm}^{-2} \text{ s}^{-1} \) (68 ppt h\(^{-1}\)). We note that this value would be ~50 times smaller for pure nitrate aerosols. The missing rate of HONO production, i.e. not taken into ac-
count by the gas-phase production and loss, P_{other}, from the Cabo Verde RHaMBLe campaign, can be calculated using the observed HONO concentration, [HONO], and the known gas-phase routes for HONO production and loss:

$$P_{\text{other}} = (\langle \text{HONO} \rangle - \langle j(\text{HONO}) + k_{\text{OH}+\text{HONO}}[\text{OH}] \rangle) - (k_{\text{OH}+\text{NO}}[\text{OH}][\text{NO}]),$$

where $k_{\text{OH}+\text{NO}} = 3.3 \times 10^{-11} \text{cm}^3 \text{molec}^{-1} \text{s}^{-1}$ (Atkinson et al., 2004), $k_{\text{OH}+\text{HONO}} = 6 \times 10^{-12} \text{cm}^3 \text{molec}^{-1} \text{s}^{-1}$ (Atkinson et al., 2004) and $j(\text{HONO}) = 2 \times 10^{-3} \text{s}^{-1}$ for average maximum measured concentrations of 1×10^7 molecules$^{-1}$ cm$^{-3}$ for OH (Whalley et al., 2010), 5.41×10^7 molecules$^{-1}$ cm$^{-3}$ for NO (Whalley et al., 2010) and 1.23×10^8 molecules$^{-1}$ cm$^{-3}$ for HONO (Whalley et al., 2010).

Using Eq. (14) this missing HONO production rate for Cabo Verde was 34.6 ppt h$^{-1}$, which is within a factor of 2 of the rate of HONO production (68 ppt h$^{-1}$) calculated from nitrate photolysis using our experimental HONO production data for mixed nitrate/TiO$_2$ aerosols. These results provide further evidence that particulate nitrate photolysis in the presence of photocatalytic compounds such as TiO$_2$ found in dust could be significant in closing the HONO budget for this environment (Whalley et al., 2010; Reed et al., 2017; Ye et al., 2017a).

5 Conclusions

The experimental production of HONO from both illuminated TiO$_2$ aerosols in the presence of NO$_2$ and from mixed nitrate/TiO$_2$ aerosols in the absence of NO$_2$ was observed, with the HONO concentrations measured using photo-fragmentation laser-induced fluorescence spectroscopy. Using experimental data, the reactive uptake of NO$_2$ onto the TiO$_2$ aerosol surface to produce HONO, $\gamma_{\text{NO}_2\rightarrow\text{HONO}}$, was determined for NO$_2$ mixing ratios ranging from 34 to 400 ppb, with a maximum $\gamma_{\text{NO}_2\rightarrow\text{HONO}}$ value of $(1.26 \pm 0.17) \times 10^{-4}$ for single-component TiO$_2$ aerosols observed at 51 ppb NO$_2$ and for a lamp photon flux of $(1.63 \pm 0.09) \times 10^{16}$ photons cm$^{-2}$ s$^{-1}$ (integrated between 290 and 400 nm). The measured reactive uptake coefficient, $\gamma_{\text{NO}_2\rightarrow\text{HONO}}$, showed an increase and then a subsequent decrease as a function of NO$_2$ mixing ratio, peaking at 51 ± 5 ppb. Box modelling studies supported a mechanism involving two NO$_2$ molecules on the aerosol surface per HONO molecule generated, providing evidence for the formation of a surface-bound NO$_2$ dimer intermediate. The exact mechanism for HONO formation, for example the step(s) which is accelerated in the presence of light, remains unclear, although previous studies would suggest the process occurs via the isomerisation of the symmetric N$_2$O$_4$ dimer to give trans-ONO-NO$_2$, either via cis-ONO-NO$_2$ or directly, suggested to be more reactive with water than the symmetric dimer (Finlayson-Pitts et al., 2003; Ramazan et al., 2004; Ramazan et al., 2006; de Jesus Madeiros and Pimentel, 2011; Liu and Goddard, 2012; Murdachaew et al., 2013; Varner et al., 2014). Investigations into the RH dependence of the HONO production mechanism on TiO$_2$ aerosols showed a peak in production between ~25%–30% RH, with lower HONO production at higher NO$_2$ mixing ratios observed for all RHs tested. The increase in HONO production with increasing RH can be attributed to a higher concentration of H$_2$O on the surface increasing its availability for the hydrolysis reaction to give HONO, whereas a decrease in HONO production after RH ~ 30% could be due to the increased water surface concentration inhibiting the adsorption of NO$_2$.

Using the laboratory reactive uptake coefficient for HONO production, $\gamma_{\text{NO}_2\rightarrow\text{HONO}}$, the rate of production of HONO from illuminated aerosols in Beijing in summer for typical NO$_2$ mixing ratios and aerosol surface areas was found to be similar to that estimated previously for the production of HONO from urban humic acid aerosol surfaces in Europe.

In the absence of NO$_2$, significant HONO production from 50 : 50 mixed nitrate/TiO$_2$ aerosols was measured. Using the experimental HONO concentrations observed, a rate of HONO production from nitrate photolysis was calculated, which was then scaled to the ambient conditions encountered at the Cape Verde Atmospheric Observatory in the tropical marine boundary layer. A HONO production rate of 68 ppt h$^{-1}$ for the mixed nitrate/TiO$_2$ aerosol was found for CVAO conditions, similar in magnitude to the missing HONO production rate that had been calculated previously in order to bring modelled HONO concentrations into line with field-measured values at CVAO. These results provide further evidence that aerosol particulate nitrate photolysis may be significant as a source of HONO, and hence NO$_x$, in the remote marine boundary layer, where mixed aerosols containing nitrate and a photocatalytic species such as TiO$_2$, as found in dust, are present.

However, the production of HONO from pure, deliquesced ammonium nitrate aerosols alone could not be definitively confirmed over the range of conditions used in our experiments, suggesting that another component within the aerosol is necessary for HONO production. Future work should be directed towards studying pure nitrate aerosols over a wider range of conditions, for example varying the aerosol pH, and also adding other chemical species into the aerosol which may promote HONO production.

Data availability. Data presented in this study can be obtained from the authors upon request (d.e.heard@leeds.ac.uk)

Author contributions. JED and GAB carried out the measurements with assistance from LTF, MB and LKW. JED and LKW developed the model, and JED carried out the calculations. JED, LKW and DEH prepared the manuscript, with contributions from all co-authors.
Competing interests. The authors declare that they have no conflict of interest.

Acknowledgements. We are grateful to the Natural Environmental Research Council for funding a SPHERES PhD studentship (Joanna E. Dyson) and for funding the EXHALE project (grant number NE/S006680/1).

Financial support. This research has been supported by the Natural Environment Research Council (grant no. NE/S006680/1).

Review statement. This paper was edited by Markus Ammann and reviewed by two anonymous referees.

References

Gandolfo, A., Rouyer, L., Wortham, H., and Gligorovski, S.: The influence of wall temperature on NO₂ re-

