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Abstract. Several ambient air quality records corroborate
the severe and persistent degradation of air quality over
northern India during the winter months, with evidence of
a continued, increasing trend of pollution across the Indo-
Gangetic Plain (IGP) over the past decade. A combination
of atmospheric dynamics and uncertain emissions, includ-
ing the post-monsoon agricultural stubble burning, make it
challenging to resolve the role of each individual factor. Here
we demonstrate the potential use of an atmospheric transport
model, the Weather Research and Forecasting model cou-
pled with chemistry (WRF–Chem) to identify and quantify
the role of transport mechanisms and emissions on the oc-
currence of the pollution events. The investigation is based
on the use of carbon monoxide (CO) observations from
the TROPOspheric Monitoring Instrument (TROPOMI) on
board the Sentinel-5 Precursor satellite and the surface mea-
surement network, as well as the WRF–Chem simulations,
to investigate the factors contributing to CO enhancement
over India during November 2018. We show that the simu-
lated column-averaged dry air mole fraction (XCO) is largely
consistent with TROPOMI observations, with a spatial cor-
relation coefficient of 0.87. The surface-level CO concen-
trations show larger sensitivities to boundary layer dynam-
ics, wind speed, and diverging source regions, leading to a
complex concentration pattern and reducing the observation-

model agreement with a correlation coefficient ranging from
0.41 to 0.60 for measurement locations across the IGP. We
find that daily satellite observations can provide a first-order
inference of the CO transport pathways during the enhanced
burning period, and this transport pattern is reproduced well
in the model. By using the observations and employing the
model at a comparable resolution, we confirm the signifi-
cant role of atmospheric dynamics and residential, industrial,
and commercial emissions in the production of the exorbitant
level of air pollutants in northern India. We find that biomass
burning plays only a minimal role in both column and surface
enhancements of CO, except for the state of Punjab during
the high pollution episodes. While the model reproduces ob-
servations reasonably well, a better understanding of the fac-
tors controlling the model uncertainties is essential for relat-
ing the observed concentrations to the underlying emissions.
Overall, our study emphasizes the importance of undertaking
rigorous policy measures, mainly focusing on reducing res-
idential, commercial, and industrial emissions in addition to
actions already underway in the agricultural sectors.
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1 Introduction

Biomass burning (BB) has been recognized as the second-
largest source of radiatively and chemically active trace gases
(e.g. carbon monoxide – CO; carbon dioxide – CO2; and sul-
fur dioxide – SO2) and aerosols (e.g. particulate matter –
PM10 and PM2.5) in the global atmosphere, which has sig-
nificant implications for climatic change and human health
(Andreae, 2001; Bond, 2004; Crutzen and Andreae, 1990;
Guenther et al., 2006; Kaiser et al., 2012; van der Werf et al.,
2017). According to previous reports, BB alone accounts for
59 % of black carbon (BC) emissions, one-third to one-half
of global carbon monoxide (CO), and 20 % of nitrogen oxide
(NOx) emissions (Akagi et al., 2011; Andreae, 2019). Based
on the model estimates of Ward et al. (2012), in the absence
of fire-related emissions, there would be a reduction of about
40 ppm (parts per million) CO2 from the current atmospheric
concentration level, indicating the importance of fire activi-
ties for the global carbon budget.

In India, emissions from open biomass burning include
significant contributions from agricultural crop residue burn-
ing, in addition to forest and grassland fires, and play an
essential role in terms of releasing total carbon content to
the atmosphere. Agricultural stubble burning during the post-
harvesting period is one of the main kinds of biomass burning
practices used in India to clear the land to make it suitable for
the next crop (Tai-Yi, 2012; Zha et al., 2013). According to
previous estimates, crop waste open burning, which includes
its use in residential heating and cooking, is responsible for
78 %–83 % (116–289 Tg yr−1) of the total biomass burned in
India during the year 2001, while rest of the contributions
are from forest fires (Venkataraman et al., 2006). As per the
previous studies, the primary crop residues generated in In-
dia are rice straw (112 Mt), wheat straw (109.9 Mt), rice husk
(22.4 Mt), sugarcane tops (97.8 Mt), and bagasse (101.3 Mt),
the major part of which is burnt in the open air (Lasko and
Vadrevu, 2018). Most of these burning activities are found
over the northern part of India along the foothills of the Hi-
malayas known as the Indo-Gangetic Plains (hereafter called
the IGP). The IGP is a highly populated and very important
agro-eco region in South Asia, which includes the states of
Punjab, Haryana, Bihar, Uttar Pradesh, and West Bengal. The
region occupies nearly 20 % of the total geographical area of
India and contributes about 42 % to India’s total grain pro-
duction (Tripathi et al., 2007). Based on VIIRS (Visible In-
frared Imaging Radiometer Suite) thermal anomalies, a re-
cent study has estimated burnt crop residues of 20.4 Mt and
9.6 Mt in Punjab and Haryana for the agricultural year 2017–
2018 in which most of the residue burnt (>90 %) at the field
was from rice and wheat crops (Singh et al., 2020).

Episodes of pollution events are a major concern in the
IGP region, which worsen during post-monsoon and win-
ter seasons (Cusworth et al., 2018; Dekker et al., 2019;
Girach and Nair, 2014). According to the World Air Qual-
ity Report 2019 based on ambient PM2.5 concentration, 14

of the top 20 most polluted cities in the world are located
in the IGP region, which also includes India’s capital re-
gion, Delhi. Earlier studies and reports attributed this to sev-
eral reasons but mainly to crop residue burning over Pun-
jab and Haryana, the two adjoining states of India’s capital
city of Delhi (Girach and Nair, 2014; Gupta et al., 2004;
Sidhu et al., 1998). However, the contributions from different
source sectors and source regions on Delhi’s pollution levels
still remain highly uncertain, which hinders the implemen-
tation of definitive measures to address pollution events. A
recent study reported a general lack of reliable data and re-
search efforts on biomass-burning-related issues on environ-
ment and human health (Yadav et al., 2017). Since agricul-
tural stubble burning is a practice prohibited by law in India,
official surveys conducted to estimate the extent of fire emis-
sion are not reliable. There is, therefore, a critical need to
improve the current knowledge base to help to make future
policies and implement mitigation strategies.

Kaiser et al. (2012) demonstrated an approach for the
calculation of biomass burning emissions by assimilat-
ing satellite-based fire radiative power (FRP) observations.
Along with FRP data, this approach derives the combustion
rate and trace gas emissions subsequently, with land-cover-
specific conversion factors and emission factors compiled
through literature surveys. While the FRP-based approach
has a clear advantage of enhancing accuracy compared to
other inventory-based data sets, such as the Global Fire Emis-
sion Database (GFED), several studies have indicated inac-
curacies in the FRP-derived biomass burning products due to
instrument limitations and usage of conversion factors (Cus-
worth et al., 2018; Dekker et al., 2019; Huijnen et al., 2016;
Kaiser et al., 2012; Mota and Wooster, 2018). The recent
availability of greenhouse gas satellite observations with un-
precedented data density at high spatial and temporal reso-
lution paves the more direct way for a detailed study on the
origin, distribution, and extent of trace gas levels over a vast
domain on a monthly to daily basis. Carbon monoxide (CO)
is one of the major gases emitted from biomass burning and
incomplete fossil fuel combustion. The major sink of CO is
its reaction with the hydroxyl radical (OH) to form CO2 and
precursor tropospheric ozone. The lifetime of CO in the at-
mosphere is between several weeks and several months and
varies with the location and season, depending on the oxidiz-
ing capacity of the environment (Jaffe, 1968). Compared to
CO2 and methane (CH4), the short lifetime of CO makes it
easier to detect from the background concentration level, and
thus, it can be a good tracer of pollution transport (Dekker et
al., 2017). Therefore, CO can be used as a proxy for the an-
thropogenic emissions of other pollutants, for example, emis-
sions of important greenhouse gases (GHGs) such as CO2
(Gamnitzer et al., 2006).

The TROPOspheric Monitoring Instrument (TROPOMI),
on board the Sentinel-5 Precursor satellite, has been mea-
suring various trace gases, including CO, since November
2017 (Landgraf et al., 2016; Borsdorff, 2018; Borsdorff et al.,
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2018; Schneising et al., 2019, 2020a). TROPOMI measures
with a high spatial (7 km× 7 km) and temporal resolution
(global daily coverage, not accounting for cloud and aerosol
contamination). The unprecedented data density, with a high
spatial and temporal resolution, makes TROPOMI useful for
obtaining information from the city scale to regional scale.
The validation of the TROPOMI retrieval with ground-level
measurements and model simulations has confirmed the high
quality of the measurements, with a high signal-to-noise ra-
tio, indicating the usefulness of the data collected (Borsdorff,
2018; Borsdorff et al., 2018; Schneising et al., 2019, 2020a).

In this study, we make use of CO observations from
TROPOMI (see Sect. 2.1) and the surface measurement net-
work to investigate different regional sources of CO in terms
of their contribution to the total column and surface-level
concentrations during high pollution episodes in the win-
ter season. By comparing CO measurements with high-
resolution model simulations generated by WRF–Chem-
GHG, we aim to understand the contribution of different
sources to the observed CO enhancement. In particular, we
focus on CO enhancement caused by the emissions from both
biomass burning and anthropogenic activities and their rela-
tive roles in the severe air pollution of major cities nearby.
This paper aims to address the following questions: (1) how
large is the CO enhancement over northern India detected by
TROPOMI during the agricultural stubble burning period?
(2) What is the regional contribution of CO emissions over
India during the entire year of 2018? (3) How good is the
agreement between the WRF–Chem-GHG and the observa-
tions, both at ground level and integrated across the column?
(4) How does the column respond to the spatio-temporal vari-
ations in surface emissions, particularly biomass emissions?
(5) What is the role of different emission sources in terms of
their contribution to the enhanced concentration level during
the high pollution episodes over India? An analysis focusing
on identifying the sources contributing to the high pollution
event in northern India during November 2017, using WRF
modelling and TROPOMI preliminary operational data was
reported in Dekker et al. (2019). Here, we present the anal-
ysis for the succeeding year, i.e. November 2018. Addition-
ally, this study differs from the previous study as follows.
The present study (1) uses the retrievals from both algorithms
of the Weighting Function Modified Differential Optical Ab-
sorption Spectroscopy (TROPOMI/WFM-DOAS; Schneis-
ing et al., 2019; see Sect. 2.1) and TROPOMI Shortwave
Infrared Carbon Monoxide Retrieval (TROPOMI/SICOR;
Landgraf et al., 2016); (2) examines the regional distribution
of CO for the entire year, (3) employs different model config-
uration such as the model domain size, vertical eta levels, and
planetary boundary layer scheme; (4) prescribes a different
anthropogenic emission inventory that also includes hourly
variations; and (5) utilizes the entire month, which includes
biomass burning and non-biomass burning periods to obtain
a more detailed view of the dispersion to nearby places.

2 Data

2.1 TROPOMI column observations

The TROPOMI onboard the Sentinel-5 Precursor satellite
(S5P), has been measuring various trace gases, including
CO, since November 2017 (Landgraf et al., 2016; Borsdorff,
2018; Borsdorff et al., 2018; Schneising et al., 2019, 2020a).
The TROPOMI instrument consists of a shortwave infrared
(SWIR), nadir-viewing imaging spectrometer, which mea-
sures radiances around 2.3 µm wavelength, from which the
total column mixing ratio (XCO) is retrieved (Schneising et
al., 2019; Landgraf et al., 2016). Due to the wide swath of
about 2600 km, the instrument is able to cover the whole
globe on a daily basis, capturing full scenes of continuous ob-
servations in cloud-free conditions (Schneising et al., 2019,
2020a). As a result of the observation of reflected solar ra-
diation in the SWIR part of the solar spectrum, TROPOMI
yields atmospheric carbon monoxide measurements with
high sensitivity to all altitude levels, including the planetary
boundary layer, and is thus well suited for studying emissions
from fires (Schneising et al., 2020a).

For this study, we use TROPOMI CO data for
November 2018, retrieved using the scientific algorithm
TROPOMI/WFM-DOAS, optimized to retrieve vertical
columns of carbon monoxide and methane simultaneously
(Schneising et al., 2019). Additionally, we use TROPOMI
operational CO data (TROPOMI/SICOR CO; Borsdorff,
2018; Borsdorff et al., 2018) to examine the consis-
tency of these two observational products over India. The
TROPOMI/SICOR and TROPOMI/WFM-DOAS algorithms
differ in many aspects, including radiative transfer models,
inversion schemes and the quality filtering method used.
Whereas TROPOMI/WFM-DOAS retrievals are limited to
cloud-free scenes, TROPOMI/SICOR aims to retrieve CO
columns for cloudy ground pixels too. A global comparison
between these two data sets from December 2018 (Schneis-
ing et al., 2019) shows a very similar spatial CO pattern for
both algorithms, with a high correlation coefficient of 0.98
and a regression factor close to the 1 : 1 line, confirming a
good agreement between the two data sets. An overview of
the TROPOMI data sets used in this study is provided in Ta-
ble 1, and additional details are provided in the following two
sub-sections.

2.1.1 Scientific TROPOMI/WFMD CO product

The WFM-DOAS retrieval algorithm was initially devel-
oped for the SCanning Imaging Absorption spectroMeter
for Atmospheric CartograpHY (SCIAMACHY) instrument
on board the ENVISAT satellite (Buchwitz et al., 2006,
2007; Schneising et al., 2011, 2014) and has recently been
adjusted for XCO retrieval from TROPOMI (Schneising
et al., 2019, 2020a). TROPOMI/WFM-DOAS uses a least
squares approach, which retrieves XCO from the shortwave
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Table 1. Overview of the TROPOMI CO products used in this study.

Data ID Satellite data Retrieval algorithm Data access Reference

TROPOMI/
WFMD

TROPOMI/
WFMD CO

Weighting Function
Modified Differential
Optical Absorption
Spectroscopy (WFM-
DOAS)

(http://www.iup.
uni-bremen.de/carbon_
ghg/products/tropomi_
wfmd/, last access:
7 February 2020)

Schneising et al. (2019,
2020a)

TROPOMI/
SICOR

TROPOMI/
SICOR CO

Shortwave Infrared
Carbon Monoxide
Retrieval (SICOR)

(https://scihub.
copernicus.eu/, last
access: 24 August
2020)

Landgraf et al. (2016);
Borsdorff (2018); Bors-
dorff et al. (2018)

infrared spectra recorded by the TROPOMI instrument. The
TROPOMI/WFM-DOAS CO retrievals (hereafter referred
to as TROPOMI/WFMD) have undergone direct validation
with independent reference data from the worldwide total
carbon column observing network (TCCON; Wunch et al.,
2011), which consists of ground-based Fourier transform
spectrometer (FTS) instruments with a well-controlled light
path. TCCON measurements are calibrated to the World Me-
teorological Organization (WMO) scale. As per this vali-
dation, TROPOMI/WFMD XCO has a systematic error of
1.9 ppb (parts per billion) and a random error of 5.1 ppb
(Schneising et al., 2019).

2.1.2 Operational TROPOMI/SICOR CO product

The Shortwave Infrared Carbon Monoxide Retrieval
(SICOR) algorithm is used to retrieve the operational CO
product (hereafter referred to as TROPOMI/SICOR; Land-
graf et al., 2016; Borsdorff, 2018; Borsdorff et al., 2018).
The validation study of TROPOMI/SICOR with the CAMS
data shows a good agreement with global mean difference of
+3.2 % and a Pearson correlation coefficient of 0.97 (Bors-
dorff et al., 2018). For the Indian region, a 2.9 % difference
was found with CAMS, with a standard deviation of 6 % and
a Pearson correlation coefficient of 0.9 (Borsdorff, 2018). As
per the validation of TROPOMI/SICOR with ground-based
total column measurements of TCCON, a mean bias of 6 ppb
with a standard deviation of 3.9 and 2.4 ppb has been found
for clear and cloudy skies, respectively (Borsdorff, 2018).

2.2 Ground-level observations

To assess the model performance against the surface-level
measurements, we use measurements from ground-based
air quality monitoring network maintained by the Cen-
tral Pollution Control Board (CPCB) of India. The mea-
surements of CO are performed using CO analysers based
on non-dispersive infrared spectroscopy, and the data are
provided as 6 h averages via a publicly accessible online
portal (https://app.cpcbccr.com/ccr/#/caaqm-dashboard-all/
caaqm-landing/data, last access: 16 March 2020). Though

we have analysed CO measurements available from all sta-
tions for the period of 3–20 November 2018, measurement
stations that are too close to local emissions sources or show
extremely large and ambiguous variations in which the sta-
bility of the analyser could be questioned were excluded for
the evaluation. All the stations used for this evaluation are
listed in Table 2.

3 WRF–Chem-GHG model

We utilize a high-resolution modelling framework based on
a WRF–Chem-GHG (version 3.9.1.1; hereafter referred to
as WRF) to simulate CO concentrations at a spatial reso-
lution of 10 km× 10 km) and a temporal resolution of 1 h.
The model solves the compressible Euler non-hydrostatic
equations and uses a terrain-following hydrostatic pressure
coordinate system in the vertical direction (Skamarock et
al., 2008). In our case, simulations have 39 vertical levels
extending from the surface to 50 hPa (∼ 20 km), and the
model domain describes a region with a spatial extent of
3500 km× 2500 km, covering the Indian domain and some
parts of Bangladesh, China, Nepal, and Pakistan.

For meteorological initial and boundary conditions, we
have taken fifth generation ECMWF reanalysis (ERA5)
data, on an hourly basis, with a horizontal resolution of
0.25◦× 0.25◦. The model is re-initialized each day with
ERA5 meteorology and allowed a 6 h spin-up time. For CO
concentration fields, initial and boundary conditions are pre-
scribed from the Copernicus Atmosphere Monitoring Ser-
vice (CAMS re-analysis data). CAMS provides the esti-
mated mixing ratios of CO, with a spatial resolution of
0.25◦× 0.25◦ at a temporal resolution of 6 h on 60 verti-
cal levels. For CO simulations, we have mainly used anthro-
pogenic and biomass burning emissions tracers from external
data sets. To represent anthropogenic contributions, we use
the global EDGAR emission inventory (Emission Database
for Global Atmospheric Research; version 4.3.2; the year
2012) data at a spatial resolution of 0.1◦× 0.1◦. EDGAR
provides global inventories for GHG emissions and air pol-
lutants on an annual basis, but we apply time factors in order
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Table 2. List of ground-level measurement stations used for this study.

No. Station name State Latitude (◦ N) Longitude (◦ E)

1 Hardev Nagar, Bathinda Punjab 30.23 74.90
2 Civil Line, Jalandhar Punjab 31.32 75.57
3 Ratanpura, Rupnagar – Ambuja Cements Punjab 30.00 76.60
4 National Institute of Solar Energy Gwal Pahari, Gurugram Punjab 28.42 77.14
5 Burari Crossing, Delhi Delhi 28.72 77.20
6 Delhi Delhi 28.55 77.25
7 IGI Airport (Terminal 3), Delhi Delhi 28.56 77.11
8 ITO, Delhi Delhi 28.62 77.24
9 Lodhi Road, New Delhi Delhi 28.59 77.22
10 Netaji Subhas University of Technology, Dwarka, Delhi Delhi 28.60 77.03
11 Patparganj, East Delhi Delhi 28.62 77.28
12 Sector 125, Noida Utter Pradesh 28.50 77.30
13 Sanjay Palace, Agra Utter Pradesh 27.20 78.00
14 Central School, Lucknow Utter Pradesh 26.88 80.93
15 Ardhali Bazar, Varanasi Utter Pradesh 25.40 82.90
16 Indira Gandhi Science Complex (IGSC) Planetarium Complex, Patna Bihar 25.60 85.10
17 Ghusuri, Howrah West Bengal 22.61 88.34
18 Padmapukur, Howrah West Bengal 22.56 88.27
19 Rabindra Bharati University, Kolkata West Bengal 22.62 88.38
20 Victoria Memorial, Kolkata West Bengal 22.54 88.34

to create hourly emissions. The time factors are based on the
step function time profiles, based on the TROTREP/POET
profiles provided in Olivier et al., 2003. We use the CO
emission data from the Global Fire Assimilation System
(GFAS) for the year of 2018 to represent biomass burning
emissions. GFAS is a satellite-based fire emission inventory
(http://apps.ecmwf.int/datasets/data/cams-gfas/, last access:
10 March 2019), which provides biomass burning emissions
daily at a global horizontal resolution of 0.1◦× 0.1◦. The
inventory calculates the fire emissions by assimilating FRP
observations from MODIS instruments on the polar-orbiting
satellites, Aqua and Terra, which observe the thermal radia-
tion from fire activities at wavelengths around 3.9 and 11 µm
(Kaiser et al., 2012). It achieves higher spatial and tempo-
ral (daily) resolution than almost any other inventory and can
estimate near-real-time emissions. A number of studies have
reported the underestimation of GFAS in fire emissions due
to the limitations of the MODIS instruments, which do not
capture all active fires such as small fires (Cusworth et al.,
2018; Dekker et al., 2019; Huijnen et al., 2016; Kaiser et al.,
2012; Mota and Wooster, 2018; Pan et al., 2020).

All these emissions fluxes are gridded to WRF’s Lam-
bert conformal conic projection grid, with 10 km horizon-
tal resolution, conserving the total mass of emissions. These
fluxes are added to the first model layer and transported sep-
arately as tagged tracers (Pillai et al., 2016). In order to ac-
count for the CO transported from the boundaries, we used
CAMS CO data derived at the boundary conditions and refer
to this CO tracer as background, meaning the concentration
without considering any sources or sinks in the targeted do-

main. The total CO is then calculated as CO total equals CO
background (BCK) plus CO anthropogenic (ANT) plus CO
biomass (BBU).

Utilizing the emission tracers mentioned above and
the multiple physics and chemistry options and dynamics
schemes (see Table 3), model simulations of CO are per-
formed for the period 1–30 November 2018. To assess the
impact of small fires on our atmospheric CO mixing ratio
simulations, we use another satellite-based fire inventory, the
Global Fire Emissions Database version 4s (GFED4s), which
includes small fires (Randerson et al., 2012; van der Werf et
al., 2017). The dry matter (DM) emissions from GFED4s are
converted to CO emissions, using emissions factors given in
Akagi et al. (2011).

The model setup does not include the deposition and
chemical formation of CO from volatile organic compounds
(VOCs). Compared to the direct CO sources, such as an-
thropogenic and biomass burning emissions over the model
domain, the indirect source from VOC oxidation is much
smaller, and the deposition processes are minor compared
to the transport of CO out of the model domain (Dekker
et al., 2017). Also, the oxidation with the hydroxyl (OH)
radical is not considered. Based on a few sensitivity simu-
lations, Dekker et al. (2017) reported a slight (4 %) net de-
crease in enhancement when including chemical reactions of
CO and concluded that the CO enhancement pattern is hardly
affected by VOCs and OH oxidation.
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Table 3. Overview of WRF–Chem model set-up.

Domain Configuration Single domain with horizontal reso-
lution of 10 km, with 307× 407 grid
points and 39 vertical levels.

Vertical coordinates Terrain-following hydrostatic pressure
vertical coordinates

Basic equations Non-hydrostatic

Time integration Third order Runge–Kutta split explicit

Time step 60 s

Spatial integration A third and fifth order differentiation
for vertical and horizontal advection,
respectively.

Physics/dynamics
Schemes

Radiation Rapid radiative transfer model
(RRTM) for long wave and Dudhia for
short wave.

Microphysics WSM 3 – classic simple ice scheme

Planetary boundary layer (PBL) YSU

Surface layer Monin–Obukhov

Land surface NOAH LSM

Cumulus Grell–Devenyi ensemble scheme

Chemistry options Chemical mechanism Greenhouse gas tracer option (passive
tracer) using previous simulations to
initialize tracer fields.

Emission input and
specification

Setting (=16) for fluxes and emissions
to passive tracers.

4 Methods

4.1 Comparison of WRF simulations with satellite
column observations

To evaluate the performance of WRF, we have performed
a comparison study on a daily and monthly basis using
TROPOMI/WFMD column CO (XCO) data during the pe-
riod 1–30 November 2018 over the Indian domain. The
TROPOMI/WFMD data set also provides the column aver-
aging kernel vector (AK) describing the vertical sensitivity
of the retrieved CO column to the partial column at different
vertical levels (Schneising et al., 2019). In order to compare
the satellite data with model simulations quantitatively, we
have to use the AK to take into account the vertical sensitiv-
ity of the instrument. In the data set, the elements of the AK
mostly have values close to 1, meaning that the instrument
is sensitive to the full column of CO. As such, the prior esti-
mates have a negligible contribution to the retrieved columns.
To compare the simulated concentration fields with the satel-
lite observations, the simulated pressure-weighted column-
averaged dry air mole fraction after applying the averaging

kernel, cavgk, is calculated as follows:

cavgk = c+
1

m0

∑n

l=1

(
ml (1−Al)(x

l
T − xl

)
. (1)

In this equation, l is the index of the vertical layer, n is the
number of vertical layers, and Al the corresponding column-
averaging kernel of the TROPOMI/WFMD algorithm. c is
the pressure-weighted column averaged dry air mole frac-
tion calculated from model simulations. xT is the a priori dry
air mole fraction profile used by the TROPOMI/WFMD re-
trieval algorithm, which is also provided in the data product,
and x is the model simulation. ml is the mass of dry air for
the corresponding layer, and m0 is the total mass of dry air.
For the comparison, we used only WRF simulations that cor-
respond to the satellite sampling time. For a fair comparison
between the satellite observations and model simulations, the
averaging kernel matrix and a priori profile for each retrieval
have been applied to the corresponding model output as ex-
plained in Eq. (1). For the ease of the statistical analysis,
the observations, though comparable to the model resolution,
are gridded to the WRF spatial resolution of 10 km× 10 km.
Both TROPOMI/WFMD and WRF averaged data for the
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month of November and the period of 6–9 November (en-
hanced biomass burning period as per the GFAS data) are
utilized in this study to investigate the column enhancement
by fire CO and their distribution over the study domain. Dur-
ing the enhanced biomass burning period, a definite enhance-
ment in XCO is found over the biomass burning hotspot. The
monthly averaged map shows decreased concentration levels
over these hotspots, which is attributed to the CO concentra-
tion dispersion resulted by changing weather conditions.

4.2 Comparison of WRF simulations with ground-level
observations

To evaluate the model performance at the surface level, we
have performed a comparison study with the CO in situ mea-
surements obtained from the ground-level pollution measure-
ment stations. We use the data collected from 20 measure-
ment stations within the IGP region, and evaluation is done
against each station data. In order to see overall agreement
for different regions in the IGP, we have averaged the data
temporally using only the stations within the corresponding
regions (Delhi, Punjab, and the IGP). The entire month is not
used here due to the existence of data gaps from several sta-
tions. In order to avoid very localized influence and noise in
the observed data, the 1 h data sets are temporally averaged
to 6 h resolution.

5 Results and Discussions

5.1 Regional and seasonal variation of fire CO emission

In order to examine the spatio-temporal variations of the
monthly fire CO emission, we have divided the entire region
into five sub-regions, as shown in Fig. 1. The fire CO emis-
sions show significant spatial and temporal variations, with
predominant emissions over the Indo-Gangetic Plain (IGP),
central India (CI), and northeastern India (NEI).

Figure 2 illustrates the integrated monthly fire CO emis-
sion for those regions in 2018. In most parts of India, the fire
CO emissions peak during the March–April (pre-monsoon)
period, accounting for about 76 % of the annual emissions.
This is consistent with a study based on the fire counts anal-
ysis from 1998–2009, which reported that more than 75 %
of the annual fires occurred during March–April (Sahu et
al., 2015). Fire CO emissions during March are significantly
higher when compared to other months, accounting for about
55 % of the annual emissions for India. Although having a
small geographical area, the fire activities over northeastern
India (NEI) made a significant contribution (57 %) to emis-
sions during pre-monsoon months, while the IGP contributed
only about 5 %. Central (CI) and southern regions (SI) of In-
dia add about 33 % towards the pre-monsoon fire CO emis-
sions, while northern India (NI) shows fewer emissions dur-
ing the whole year. However, emission spikes are seen in the
IGP during the October–November (post-monsoon) period.

Figure 1. India is partitioned into the following five different areas
for analysis: northeastern India (NEI), central India (CI), southern
India (SI), the Indo-Gangetic Plain (IGP), and northern India (NI).

This is also consistent with the distribution of total fire counts
over IGP region during the post-monsoon period, as seen in
Kulkarni et al. (2020). Over the IGP, the fire CO emissions
show evident monthly variations, with a higher emission dur-
ing the post-monsoon time compared to the pre-monsoon pe-
riod. About 73 % of the country’s total fire CO emissions
during the post-monsoon period are from the IGP region.
Of these IGP post-monsoon emissions, 70 % come from the
northwestern states of the IGP (Punjab and Haryana). Over
this region, 25 % of the total fire CO emissions happened
within a short period during 6–9 November, which accounts
for about 18 % of the country’s post-monsoon total fire CO
emissions. During the monsoon time, all regions are found
to have fewer fire emissions, which can be attributed to the
fact that rainfall leads to suppressed fire activity. In addition
to the minimal possibility of fire activities during the rainy
season, note that MODIS has only a limited capability to
detect fire emissions over a cloudy scene. It should also be
noted that very small fires involved can be missed due to
MODIS instruments limitations, which may underestimate
the fire CO emissions. With a finer spatial resolution of VI-
IRS (375 m) than MODIS (1 km), VIIRS detected ∼ 20 %
more active fires at the spatial scale of 0.02◦× 0.02◦ over
Punjab and Haryana during the post-monsoon season (Liu et
al., 2019).

The observed monthly variations in fire emissions are
mainly due to factors such as post-harvest crop residue burn-
ing, meteorological conditions (dry weather), and land-use
practices (Habib et al., 2006). The fire activities during post-
and pre-monsoon periods in India are mostly associated with
the high level of crop residue burning during the post-harvest
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Figure 2. (a) The monthly integrated GFAS fire CO emissions (mg/m2 per month) over different regions of India (as seen in Fig. 1) during
the year of 2018. (b) Integrated GFAS fire CO emission during 6–9 November 2018.

seasons (Sahu et al., 2015). Crop residue burning after har-
vesting is a general practice used by farmers to clear the land
for the next crop. Over the IGP, there are mainly two sea-
sonal crop seasons, known as kharif (primarily rice) and rabi
(mainly wheat), which are harvested during post- and pre-
monsoon seasons, respectively (Sahu et al., 2015). This re-
sults in temporal variations in residue burning emissions over
the IGP. Compared to other parts of the IGP, the northwest-
ern part of the IGP has the greatest preponderance of crop
residues during the post-monsoon season (Singh and Pani-
grahy, 2011). Consistent with the spatial and seasonal dif-
ferences in agricultural practices, we see a high level of fire
CO emissions in this region during the short period of 6–9
November.

5.2 Enhanced XCO as observed by the satellite

Figure 3a shows the column CO dry mixing ratio retrieved
from TROPOMI/WFMD over the Indian domain, averaged
for the entire month of November and 6–9 November (most
intense biomass burning period). During this period, higher
values of column CO are observed over the northern part of
India, particularly over the IGP region, compared to the other
regions of India, showing higher values during the biomass
burning period than the monthly average. A distinct enhance-
ment in XCO can be observed during the biomass burning
period, specifically over the states of Punjab and Haryana,
with a distribution plume towards the southeasterly direc-
tion, including the regions of Delhi and Agra. Note that this
emission hotspot is also seen in the GFAS inventory during
the biomass burning period (Fig. 2). Consistency between the
GFAS inventory and satellite observations suggests that the
XCO enhancement over the northwestern part of the IGP dur-
ing 6–9 November can be attributed to the crop residue burn-

ing that occurred over the Punjab region. The consistency
check between two retrieval products (TROPOMI/WFMD
and TROPOMI/SICOR) has resulted in a very similar spa-
tial CO pattern for both algorithms, with a high correlation
coefficient of 0.97, confirming the robustness of our find-
ings between the two data sets over India (see Table 4).
During early winter (November and December), the shal-
low planetary boundary layer (PBL) and low wind speed
cause locally emitted gases to be trapped in the lower at-
mosphere, which is considered to be the primary cause for
high concentrations during this period. For a better under-
standing of the role of transport and CO emissions from
biomass burning to the distribution over the domain, we uti-
lized WRF model simulations and performed a comparison
study with the TROPOMI/WFMD observations, as explained
in Sect. 4.1.

5.3 Validation of WRF

5.3.1 Agreement with column observations

We compared WRF simulations with TROPOMI/WFMD ob-
servations averaged over the days of peak burning and over
the full month of November 2018. Figure 3 shows these com-
parisons. Both the satellite and the model show a higher level
of column CO over the IGP region than over any other re-
gion of the domain. In the monthly averaged plots, the model
slightly overestimates (by about 10 ppb) the XCO in most
parts of the domain. Between the monthly averaged observa-
tions and the simulations, we find a mean difference of 7 ppb,
with a standard deviation of 8 ppb and a correlation coeffi-
cient of 0.87 (Fig. 4). Given that both CO and particulate
matter (PM) are usually co-emitted, and there exists a rea-
sonably high correlation between them during high pollution
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Table 4. Comparison between TROPOMI/WFMD and TROPOMI/SICOR products over India during the burning period and the full month
of November 2018. Abbreviations N , MB, SD, and R correspond to the number of observations, mean bias, standard deviation of differences,
and correlation coefficient, respectively.

Peak burning period only
(6–9 November 2018)

N (TROPOMI/SICOR) – 93 416
N (TROPOMI/WFMD) – 98 093
MB (TROPOMI/SICOR–TROPOMI/WFMD) –
1.85 ppb
SD (TROPOMI/SICOR–TROPOMI/WFMD) – 4.86 ppb
R (TROPOMI/SICOR vs. TROPOMI/WFMD) – 0.97

All of November 2018 N (TROPOMI/SICOR) – 555 724
N (TROPOMI/WFMD) – 638 215
MB (TROPOMI/SICOR–TROPOMI/WFMD) –
1.72 ppb
SD (TROPOMI/SICOR–TROPOMI/WFMD) – 4.27 ppb
R (TROPOMI/SICOR vs. TROPOMI/WFMD) – 0.97

Figure 3. CO total column mixing ratios averaged for (a) TROPOMI/WFMD and (b) WRF over all of November 2018 (left panel) and from
6–9 November 2018 (right panel).

episodes, the reported enhanced CO can also be a good indi-
cator of increased PM10 and PM2.5 that are associated with
bad air quality and health impacts. As a first-order approx-
imation, a high episodic PM estimation can be made using
PM and/or CO linear conversion factors. However, the accu-

rate prediction of particulate matter needs aerosol–chemistry
modelling, since PM concentration is affected by heteroge-
neous chemistry and wet and/or dry removal processes, un-
like CO which is mainly affected by atmospheric transport
and mixing at regional scales.
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Figure 4. (a) Differences in CO total column mixing ratios (WRF – TROPOMI/WFMD) averaged over the month of November 2018. (b)
Histogram of the differences. (c) Same as panel (a) but restricting the period to 6–9 November 2018. (d) Same as panel (b) but restricting
the period to 6–9 November 2018.

During the biomass burning period, the model underes-
timates (by about 10–15 ppb) the enhancement over Punjab
and some central parts of Uttar Pradesh, while overestimating
(by about 15–20 ppb) enhancements over the eastern parts of
IGP, including West Bengal and some parts of Bihar. Daily
retrievals of TROPOMI/WFMD and the corresponding sim-
ulations for the biomass burning period are shown in Fig. 5.
An enhanced XCO is reported in both observations and sim-
ulations over the state of Punjab, starting from 6 Novem-
ber and gradually increasing in the following days. During
this period, the plume is seen to be partly transported in a
southeasterly direction along the regions of Delhi and Agra.
Over the IGP there exists an overall slight underestimation by
WRF in comparison to TROPOMI during this period, with a
mean model-to-observation difference of −2.7 ppb.

Figure 6 shows the temporal evolution of the CO concen-
tration in three cities (Barnala, New Delhi, and Agra) located
along the transport pathway of pollution. The data are aver-
aged in a 100 km× 100 km square around the centre of each
city. During the biomass burning period, the XCO over Bar-
nala (Punjab) shows a steady positive increment with time,

with a peak on 9 November with a value of approximately
165 ppb. Both observations and simulations suggest a south-
easterly transport of this plume, which increases the CO con-
centration over Delhi and Agra during 8 and 9 November.
Over Delhi, the TROPOMI/WFMD XCO reached a max-
imum on 8 November, while modelled CO showed a de-
lay with a maximum concentration on 9 November. On 9
November, the observation shows more dispersed XCO over
Delhi towards the southeasterly direction in comparison with
model simulations. Over Agra, which is located far away
from the pollution hotspot but along the transport pathway,
an increase in XCO, which is consistent with that over the
other two cities, is found.

Based on VIIRS AOD (aerosol optical depth) and WRF–
Chem simulations using different chemical and meteorology
boundary conditions and biomass burning emissions, Rooz-
italab et al. (2021) assessed the model performance over the
IGP region during an intensive fire period in November 2017
and reported an underestimation of AODs for the entire IGP
region, except for Punjab. Furthermore, Kumar et al. (2020)
found a considerable impact of uncertainties in the WRF me-
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Figure 5. (a) Daily column CO observations from TROPOMI/WFMD and (b) the co-located WRF simulation for 6–9 November 2018.
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Figure 6. Carbon monoxide (CO) total column mixing ratios over (a) Barnala, (b) New Delhi, and (c) Agra for individual days from 6–9
November 2018.

teorology on simulated PM2.5 concentrations over IGP dur-
ing the crop residue burning period in November 2017. Note
that our study also reports a slight underestimation of WRF
compared to TROPOMI CO observations over IGP during
the biomass burning period. Though we cannot directly com-
pare AOD and/or PM2.5 results during November 2017 from
previous studies with our CO simulations during November
2018, the results indicate shortcomings in the model that can
be refined by better representation of atmospheric transport
(including model initialization) and emission.

The details in Table 4 confirm the minimal impact of the
differences in satellite retrieval algorithms on our results.
This analysis suggests a promising usage of TROPOMI ob-
servations for understanding the details of hotspot emissions
and the distribution of transport. The model is able to capture
many of these spatial and temporal patterns, supporting the
potential use of WRF via inverse modelling to infer hotspot
emissions using column measurements.

5.3.2 Agreement with ground-level observations

Figure 7 shows the model evaluation with ground-level mea-
surements over the regions IGP, Delhi, and Punjab for a pe-
riod from 3 to 20 November 2018. The location of ground-
level measurement stations used for this study is shown in
Fig. 8. The entire month is not used here due to the ex-
istence of data gaps from several stations. Taking various
ground-based stations over the IGP, Delhi, and Punjab, we
see an overall agreement between the model and measure-
ments, with a correlation coefficient of 0.6 (for the IGP),
0.6 (Delhi), and 0.41 (Punjab). Among these three study re-
gions, a lower correlation is found for the Punjab region in
which measurement sites are very close to the biomass burn-
ing hotspots, therefore showing a larger variability associated
with biomass emissions compared to other stations. These
variations are not fully reproduced by the model, resulting
in lower correlations over the Punjab region. Though the
model is able to follow the temporal variation in the surface-
level CO concentrations, overall underestimations of 9 and

54 ppb are found for Punjab and Delhi. For the IGP region,
the model underestimates the observed enhancements con-
siderably, resulting in a mean bias of 162 ppb. The observed
underestimation of WRF can be attributed to the local source
enhancements at the ground-level stations, which are located
close to the cities. For the Punjab region, the model CO sur-
face concentration shows the influence of biomass burning,
starting from 6 November with a maximum of 800 ppb on 8
November. Unlike the Punjab region, the concentration pat-
terns over Delhi and the IGP show a steadily increasing trend
from 6 to 13 November, with a subsequent reduction in mix-
ing ratios for the remaining days. Among these study regions
during this period, the lowest and highest surface CO levels
are observed over the regions of Punjab (mean – 500 ppb)
and Delhi (mean – 1500 ppb), respectively. Except for Pun-
jab, we see better mean bias when excluding nighttime val-
ues (21 ppb for Delhi and 141 ppb for the IGP region), as
the uncertainty from mixing height simulations is larger dur-
ing nighttime compared to daytime. Surprisingly the overall
underestimation increased in Punjab when using only day-
time values, indicating a considerable underestimation of lo-
cal emission sources, likely from the biomass emission in-
ventory. Note that the GFAS fire emissions may be under-
estimated (Mota and Wooster, 2018). The GFAS fire emis-
sions are partly based on the MODIS satellite instrument,
and the limited resolution of the instrument misses many
small fires, including biomass burning over India (Cusworth
et al., 2018). A comparison of post-monsoon fire CO emis-
sions over Punjab and Haryana, as estimated from five global
inventories for the period from 2003 to 2016, indicates the
limitation of satellite-derived fire products and the associ-
ated uncertainties in the CO fire emissions (Liu et al., 2019).
Overall, the results show that the model simulation, at a high
spatial resolution, is capable of capturing the CO enhance-
ment and reduction pattern at most of the stations; however,
there is a non-trivial mean bias which can be attributed to
issues with simulating transport (including the emission re-
lease height) and PBL dynamics in WRF as well as the vari-
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ability in emission fluxes (both EDGAR and GFAS), which
is likely to not be sufficiently well represented in the emis-
sion inventories used.

5.4 Contribution of different sources to the observed
concentration

To further investigate the contribution of different emission
sources to the observations, we use the tagged tracer op-
tion in WRF and separate the contributions from different
sources, as shown in Figs. 6 and 7. Note that the signals
contributing to satellite observations are difficult to disen-
tangle without underlying assumptions or the availability of
multi-tracers such as CO and nitrogen oxides and the follow-
ing: NOx and NO∗y (NO∗y includes NOx , peroxyacetyl nitrate
(PAN), organic nitrates, nitric acid (HNO3), and dinitrogen
pentoxide (N2O5; e.g. Wang et al., 2002). The relative con-
tributions of different emission sources and processes to the
WRF CO column, as summarized in Table 4, clearly indi-
cate the dominance of anthropogenic signals over biomass
burning signals on the XCO enhancements (see Figs. S1 and
S2 in the Supplement). The significant impact of background
signal, owing to the advection from the domain boundary
throughout the column, indicates the influence of far-field
fluxes and large-scale transport patterns on column CO (see
Fig. 6). During the biomass burning period, there exists a
considerable contribution of biomass burning emissions to
the column mixing ratios, particularly over the Punjab region
(14 %). Relatively low contributions of biomass burning sig-
nals to the column in Delhi and the IGP compared to Punjab
indicates the dominant contribution of surface CO emission
to the column in Punjab, which is where the biomass emis-
sions originated. It also suggests the possibility of less dilu-
tion of surface emissions during wintertime, enhancing the
total column mixing ratios. The effect of advected biomass
burning signals in terms of their contribution to the column
can be seen over Delhi (12 %); however, this effect becomes
smaller in the IGP (5 %) due to further dispersion.

The diurnal variation in the surface-level CO concentra-
tion pattern is due to the diurnal variation in the plane-
tary boundary layer height (PBLH) combined with strong
sources of CO at the surface. The contribution from emis-
sions sources over the Delhi, IGP, and Punjab regions for
the period of 3–20 and, specifically, 6–9 November are also
summarized in Table 5. For all regions, the influence of back-
ground CO concentrations to the surface-level CO observed
variability is minimal, as expected (see Fig. 7). The back-
ground influence is expected to be smaller for surface CO in
urban areas, where the CO fraction from local anthropogenic
emissions dominates the background signals. At ground level
in Delhi and the IGP, a detectable enhancement in surface
CO due to fire CO is found only during 6–9 November. Dur-
ing this period, the average contribution of biomass burning
to the ground-level concentration is 10 %, while the anthro-
pogenic contribution is 79 %–83 %. During 3–20 Novem-

ber over Delhi, however, the average contribution from fire
dropped to 4 % compared to 85 % in the case of the anthro-
pogenic contribution.

To examine the impact of missed active fires on our WRF
results, we perturb GFAS fire emissions by a factor of 50 %
and quantify how this perturbation affects the size of the
anomaly in CO mixing ratios over the IGP region. Note that
VIIRS detected ∼ 20 % more active fires during the post-
monsoon season over Punjab and Haryana. Using the per-
turbed GFAS emissions, we estimate that the relative in-
crease in modelled XCO contribution arises from increased
biomass emissions. With the increased emissions, we see an
increment of XCO contribution, ranging approximately from
5 to 25 ppb, during biomass burning period over IGP region,
mostly over Punjab, Haryana, and Delhi (see Figs. S3 and
S5). As for the model observation performance statistics, a
slight improvement is found for XCO over IGP region with
this perturbed simulation (see Table S1).

For allocating small fires over the model domain, we use
the GFED4s fire product, including fire fractions stemmed
from the small fire-burned area. The small fire boost in
GFED4s is calculated based on active fire hotspots and
burned area observations from MODIS surface reflectance
(Randerson et al., 2012). The difference in fire emission
fields in GFED4s, relative to GFAS, is derived over the model
domain and is applied to WRF to quantify the fire CO contri-
bution that also includes small fires. While including small
fires based on GFED4s has improved the model observa-
tion mean bias over IGP region for surface CO mixing ratio
during biomass burning period, we see a minimal improve-
ment for XCO (see Table S1). Enhancing the fire emission
by incorporating small fires resulted in an overall increment
of XCO concentration ranging from 20 to 40 ppb; however,
most of the contributions arising from small fires are seen
only over Punjab and some parts of Haryana (see Figs. S3
and S5). Based on GFED4s, we quantify the effect of small
fires on the modelled atmospheric CO plumes. The addition
of small fires contributed to an increment of 12.2 % surface
CO over Punjab and Haryana, and the small fire contribu-
tion is reduced to 8.6 % and 4.3 % over Delhi and IGP, re-
spectively. In the case of XCO, there exists only a minimal
impact of small fires on mixing ratios, which are estimated
to be 2.5 % over Punjab and Haryana, 1.4 % over IGP, and
0.8 % over Delhi. The difference in the contribution of small
fires between surface CO and XCO can be explained by the
meteorology conditions that prevailed (see Sect. 5.5).

Overall, our findings suggest that the enhanced CO levels
during pollution episodes over Delhi and the greater part of
IGP are affected by biomass burning. However, a more sig-
nificant contribution comes from anthropogenic emissions.
Unlike the surface CO mixing ratios, the majority of the
column CO mixing ratio is contributed by the background
signal. A recent study conducted by Dekker et al. (2019)
concluded that there exists an underestimation in GFAS fire
emission data over the Indian region. This is also supported
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Figure 7. Ground-level CO measurements and WRF model simulations for the period 3–20 November 2018 over (a) the IGP region, (b)
Delhi, and (c) Punjab. Note that different y-axis scale ranges are used in the panels for a better visualization of the signals.

Figure 8. Map showing the locations of sites used for model evaluation. The yellow contour represents the IGP region. The inset shows the
broader region for context.
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Table 5. Contributions from different emissions sources to the CO concentration between 6–9 and 3–20 November 2018. Abbreviations
ANT, BBU, and BCK represent anthropogenic, biomass burning, and background signals, respectively (see Sect. 3).

Period CO Delhi Punjab IGP

ANT BBU BCK ANT BBU BCK ANT BBU BCK

6–9 Nov 2018 Column 35 % 12 % 53 % 21 % 14 % 65 % 32 % 5 % 63 %
Surface 83 % 10 % 7 % 49 % 38 % 13 % 79 % 10 % 11 %

3–20 Nov 2018 Column 43 % 6 % 51 % 25 % 8 % 67 % 34 % 3 % 63 %
Surface 86 % 4 % 10 % 60 % 17 % 23 % 82 % 4 % 14 %

by our study in which we find that the underestimation of
the total CO concentration in Punjab during biomass burn-
ing period and a part of this model observation mismatch
can be attributed to the underestimation of modelled fire
CO contribution. Over the Punjab region, biomass burning
played a significant role in determining the ground-level CO
measurements, especially during 6–9 of November during
which enhanced fire activities occurred. This has contributed
considerably to the column mixing ratio that is detected by
TROPOMI. On average, for 3–20 November, 17 % of the to-
tal ground-level CO concentration over the Punjab region is
on account of fire CO emission, whereas for 6–9 November
the share is about 38 %.

5.5 Effect of meteorology

Usually pollution episodes during winter are the result of me-
teorological conditions due to low wind speed and a shallow
boundary layer (PBL height). To further analyse the effect of
meteorological conditions, we use WRF-simulated meteorol-
ogy due to the lack of observations of wind and PBL height in
this region. An inter-model comparison of WRF meteorology
with corresponding variables from reanalysis data provided
by Modern-Era Retrospective Analysis for Research and Ap-
plications, version 2 (MERRA-2) is performed to assess the
overall agreement (see Table S2 and Fig. S6). Note that
MERRA-2 is an assimilation product at an approximate spa-
tial resolution of 0.5◦× 0.625◦, publicly available online at
https://gmao.gsfc.nasa.gov/reanalysis/MERRA-2/ (last ac-
cess: 14 January 2021). More information on MERRA-2 and
the assimilation system can be seen in Gelaro et al. (2017).
Figure 9 demonstrates the influence of the PBL height and
surface-level wind speed to the observed CO level. We found
a negative correlation of CO with modelled PBLH (−0.83
– IGP; −0.73 – Delhi; −0.56 – Punjab) and wind speed
(−0.40 – IGP; −0.62 – Delhi; −0.24 – Punjab) for Novem-
ber 2018. Similar correlations of CO with modelled PBLH
(−0.87 – IGP; −0.83 – Delhi; −0.65 – Punjab) and wind
speed (−0.46 – IGP; −0.70 – Delhi; −0.26 – Punjab) exist
for the biomass burning time period of 6–9 November 2018.
A strong negative relation between PBL height and CO level
is seen, indicating the impact of meteorology on the diur-
nal variation of surface-level CO concentration. Among the

regions, a less negative correlation of CO with PBLH and
wind speed is observed for Punjab. It suggests that, when
compared to Delhi and the IGP, the surface-level CO varia-
tion over the Punjab region cannot be explained by meteorol-
ogy alone. Here the local emission activities, such as biomass
burning, explain more of the variability in surface-level CO.
A gradual increase in surface CO levels was observed from
3 to 13 November during which an overall decrease in PBL
height and surface-level wind speed took place. The highest
CO values around Delhi were found during 11–13 Novem-
ber, just before the winds and PBL height were increasing.

Figures 10 and 11 provide transport patterns involving
the vertical distribution of CO biomass burning contribution
and total CO mixing ratio, respectively, during the biomass
burning period. Vertical cross sections show an impact of
fire emission over Delhi during the biomass burning period
(40 to 120 ppb), peaking its boundary layer CO contribution
(>110 ppb) on 7 November (Fig. 10). On the other hand,
the total CO shows peak values (>550 ppb) on 9 Novem-
ber, indicating a significant additive contribution from an-
thropogenic fluxes, in addition to biomass burning, together
with the winter meteorology conditions that prevailed over
the region (see Fig. 11). A consistently low PBL height can
be clearly seen during these days, which traps CO plumes in
the lower boundary layer due to less extent of vertical mix-
ing. These findings suggest that the meteorological condi-
tions have a large impact on the surface-level CO concen-
tration, especially over the IGP and Delhi. Our results are
consistent with Dekker et al. (2019), who identified that the
meteorological conditions contributed significantly to the en-
hancement of CO mixing ratios at the ground level during
November 2017. Similarly, Kariyathan et al. (2020), by us-
ing a-temporal emission fields and a Lagrangian modelling
framework, found a considerable impact of meteorological
conditions during November 2017 that contributed to the en-
hancements of trace gases over Delhi. Together with strong
emissions (anthropogenic and biomass burning), they found
that these enhancements could be several orders of magni-
tude higher compared to other seasons.
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Figure 9. PBL height and surface-level wind speed from WRF model simulations for a period of 3–20 November 2018 over (a) the IGP
region, (b) Delhi, and (c) Punjab.

6 Conclusions

The TROPOMI on board the European Space Agency’s S5P
mission provides shortwave infrared measurements of CO
with a daily global coverage and a high spatial resolution
of 7× 7 km2. These high-density and high-accuracy CO col-
umn observations enable us to investigate high CO pollution
episodes over India, which otherwise would not have been
possible at this spatial resolution. In this study, we demon-
strate the usefulness of TROPOMI CO column observations
for detecting and analysing local CO enhancement over India
during winter 2018, employing WRF at a resolution compa-
rable to TROPOMI to aid in the interpretation of the data.
The GFAS biomass burning emission product shows a sub-
stantial amount of fire CO emitted from various parts of In-
dia during the year 2018. Over the IGP, the fire CO emission
shows an apparent monthly variation, with a higher emission
during the post-monsoon time compared to the pre-monsoon
period. A large amount of fire CO emissions is reported over
the state of Punjab within the short period of 6–9 November
2018. Consistent with the emission data, TROPOMI XCO
shows a clear enhancement during November, not only over
the fire emission hotspots but also along the western parts of
the IGP, including the capital of India, Delhi.

To further analyse the causes of these enhancements, we
used simulations generated by WRF. A similar study con-
ducted by Dekker et al. (2019) also utilized WRF to identify
the sources contributing to the high pollution event in north-
ern India during 2017 but used preliminary TROPOMI data
generated with the SICOR algorithm. The present study uses
both fossil fuel emissions data based on EDGAR (version
4.3.2), with hourly variations, and biomass burning emis-
sions data based on GFAS fire CO emissions. If WRF repro-
duces the transport sufficiently well, the mismatch between
the simulations and observations is mostly caused by uncer-
tainties in the prior emission fluxes (EDGAR and GFAS)
due to the linear dependence of the CO concentrations on
the source strength of the emissions. To evaluate the simu-
lated CO fields with the observed CO columns, we applied
the TROPOMI/WFMD averaging kernel to the correspond-
ing model profile, taking into account the vertical sensitivity
of the satellite measurement. Overall, we find a good agree-
ment between WRF and TROPOMI/WFMD.

Our analysis shows that daily observations from
TROPOMI allow pollution transport from the emis-
sions hotspots to be captured. As an example, we analysed
the pollution transport from the fire emissions hotspots
over northern India during the enhanced burning period of
6–9 November. The TROPOMI/WFMD XCO level started
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Figure 10. Vertical cross section of the CO mixing ratio that arises from biomass burning emissions during 6–9 November 2018. Cross
sections are over Delhi at 13:30 (local time). The black arrow indicates the location of Delhi.

to rise over the fire emission hotspots from 6 November
and gradually increased during the following days. Both
TROPOMI/WFMD and model simulations show the trans-
port of CO polluted air masses towards the northeastern
part of the IGP along with the capital city of Delhi. Due to
this pollution transport, the CO concentration level in the
cities along the transport pathway shows CO enhancements.
A similar transport pattern is also observed in our WRF
model simulation. This supports the reliability of the WRF
transport simulation and suggests the potential of using WRF
to estimate CO emission via flux inversions. The good agree-
ment between TROPOMI/WFMD and TROPOMI/SICOR
retrievals over India confirms the robustness of our findings
irrespective of the differences in the retrieval algorithm. For
the further evaluation of WRF with surface measurements,
we used ground-level CO measurements from the stations
along the IGP for the period of 3–20 November 2018. Over
these regions, the surface CO showed a steadily increasing
trend from 6 to 13 November, followed by a reduction in
mixing ratio in the following days. Among these study re-

gions, the lowest and highest surface CO level was observed
over the regions Punjab and Delhi respectively.

We answer the five questions raised in the introduction
as follows: (1) the TROPOMI XCO shows a clear enhance-
ment during the stubble burning period over the fire emission
hotspots but also along the western parts of the IGP, includ-
ing the national capital of India, Delhi. The detected XCO
level over most parts of the IGP was about 40 ppb higher
than in other parts of India. (2) In terms of regional fire CO
contribution, in most parts of India, the fire CO emissions
peak during the pre-monsoon period (76 %) compared to the
post-monsoon period (24 %). Fire activities over northeast-
ern India (NEI) made a significant contribution (57 %) to
emissions during pre-monsoon months, while the IGP con-
tributed only about 5 %. Central (CI) and southern regions
(SI) of India add about 33 % towards the pre-monsoon fire
CO emissions. IGP contributed about 73 % of the country’s
total fire CO emissions during the post-monsoon period. A
large number of fire CO emissions is reported over the state
of Punjab within the short period of 6–9 November 2018. (3)
Comparing model simulations with observations, we find a
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Figure 11. Same as Fig. 10 but showing total CO distribution.

good agreement between WRF and TROPOMI/WFMD, with
a mean difference of 7 ppb, a standard deviation of 8 ppb,
and a spatial correlation coefficient of 0.87. The comparison
of WRF CO at surface level with ground-level CO measure-
ments from the stations along the IGP for the period of 3–
20 November 2018 shows a less agreement compared to the
values for XCO, with a correlation coefficient of 0.6 (for the
IGP), 0.6 (Delhi), and 0.41 (Punjab). (4) The response of col-
umn CO to the surface biomass emission was clearly visible
during the enhanced burning period. The CO level started to
rise over the fire emission hotspots from 6 November and
gradually increased during the following days (see Fig. 5).
(5) Compared to anthropogenic emission sources, our results
imply a minimal role of biomass burning in terms of its con-
tribution to both column and surface enhancements, except
for the state of Punjab during the high pollution episodes.
This is also consistent with Dekker et al. (2019), who con-
cluded that the low wind speeds and shallow atmospheric
boundary layers were the most likely causes for the tempo-
ral accumulation and subsequent dispersion of CO during the
biomass burning period in November 2017.

Overall, comparing our results with Dekker et al. (2019),
we can infer the significant role of atmospheric dynamics
and anthropogenic emissions in producing exorbitant level of
pollutants and trace gases during every winter in northern In-
dia. While these anthropogenic urban sources (e.g. road traf-
fic, residential usages, such as cooking and heating by solid
fuels, industries, including coal-fired kilns, and power plants)
are primarily responsible for the CO enhancement in win-
ter months, there exists a non-trivial fraction of contribution
from biomass burning activities in Punjab and nearby loca-
tions for a short duration of time. The variation in surface-
level CO concentrations is found to be influenced signifi-
cantly by the meteorological parameters such as PBL height
and surface-level wind speed. Our results show a clear in-
fluence of atmospheric transport, leading to a complex CO
enhancement pattern. This demonstrates the need for high-
resolution models in the interpretation of TROPOMI obser-
vations in order to obtain more insight into the pollution
transport and deduce causes for the observed enhancements
(and resulting poor air quality) over India.

In an effort to minimize the pollution episodes, a robust
evaluation of emissions inventories and their trends is vi-
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tal, particularly in light of uncertainties in existing emission
sources, and the limited availability of appropriate emissions
estimates in different emission sectors. Studies identifying
the emissions hotspots and understanding their transport pat-
terns, such as those carried out in Dekker et al. (2019) and in
this work, are thus important for further decision-making for
controlling emissions. While WRF is able to reproduce ob-
servations reasonably well, the model errors are not negligi-
ble when utilizing TROPOMI observations for emission esti-
mates. Nevertheless, we emphasize the importance of taking
rigorous policy measures to reduce residential and commer-
cial emissions in addition to measures already being taken in
the agricultural sectors (e.g. the implementation of second-
generation direct seeders, such as the Happy Seeder, which
facilitate sowing under heavy stubble conditions, thereby
avoiding the need for residue burning; NAAS, 2017). The fu-
ture task involves the implementation of appropriate inverse
techniques suitable for flux inversion of spatially resolved
sources of CO emissions over India.

Code and data availability. The WRF CO model simulations used
in this study are available upon request to the corresponding au-
thor, Dhanyalekshmi Pillai (dhanya@iiserb.ac.in; kdhanya@bgc-
jena.mpg.de). The WRF–Chem source code is publicly available
(https://ruc.noaa.gov/wrf/wrf-chem/, Ahmadov et al., 2018). The
input data used for simulations in this study are either publicly
available or available upon request to the corresponding author.
The S5P TROPOMI/WFMD data can be accessed at http://www.
iup.uni-bremen.de/carbon_ghg/products/tropomi_wfmd/ (Schneis-
ing et al., 2020b), and the operational product is available at https:
//scihub.copernicus.eu/ (Borsdorff et al., 2020). The ground-based
CO data analysed in this study can be accessed at https://app.
cpcbccr.com/ccr/#/caaqm-dashboard-all/caaqm-landing/data (Cen-
tral Pollution Control Board, 2020).
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